思路分析将双曲线方程化为标准方程,先求出参数a,b,c的值,再写
出各个结果.
解双曲线的方程化为标准形式是������2
9
−
���4���2=1,
∴a2=9,b2=4,
∴a=3,b=2,c= 13.
又双曲线的焦点在 x 轴上,
∴顶点坐标为(-3,0),(3,0),
焦点坐标为(- 13,0),( 13,0),
������2+������2 ������2
=
1+
������ ������
2,所以������������ =
������2-1,所以离心率
的大小决定了渐近线斜率的大小,从而决定了双曲线开口的大小,离
心率越大,开口越开阔,离心率越小,开口越扁狭.
4.等轴双曲线是指实轴长与虚轴长相等的双曲线,其渐近线方程
������2
������
−
������2
������
=1(λ≠0),由题意得
49
a=3.
当 λ>0 时,4������=9,λ=36,双曲线方程为���9���2 − ���4���2=1;
当 λ<0 时,-9������=9,λ=-81,双曲线方程为���9���2 − 48���1���2=1.
为 y=±x,离心率等于 2.
课前篇自主预习
【做一做1】 若点M(x0,y0)是双曲线
������2 4
−
������2 25
=1上支上的任意一点,
则x0的取值范围是
,y0的取值范围是
.
解析因为a2=4,b2=25,所以a=2,b=5,所以x0∈R,y0≥2.
ቤተ መጻሕፍቲ ባይዱ