梁弯曲时横截面上的正应力
- 格式:doc
- 大小:55.50 KB
- 文档页数:2
《纯弯曲梁的正应力实验》实验报告一、实验目的1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力计算公式二、实验仪器设备和工具3.XL3416 纯弯曲试验装置4.力&应变综合参数测试仪5.游标卡尺、钢板尺3、实验原理及方法在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为σ= My / I z式中M为弯矩,I z为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
实验采用半桥单臂、公共补偿、多点测量方法。
加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量σ实i=E△ε实i将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
四、实验步骤1.设计好本实验所需的各类数据表格。
2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离y i。
见附表13.拟订加载方案。
先选取适当的初载荷P0(一般取P0 =10%P max左右),估算P max(该实验载荷范围P max≤4000N),分4~6级加载。
4.根据加载方案,调整好实验加载装置。
5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。
6.加载。
均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。
实验至少重复两次。
见附表27.作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。
附表1 (试件相关数据)附表2 (实验数据)P 50010001500200025003000载荷N △P 500500500500500εP -33-66-99-133-166△εP -33-33-34-334平均值-33.25εP -16-33-50-67-83△εP -17-17-17-162平均值16.75εP 00000△εP 00001平均值0εP 1532476379△εP 171516163平均值16εP 326597130163△εP 33323333 各 测点电阻应变仪读数µε5平均值32.75五、实验结果处理1.实验值计算根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算应变片至中性层距离(mm )梁的尺寸和有关参数Y 1-20宽 度 b = 20 mm Y 2-10高 度 h = 40 mm Y 30跨 度 L = 620mm (新700 mm )Y 410载荷距离 a = 150 mm Y 520弹性模量 E = 210 GPa ( 新206 GPa )泊 松 比 μ= 0.26惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4。
梁的弯曲正应力实验一、实验目的1.测定梁承受纯弯曲时横截面上的正应力的大小及分布规律,并与理论计算结果进行比较,以验证梁的弯曲正应力公式。
2.了解电测法,练习电阻应变仪的使用。
二、实验设备和仪器1.万能材料试验机或梁弯曲实验台2.电阻应变仪,预调平衡箱3.游标卡尺,直尺4.矩形截面钢梁(已贴好电阻应变片)三、实验原理图3--16(a)梁弯曲实验台加载及测量图3—16(b) 万能试验机加载及测量试件选用矩形截面梁,加载方法及测量点的布置如图3—16(a)、(b)所示。
图3--16(a)为弯曲实验台装置示意图。
试件选用矩形截面梁,加载方法测量点的布置如图3-16(a)、(b)所示。
图3—16(b)为将梁放在万能试验机上加载实验情况。
梁受集中载荷P作用后使梁的中段为纯弯曲区域,两端为剪切弯曲区域。
载荷作用于纵向对称平面内,而且在弹性极限内进行实验。
故为弹性范围内的平面弯曲问题。
梁纯弯曲时横截面上的正应力计算公式为上式说明在梁的横截面上的正应力是按直线规律分布的。
以此为依据,在梁的纯弯曲区段内某一横截面处按等分高度布置5~7个测点。
各测点将沿着梁的轴向贴上电阻应变片(一般事先贴好)。
当梁承受变形时,各测点将发生伸长或缩短的线应变。
通过应变仪可依次测出各测点懂得线应变值。
从而确定横截面上应变的分布规律。
