梁弯曲时的正应力 知识点:1、变形几何关系 2 、物理关系 3、静力
- 格式:ppt
- 大小:96.50 KB
- 文档页数:25
材料力学梁的应力知识点总结梁是一种常见的结构元件,在工程中广泛应用。
了解梁的应力知识点对于工程设计和分析非常重要,本文将对材料力学梁的应力知识点进行总结。
1. 弯曲应力在弯曲载荷下,梁会发生弯曲变形,产生弯曲应力。
弯曲应力分为正应力和剪应力两部分。
梁的顶端受拉产生正应力,底端受压产生正应力。
横截面上由于剪力的存在,产生剪应力。
弯曲应力与梁的几何形状、材料性质和载荷有关。
2. 矩形截面的弯曲应力分布对于矩形截面的梁,弯曲应力的分布是不均匀的。
顶部和底部的纤维受到最大应力,处于拉伸或压缩状态。
靠近中性轴的纤维受到较小的应力。
弯曲应力的分布可用弯矩与惯性矩的比值来表示。
3. 剪应力和剪力流在梁的截面上,由于剪力的存在,产生剪应力。
剪应力的分布是沿纵横两个方向呈对称分布的。
剪应力在截面上的变化呈线性分布,最大值出现在截面的边缘。
剪力流是指单位深度上的剪力大小,剪应力和剪力流之间存在直接的线性关系。
4. 应力分量的变换在梁的应力分析中,常常需要对应力分量进行变换。
常用的应力分量变换公式有平面应力变换公式和平面应变变换公式。
5. 横截面形状的影响梁的横截面形状对其应力分布和强度有显著影响。
常见的梁截面形状有矩形、圆形和I型等。
圆形截面具有均匀的应力分布特点,适用于承受压力的情况。
I型截面具有较高的抗弯强度,适用于悬挑梁和跨大距离的情况。
6. 梁的断裂当梁受力达到其强度极限时,可能会发生断裂。
断裂形式可以是横断面的剪断、疲劳断裂或脆性断裂等。
设计中需要考虑梁的强度和刚度,以避免出现断裂。
总结:材料力学梁的应力知识点对于工程领域非常重要。
弯曲应力、剪应力和剪力流是梁应力分析的关键内容;矩形截面的弯曲应力分布是不均匀的,可以用弯矩与惯性矩的比值表示;横截面形状对梁的应力分布和强度有重要影响。
通过深入理解和应用这些知识点,可以对梁的行为和性能进行合理评估和设计。
梁变形与梁应力部分小结一、梁的应力与变形公式1、平面弯曲的正应力σ公式 y Ey I M Zρσσ==研究方法:平面弯曲、纯弯曲平面假设、单向受力假设①变形几何关系(条件、方程)ρεy=(应变沿截面高度的分布规律)y ——截面上某点到中性轴的距离 ②物理关系(条件、方程)ρσyE εE ⋅=⋅= (应力沿截面高度的分布规律)③静力学关系(条件、方程)dAy Ey σdA M0ydA EσdA F A2AZAAN ⎰⎰⎰⎰=⋅====⊗ρρ⎪⎩⎪⎨⎧=⎰中性轴—Z dA y I A 2Z ()4m()⎰=⋅=→AZ Z 0dA y S S 3m 静矩 (中性轴Z 轴通过形心)2、弯曲变形基本公式(方程)⎪⎪⎭⎫ ⎝⎛±==22Zdx y d EIM ρρ1(ρ1曲率)3、任一点处弯曲正应力的表达式(对同一截面而言)y I M Z=σ ZI ——截面对中性轴的惯性M ——该截面上的弯矩值 y ——该截面上某点至中性轴之矩 4、平面弯曲剪应力公式 ①基本公式:bI S Fs Z Z *=τ 式中:b ——横截面上要计算剪应力之点处的宽度Z I ——整个截面对中性(形心)轴的惯性矩*ZS ——横截面上距中性轴为y 的横线以外部分截面对中性轴Z 的静矩②横截面上最大剪应力(危险点在中性轴上各点)记忆⎪⎪⎭⎪⎪⎬⎫====2maxmax 3ππ16Fs A Fs 34τbh Fs 1.5A Fs23τ查表Z I :m ax Z S 值(应用)二、平面弯曲强度条件与刚度条件1、弯曲正应力强度条件 []σσ≤=ZW M m ax (对称)[][][][])() ( 2m ax m ax σy y I M