实验二(a) 重力加速度的测定(用单摆法)
- 格式:pdf
- 大小:32.78 KB
- 文档页数:3
大学物理仿真实验实验报告拉伸法钢丝测杨氏模量实验名称:拉伸法测金属丝的杨氏模量一、实验目的1、学会测量杨氏模量的一种方法;2、掌握光杠杆放大法测量微小长度的原理;3、学会用逐差法处理数据;二、实验原理任何物体(或材料)在外力作用下都会发生形变。
当形变不超过某一限度时,撤走外力则形变随之消失,为一可逆过程,这种形变称为弹性形变,这一极限称为弹性极限。
超过弹性极限,就会产生永久形变(亦称塑性形变),即撤去外力后形变仍然存在,为不可逆过程。
当外力进一步增大到某一点时,会突然发生很大的形变,该点称为屈服点,在达到屈服点后不久,材料可能发生断裂,在断裂点被拉断。
人们在研究材料的弹性性质时,希望有这样一些物理量,它们与试样的尺寸、形状和外加的力无关。
于是提出了应力F/S(即力与力所作用的面积之比)和应变ΔL/L(即长度或尺寸的变化与原来的长度或尺寸之比)之比的概念。
在胡克定律成立的范围内,应力和应变之比是一个常数,即/)/(=//((1)∆)FL=SLLLE∆FSE被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。
某种材料发生一定应变所需要的力大,该材料的杨氏模量也就大。
杨氏模量的大小标志了材料的刚性。
通过式(1),在样品截面积S 上的作用应力为F ,测量引起的相对伸长量ΔL/L ,即可计算出材料的杨氏模量E 。
因一般伸长量ΔL 很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL 。
光杠杆是一个带有可旋转的平面镜的支架,平面镜的镜面与三个足尖决定的平面垂直,其后足即杠杆的支脚与被测物接触,见图1。
当杠杆支脚随被测物上升或下降微小距离ΔL 时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角,如图2所示。
当θ很小时, l L /tan ∆=≈θθ(2)式中l 为支脚尖到刀口的垂直距离(也叫光杠杆的臂长)。
根据光的反射定律,反射角和入射角相等,故当镜面转动θ角时,反射光线转动2θ角,由图可Db=≈θθ22tan (3)式中D 为镜面到标尺的距离,b 为从望远镜中观察到的标尺移动的距离。
实验二 单 摆一、实验目的1、练习使用停表和米尺,测准摆的周期和摆长。
2、求出当地重力加速度值g 。
3、扩大单摆的系统误差对测重力加速度的影响。
二、实验仪器单摆(附米尺),电子秒表,游标卡尺。
三、实验原理一根不可伸长的细线,上端悬挂一个小球。
当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置称为单摆,如图1所示。
如果把小球稍微拉开一定距离,小球在重力作用下可在铅直平面内做往复运动,一个完整的往复运动所用的时间称为一个周期。
当摆动的角度小于5度时,设小球的质量为m ,其质心到摆的支点O 的距离为L (摆长)。
作用在小球上的切向力的大小为θsin mg ,它总指向平衡点O '。
当θ角很小,则θθ≈sin ,切向力的大小为θmg ,按牛顿第二定律,质点的运动方程为 θmg ma -=切 θθmg dtd ml -=22 θθl g dt d -=22 (1) 这是一简谐运动方程(参阅普通物理学中的简谐振动),可知该简谐振动角频率ω的平方等于l g /,由此得出lg T ==πω2,可以证明单摆的周期T 满足下面公式 gL T π2= (2)224T L g π= (3) 式中L 为单摆长度。
单摆长度是指上端悬挂点到球心之间的距离;g 为重力加速度。
如果测量得出周期T 、单摆长度L ,利用上面式子可计算出当地的重力加速度g 。
上式的不确定度传递公式为()u g g =从上式可以看出,在()u l 、()u t 大体一定的情况下,增大l 和t 对测量g 有利。
当摆动角度θ较大(θ>5°)时,单摆的振动周期T 和摆动的角度θ之间存在下列关系⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+= 2sin 43212sin 211242222θθπg L T四、实验内容1. 研究周期与单摆长度的关系,并测定g 值。
(1)用游标卡尺测量摆动小球直径d ;测三次,取平均值。
实验:用单摆测定重力加速度·知识点精解
【实验目的】
用单摆测定当地重力加速度
【实验器材】
长约一米的细线、小铁球、铁架台(连铁夹)、米尺、秒表
【实验原理】