由于截面上各点处于单向应力状态下,可由虎克定律求出实验应力为式中,E为梁所用材料的拉压弹性模量。
本实验采用“等间隔分级增量法”加载,每增加等量的载荷△P,测定各测点相应的应变增量一次,取各次应变增量的平均值△,求出各测点的应力增量△为把△与理论公式计算出的应力增量△=△M·y /I Z进行比较,从而验证弯曲正应力公式的正确性。
四、实验方法和步骤1.测量梁的横截面尺寸及各测点距中性轴的距离。
2.正确安装已贴好应变片的钢梁,保证平面弯曲,检查两边力到作用点到支点的距离(即图3—16中的a值)是否相等。
姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N 为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。
在确定了梁横截面的内力之后,还需要进一步研究横截面上的应力与截面内力之间的定量关系,从而建立梁的强度设计条件,进行强度计算。
1、纯弯曲与横力弯曲
从火车轴的力学模型为图2-53a 所示的外伸梁。
画其剪力、弯矩图(见图2-53b 、c ),在其AC 、BD 段内各横截面上有弯矩M 和剪力F Q 同时存在,故梁在这些段内
发生弯曲变形的同时还会发生剪力变形,这种变形称为剪力弯曲,也称为横力弯曲。
在其CD 段内各段截面,只有弯矩M 而无剪力F Q ,梁的这种弯曲称为纯弯曲。
2、梁纯弯曲时横截面上的正应力
如图2-54a 所示,取一矩形截面梁,弯曲前在其表面两条横向线m —m 和n —n ,再画两条纵向线a —a 和b —b ,然后在其两端外力偶矩M ,梁将发生平面纯弯曲变形(见图2-54b)。
此时可以观察到如下变形现象:
⑴横向线m —m 和n —n 任为直线且与正向线正交,但绕某点相对转动了一个微小角度。
⑵纵向线a —a 和b —b 弯成了曲线,且a —a 线缩短,而b —b 线伸长。
由于梁内部材料的变化无法观察,因此假设横截面在变形过程中始终保持为平面,这就是纯梁弯曲时的;平面假设。
可以设想梁由无数条纵向纤维组成,且纵向纤维间无相互的挤压作用,处于单向受拉或受压状态。
从图2-54b 中可以看出,;梁春弯曲时,从凸边纤维伸长连续变化到凹边纤维缩短,期间必有一层纤维既不伸长也不缩短,这一纵向纤维层称为中性层(见图2-54c )。
中性层与横截面的交线称为中性轴。
梁弯曲时,横截面绕中心轴绕动了一个角度。
由上述分析可知,矩形截面梁弯曲时的应力分布有如下特点:
⑴中性轴的线应变为零,所以其正应力也为零。
⑵距中性轴距离相等的各点,其线应变相等。
根据胡克定律,它们的正应力也必相等。
⑶在图2-54b 所示的受力情况下,中性轴上部分各点正应力为压应力(即负值),中性轴下部分各点正应力为拉应力(即正值)。
⑷横截面上的正应力沿y 轴呈线性分布,即ky =σ(k 为特定常数),如图2-55、图2-56所示。
最大正应力(绝对值)在离中性轴最远的上、下边缘处。
由于距离中性层上、下的纵向纤维的线应变与到中性层的距离y 成正比,当其正应力不超过材料的比例极限时,由胡克定律可知
y E
y
E E •=•=•=ρρεσ
2-24 对于指定的横截面,ρE
为常数(即为上述k 的值)看,由于此时梁轴线的曲率
半径ρ还是一个未知量,通过静力学平衡关系∑z F )(=0,可得
图2-55 正应力分布图 图2-56 梁纯弯曲时横截面上的
内力和应力
⎰=A M ydA σ 2-25
将公式(2-24)代入(2-25),得
M dA y E
dA y E
A A ==⎰⎰22ρρ
令
dA y I A
z ⎰=2 为截面对中性轴z 轴的轴惯性矩)(4mm ,则
z EI M =ρ
1 这是研究梁变形的一个基本公式,式中z EI 称为梁的抗弯刚度。
将公式(2-26)代入(2-24),即得到梁在纯弯曲时截面上任一点处的正应力计算公式:
z
I My =σ 为计算梁横截面上的最大正应力,可定义抗弯截面系数m ax y I W z z =
,则式(2-27),可写作:
z W M =
max σ 式中 M ——截面上的弯曲(N ·mm );
W z ——抗弯截面系数(mm 3).
I z 和W z 是仅与截面几何尺寸有关的量,常用型钢的I z 和W z 可在有关设
计手册中查得。
式(2-27)和(2-28)是由梁受纯弯曲变形推导出的,但只要梁具有纵向对称面,且载荷作用在其纵向对称面内,梁的跨度又较大的,横力弯曲也可以应用上述两式。
当梁横截面上的最大应力大于材料的比例极限时,公式不在适用。
3、惯性矩和抗弯截面系数的计算
梁常见横截面的I z 、W z 计算公式表2-2。