y I M Zl 1Z 压拉压拉σσσσσ≤=≤=(不对称)2、弯曲剪应力强度条件 []ττ≤=bI S Fs Z Zmaxmax m ax 危险点均在危险截面的中性轴各点处应力沿截面高度的成抛物线分布规律3、刚度条件(用叠加法求出梁中最大转角与挠度)转角[]θθ≤m ax 、()角度弧度⇒⋅πθ180m ax rad挠度[] max max ωω≤(m) 满足刚度条件三、提高弯曲强度与弯曲刚度的措施1、选择合理的截面(考虑材料力学性质) ①AW Z一般情况该比值越大越合理 工>>②铸铁[]压σ>[]拉 σ,中性轴偏于受拉边 Z (中性轴) 2、合理布置梁的支座和载荷①合理布置梁的支座 ②合理布置梁的载荷 ③等强度梁(变截面梁)m ax m ax τ矩形梁 圆截面梁 工字梁危险点均在危险截面的上、下边缘点处应力沿截面高度成线性分布四、用变形比较法求解超静定(静不定)梁1、确定静定基。
梁弯曲知识点总结一、弯曲概念在物理学和工程力学中,弯曲是指在材料受到外力作用下,产生一种曲率变化的变形形式。
在梁的情况下,当梁受到外部载荷作用时,梁将发生一种曲率变化,即梁的一部分受到压力而另一部分受到拉力,使得梁产生一种弯曲的变形形式。
梁的弯曲是梁理论研究的重要内容之一。
二、弯曲的原理梁的弯曲原理是由梁的弯矩和弯曲应力来描述的。
梁在弯曲时,横截面上的各个点受到的弯矩不同,由于弯矩的不平衡,在梁的上表面产生的张力,下表面产生的压力,产生了一种称为弯曲应力的内力形式。
弯曲应力的作用下,梁在弯曲的过程中产生了曲率变化,弯曲原理是用来描述梁在弯曲时的变形和内力情况的。
三、梁的弯曲方程梁的弯曲方程是用来描述梁在弯曲时的曲率和弯矩之间的关系的。
梁的弯曲方程可以通过力学原理和材料力学原理来推导出来。
梁的弯曲方程可以用来计算梁在受载时的弯曲变形和各个截面上的应力情况,对于工程结构的设计和分析具有非常重要的意义。
梁的弯曲方程通常包括以下几个方面:1.梁的弯曲变形方程:描述梁在弯曲时产生的曲率变化和曲线形状;2.梁的弯矩方程:描述梁在受力状况下产生的弯矩大小和分布情况;3.梁的弯曲应力方程:描述梁在弯曲状况下产生的应力大小和分布情况。
梁的弯曲方程是梁理论的核心内容,对于工程结构的设计和分析具有重要的意义。
四、梁的弯曲理论梁的弯曲理论是研究梁在受载时的弯曲变形和内力情况的理论。
梁的弯曲理论是以弹性理论和材料力学为基础的,通过对梁在弯曲时的力学原理和材料力学原理进行分析和推导,得出了梁在弯曲时的各种数学模型。
梁的弯曲理论可以应用于工程结构的设计和分析中,能够比较准确地描述梁在受载时的变形和内力情况,为工程结构的安全和稳定性提供理论依据。
梁的弯曲理论包括以下几个方面:1.梁的弯曲变形分析:描述梁在受载时产生的形状和曲率变化;2.梁的弯曲应力分析:描述梁在受载时产生的应力大小和分布情况;3.梁的弯曲挠度分析:描述梁在受载时产生的挠度大小和分布情况;4.梁的弯曲裂缝分析:描述梁在受载时产生的裂缝情况。
第17讲教学方案——弯曲正应力第七章弯曲应力§7-1纯弯曲正应力梁的横截面上同时存在剪力和弯矩时,这种弯曲称为横弯曲。
剪力Q是横截面切向分布内力的合力;弯矩M是横截面法向分布内力的合力偶矩。
所以横弯梁横截面上将同时存在剪应力τ和正应力σ。
实践和理论都证明,其中弯矩是影响梁的强度和变形的主要因素。
因此,我们先讨论Q = 0,M = 常数的弯曲问题,这种弯曲称为纯弯曲。
图6-1所示梁的CD段为纯弯曲;其余部分则为横弯曲。
与扭转相似,分析纯弯梁横截面上的正应力,同样需要综合考虑变形、物理和静力三方面的关系。
1.变形关系——平面假设考察等截面直梁。
加载前在梁表面上画上与轴线垂直的横线,和与轴线平行的纵线,如图6-2a所示。