当单摆摆角很小(小于5°)时,可看成简谐振动,其固有周期为T=2
故只要测定摆长L和单摆的周期T,即可算出重力加速度g。
【实验步骤】
1.将细线的一端穿过小铁球上的小孔并打结固定好,线的另一端固定在铁架台的铁夹上,做成一个单摆。
2.用毫米刻度的米尺测定单摆的摆长L(摆球静挂时从悬点到球心间的距离)。
3.让单摆摆动(摆角小于5°),测定50次全振动的时间t,用公式
4.用公式g=4π2L/T2算出重力加速度g。
【考前须知】
1.单摆悬铁夹应固定在铁架台上尽可能低的位置(以小球自然悬挂时离地面约1-2厘米为好)
2.小球摆动时,摆角应小于5°,且应在同一竖直面上摆动。
3.计算单摆的振动次数时,应以摆球通过最低位置时开始计时,以后摆球从同一方向通过最低位置时进行计数。
实验报告 学生姓名: 地点:三楼物理实验室 时间: 年 月 日同组人:实验名称:用单摆测重力加速度一、实验目的1.学会用单摆测定当地的重力加速度。
2.能正确熟练地使用停表。
二、实验原理单摆在摆角小于10°时,振动周期跟偏角的大小和摆球的质量无关,单摆的周期公式是T =2π l g ,由此得g =4π2l T 2,因此测出单摆的摆长l 和振动周期T ,就可以求出当地的重力加速度值。
三、实验器材带孔小钢球一个,细丝线一条(长约1 m)、毫米刻度尺一把、停表、游标卡尺、带铁夹的铁架台。
四、实验步骤1.做单摆取约1 m 长的细丝线穿过带孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂.2.测摆长用米尺量出摆线长l (精确到毫米),用游标卡尺测出小球直径D ,则单摆的摆长l ′=l +D 2。
3.测周期将单摆从平衡位置拉开一个角度(小于10°),然后释放小球,记下单摆摆动30次~50次的总时间,算出平均每摆动一次的时间,即为单摆的振动周期.反复测量三次,再算出测得周期数值的平均值。
4.改变摆长,重做几次实验。
五、数据处理方法一:将测得的几次的周期T和摆长l代入公式g=4π2lT2中算出重力加速度g的值,再算出g的平均值,即为当地的重力加速度的值。
方法二:图象法由单摆的周期公式T=2π lg可得l=g4π2T2,因此,以摆长l为纵轴,以T2为横轴作出l-T2图象,是一条过原点的直线,如右图所示,求出斜率k,即,可求出g值.g=4π2k,k=lT2=ΔlΔT2。
(隆德地区重力加速度标准值g=9.786m/s2)六、误差分析。
大学物理实验报告范例(单摆法测重力加速度)实验题目:单摆法测重力加速度
实验目的:通过单摆实验,测量出大地表面重力加速度g的值。
实验原理:在斯托克斯定律,即由牛顿第二定律得出:重力加速度g等于单摆振子的运动延迟T的平方,除以4π的平方。
实验装置:
铁柱:直径20mm,高度1000mm,用于支撑摆线的支架;
单摆:摆线长度为2m,重量为50g;
游标卡尺:最大刻度为180mm,加入195mm延伸线;
磁开关:可以检测摆线的振动,定位电流信号可以被电子计时器接收并将数据存入计算机;
电子计时器:能够接收磁开关信号,并记录单摆振动前后的时间变化;
实验步骤:
1、使用铁柱支撑单摆,确定单摆横截面中心点的位置。
2、确定单摆的出发点,即T0的位置,并用游标卡尺测量摆线的位移。
3、安装磁开关并设置电子计时器。
4、使用手柄将单摆从临界点(T0处)拉出,以极小的角度出发,使磁开关接收到信号。
5、将单摆振动至最大振动幅度处,磁开关再次发出电流信号,电子计时器记录信号发出前后的时间变化,取得T2。
6、依次测量五组振动,并记录延迟时间T,作图求出算数平均值T2。
7、求出实验所得的大地表面重力加速度g的值,并与理论值进行比较。
实验结论:
使用单摆法测得的大地表面重力加速度g值与理论值相差不大,验证了斯托克斯定律的正确性,表明实验具有较高的精度和准确性。
实验用单摆测定重力加速度。
教案实验目的:本实验旨在通过使用单摆测定当地重力加速度,让学生正确熟练使用秒表。
实验器材:实验所需器材包括:球心开有小孔的小金属球、长度大于1米的细尼龙线、铁夹、铁架台、游标卡尺、米尺和秒表。
实验原理:根据单摆周期公式T=2πl/g,可以得到g=4π^2l/T^2.因此,只要测得摆长l和周期T即可算出当地的重力加速度g。
实验步骤:1.用细线拴好小球,悬挂在铁架台上,使摆线自由下垂,如图1.注意:线要细且不易伸长,球要用密度大且直径小的金属球,以减小空气阻力影响。
摆线上端的悬点要固定不变,以防摆长改变。
2.用米尺和游标卡尺测出单摆摆长。
注意:摆长应为悬点到球心的距离,即l=L+D/2;其中L为悬点到球面的摆线长,D为球的直径。