然后在梁的两端纵向对称面内施加一对力偶,使梁发生弯曲变形,如图图6-2b所示。
可以发现梁表面变形具有如下特征:(1)横线(m-m和n-n)仍是曲线,只是发生相对转动,但仍与纵线(如a-a,b-b)正交。
(2)纵线(a-a和b-b)弯曲成曲线,且梁的一侧伸长,另一侧缩短。
根据上述梁表面变形的特征,可以作出以下假设:梁变形后,其横截面仍保持平面,并垂直于变形后梁的轴线,只是绕着梁上某一轴转过一个角度。
与扭转时相同,这一假设也称平面假设。
此外,还假设:梁的各纵向层互不挤压,即梁的纵截面上无正应力作用。
根据上述假设,梁弯曲后,其纵向层一部分产生伸长变形,另一部分则产生缩短变形,二者交界处存在既不伸长也不缩短的一层,这一层称为中性层。
如图6-3所示。
中性层与横截面的交线为截面的中性轴。
横截面上位于中性轴两侧的各点分别承受拉应力或压应力;中性轴上各点的应力为零。
下面根据平面假设找出纵向线应变沿截面高度的变化规律。
考察梁上相距为dx 的微段(图6-4a ),其变形如图6-4b 所示。
其中x 轴沿梁的轴线,y 轴与横截面的对称轴重合,z 轴为中性轴。
则距中性轴为y 处的纵向层a-a 弯曲后的长度为θρd y )(+,其纵向正应变为ρθρθρθρεy d d d y =-+=)( (a ) 式(a )表明:纯弯曲时梁横截面上各点的纵向线应变沿截面高度线性分布。
梁弯曲时的正应力§7-1 梁弯曲时的正应力一、纯弯曲时的正应力如图7-2a 所示的简支梁,荷载与支座反力都作用在梁的纵向对称平面内,其剪力图和弯矩图加图7-2b 、c 所示。
在梁的AC 和DB 段内,各横截面上同时有剪力和弯矩,这种弯曲称为剪力弯曲或横力弯曲。
在CD 段中,各横截面上只有弯矩而无剪力,这种弯曲称为纯弯曲。
b )c )a )图7-2为了使问题简单,现以矩形截面梁为例,推导梁在纯弯曲时横截面上的正应力。
其方法和推导圆轴在扭转时的剪应力公式的方法相同,从几何变形、物理关系和静力学关系等三方面考虑。
1、几何变形为观察梁纯弯曲时的表面变形情况,在矩形截面梁的表面画上一些纵向直线和横向直线,形成许多小矩形,然后在梁两端对称位置上加集中荷载P ,梁受力后产生对称变形,在两个集中荷载之间的区段产生纯弯曲变形,如图7-3所示。
从实验中观察到如下现象:m n nma )b )d )ij i j图7-31)所有纵向直线均变为曲线,靠近顶面(凹边)的纵向线缩短,靠近底面(凸边)的纵向线伸长,如图7-3b 中的i ′—i ′和j ′—j ′。
2)所有横向直线仍为直线,只是各横向线之间作了相对转动,但仍与变形后的纵向线正交, 如图7-3b 中的m ′—m ′。
3)变形后横截面的高度不变,而宽度在纵向线伸长区减小,在纵向线缩短区增大,如图7-3b 右所示。
根据以上观察到的现象,并将表面横向直线看作梁的横截面,可作如下假设:1)平面假设:变形前为平面的横截面,变形后仍为平面,它像刚性平面一样绕某轴旋转了一个角度,但仍垂直于梁变形后的轴线。
2)单向受力假设:认为梁由无数微纵向纤维组成。
各纵向纤维的变形只是简单的拉伸或压缩,各纵向纤维无挤压现象。
根据平面假设,梁变形后的横截面转动,使得梁的凸边纤维伸长,凹边纤维缩短。
由变形的连续性可知,中间必有一层纤维既不伸长也不缩短,此层纤维称为中性层,如图7-3d 所示。
目录引言 (2)一杆件受拉压的内力、应力、变形 (2)1.1轴向拉压的内力、轴力图 (2)1.2 轴向拉压杆横截面上的应力 (5)1.3 轴向拉压杆横截面上的变形 (7)1.4 圣维南原理 (9)1.5 工程结构实例分析 (11)二圆轴扭转 (15)2.1、扭转的力学模型及ANSYS建模 (15)2.2、圆轴扭转时,横截面上的内力偶矩------扭矩 (15)2.3、圆轴扭转时,横截面上的应力、强度条件 (15)(1) 横截面上的切应力 (15)(2) 极惯性矩与抗扭截面系数 (15)三、梁弯曲的内力、变形、应力 (20)3.1 梁的弯曲内力、变形 (20)3.2 弯曲应力 (27)3.3 工程实例: (31)四、压杆稳定 (35)4.1、压杆稳定的概念 (35)4.2、临界压力 (35)4.3、三类压杆的临界载荷 (36)4.4、压杆稳定性计算 (36)4.5 工程实例4 (38)引 言《材料力学》是机械、土木类工科学生重要的技术基础课,其计算方法和思想在工程计算中应用非常广泛。
为了使学生对课内知识体系有一个比较清晰的感性认识,锻炼学生的求真精神和实践动手能力,进一步培养学生的综合创造力,兴趣小组的学生们在教师的指导下基于ANSYS 有限元分析软件对《材料力学》的某些知识点进行数值计算与模拟,得到相关的数据、云图或动画,从而对理论公式进行形象验证,更开阔了学生的视野,提高了学生的CAE 水平。
本研究内容包括三部分:(1)对《材料力学》课程中的基本内容,包括拉压、剪切、扭转、弯曲的内力、应力、变形、压杆稳定、动载荷、疲劳强度、圣维南原理等重要理论知识点情况通过ANSYS 进行分析,得到内力、变形、应力、应变相关的数据、云图或动画;(2)对重要知识点的典型例题通过ANSYS 进行计算,并与理论计算结果进行对比验证。
(3)对《材料力学》理论知识能够解决的典型工程实际问题进行建模、分析与计算。
一 杆件受拉压的内力、应力、变形1.1轴向拉压的内力、轴力图在工程结构和机械中,发生轴向拉伸或压缩的构件是很常见的。
第8章梁的弯曲应力梁在荷载作用下,横截面上一般都有弯矩和剪力,相应地在梁的横截面上有正应力和剪应力。
弯矩是垂直于横截面的分布内力的合力偶矩;而剪力是切于横截面的分布内力的合力。
所以,弯矩只与横截面上的正应力σ相关,而剪力只与剪应力τ相关。
本章研究正应力σ和剪应力τ的分布规律,从而对平面弯曲梁的强度进行计算。
并简要介绍一点的应力状态和强度理论。
8.1梁的弯曲正应力平面弯曲情况下,一般梁横截面上既有弯矩又有剪力,如图8.1所示梁的AC、DB段。
而在CD段内,梁横截面上剪力等于零,而只有弯矩,这种情况称为纯弯曲。
下面推导梁纯弯曲时横截面上的正应力公式。
应综合考虑变形几何关系、物理关系和静力学关系等三个方面。
8.1.1 弯曲正应力一般公式1、变形几何关系为研究梁弯曲时的变形规律,可通过试验,观察弯曲变形的现象。
取一具有对称截面的矩形截面梁,在其中段的侧面上,画两条垂直于梁轴线的横线mm和nn,再在两横线间靠近上、下边缘处画两条纵线ab和cd,如图8.2(a)所示。
然后按图8.1(a)所示施加荷载,使梁的中段处于纯弯曲状态。
从试验中可以观察到图8 .2(b)情况:(1)梁表面的横线仍为直线,仍与纵线正交,只是横线间作相对转动。
(2)纵线变为曲线,而且靠近梁顶面的纵线缩短,靠近梁底面的纵线伸长。
(3)在纵线伸长区,梁的宽度减小,而在纵线缩短区,梁的宽度则增加,情况与轴向拉、压时的变形相似。
根据上述现象,对梁内变形与受力作如下假设:变形后,横截面仍保持平面,且仍与纵线正交;同时,梁内各纵向纤维仅承受轴向拉应力或压应力。
前者称为弯曲平面假设;后者称为单向受力假设。
根据平面假设,横截面上各点处均无剪切变形,因此,纯弯时梁的横截面上不存在剪应力。
根据平面假设,梁弯曲时部分纤维伸长,部分纤维缩短,由伸长区到缩短区,其间必存在一长度不变的过渡层,称为中性层,如图8.2(c)所示。
中性层与横截面的交线称为中性轴。
对于具有对称截面的梁,在平面弯曲的情况下,由于荷载及梁的变形都对称于纵向对称面,因而中性轴必与截面的对称轴垂直。