3.用秒表测出摆球摆动30次的时间t,算出周期T。
注意:为减小记时误差,采用倒数计数法,即当摆球经过平衡位置时开始计数,“3,2,1.1,2,3……”数“0”时开始计时,数到“60”停止计时,则摆球全振动30次,T=t/30.计时从平衡位置开始是因为此处摆球的速度最大,人在判定它经过此位置的时刻,产生的计时误差较小。
为减小系统误差,摆角a应不大于10°,这可以用量角器粗测。
4.重复上述步骤,将每次对应的摆长l、周期T填于表中,按公式g=4π^2l/T^2算出每次g,然后求平均值。
实验结论:从表中计算的g值可以看出,与查得的当地标准g值近似相等,其有效数字至少3位。
实验注意事项:1.为减小计算误差,不应先算T的平均值再求g,而应先求出每次的g值再平均。
2.实验过程中易混淆的是:摆通过平衡位置的次数与全振动的次数。
3.实验过程中易错的是:图象法求g值,g≠k而是g=4π^2/k;T=t/n和T=t/(n-1)也经常错用,(前者是摆经平衡位置数“0”开始计时,后者是数“1”开始计时)。
4.实验过程中易忘的是:漏加或多加小球半径,悬点未固定;忘了多测几次,g取平均值。
一、实验目的1.学会秒表、米尺的正确使用。
2.理解单摆法测定重力加速的原理。
3.研究单摆振动的周期与摆长、摆角的关系。
4.学习系统误差的修正及在实验中减小不确定度的方法。
二、实验仪器单摆装置,停表(精度为),钢卷尺(精度为),游标卡尺(精度为)。
三、实验原理单摆的振动周期决定于重力加速度g和摆长L,只需要量出摆长L并测定摆动周期,就能够得到g。
如图:当5时,圆弧可近似的看成直线,f也可近似的看成沿着这条直线,则有sin=,f=Fsin=L-mg=-m x 由牛顿第二定律得:a=则有Xa=-令=最终得单摆的运动方程为F=mgX=A其中T== g =考虑到摆球是有大小的,故摆长L用米尺测量,摆球直径d用游标卡尺测量,周期T用停表测量。
四、实验步骤1.测量摆长L。
用米尺测量摆线支点与摆球顶点的距离l。
用游标卡尺测量小球的直径d,则摆长L=l+。
2.测量摆动周期T。
用手把摆球拉直偏离平衡位置5度左右,让其在一个垂直面内自由摆动,小球越过平衡位置瞬间开始计时,连续默数100次全振动时间t,T=。
3.为了减小误差,重复测量5次将数据记录于下表中。
五、数据记录与处理t/sL/cm d/cm t =100T/s T=100 12345x六、结果与讨论兰州的重力加速度,结果有偏差,原因有以下几点;1、测量单摆周期时的反应时间。
2、在测量摆线长度时对最后一位数字的估读。
3、环境方面,温度、湿度、空气阻力的变化都会影响实验结果。
4、悬线质量的影响。
5、摆角角度的影响。
七、试验问题1、直接测量单摆往返一次的时间会受到人的反应时间的影响,通过多次测量求平均值的方法可以减小误差。
23、受空气阻力影响摆幅越来越小,但其周期不变;用木球代替铜球时,因木球密度较小,受空气阻力的影响会变大。
单摆测重力加速度实验报告以下是一份单摆测重力加速度实验的报告:一、实验目的通过单摆实验测量当地的重力加速度g,了解单摆实验的原理和方法,加深对重力加速度的理解。
二、实验原理单摆实验是一种利用单摆测量重力加速度的方法。
当单摆在垂直平面内振动时,其振动周期T与重力加速度g之间存在以下关系:T = 2π√(L/g)其中,L是单摆的摆长,即摆线的长度。
通过测量单摆的摆长和振动周期,就可以计算出重力加速度g的值。
三、实验步骤1、准备实验器材,包括单摆、计时器(如秒表)、尺子等。
2、将单摆固定在支架上,调整摆长L(即摆线长度)为所需值。
3、调整计时器的开始状态,让单摆在垂直平面内自然摆动。
4、开始计时,并记录单摆的振动周期T。
为提高测量的准确性,可以测量多次(如10次)并取平均值。
5、测量完毕后,计算重力加速度g的值。
根据公式T = 2π√(L/g),可以通过测量得到的T和L值计算出g的值。
6、记录实验数据和计算结果,并进行误差分析。
四、实验结果实验过程中,我们测量得到的单摆摆长L为1.00米,测量得到的平均振动周期T为2.00秒。
根据公式T = 2π√(L/g),可计算得到重力加速度g的值:g = 4π²L/T² = 9.81m/s²五、实验结论本次单摆实验测量得到的重力加速度g值为9.81米每秒平方,与标准重力加速度值9.80米每秒平方接近,说明实验结果较为准确。
通过本次实验,我们了解了单摆实验的原理和方法,掌握了利用单摆测量重力加速度的技能,加深了对重力加速度的理解。
在实验过程中需要注意操作规范和测量准确度,以保证实验结果的可靠性。