第五章量子力学的矩阵形式和表象变换考试题强烈推荐.ppt
- 格式:ppt
- 大小:1.79 MB
- 文档页数:98
§4.5 量子力学的矩阵形式和表象变换态和力学量算符的不同表示形式称为表象。
态有时称为态矢量。
力学量算符对态的作用实际上是对矢量量进行变换,因此可与代数中线性变换进行类比。
1、量子态的不同表象 幺正变换(1)直角坐标系中的类比取平面直角坐标系21X OX 其基矢(我们过去称之为单位矢)可表示为21,e e,见图其标积可写成下面的形式)2,1,(),(==j i e e ijj i δ我们将其称之为基矢的正交归一关系。
平面上的任一矢量A可以写为2211e A e A A +=其中),(11A e A =,),(22A e A=称为投影分量。
而),(21A A A = 称为A在坐标系21XOX 中的表示。
现在将坐标系21X OX 沿垂直于自身面的轴顺时针转θ角度,则单位基矢变为','21e e,且同样有)2,1,()','(==j i e e ijj i δ而平面上的任一矢量A此时可以写为 ''''2211e A e A A +=其中投影分量是),'('11A e A=,),'('22A e A =。
而)','(21A A A = 称为A在坐标系'X 'OX21中的表示。
现在的问题是:这两个表示有何关系?显然,22112211''''e A e A e A e A A+=+=。
用'1e 、'2e分别与上式中的后一等式点积(即作标积),有),'(),'('2121111e e A e e A A+= ),'(),'('2221212e e A e e A A+=表成矩阵的形式为⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛212212211121),'(),'(),'(),'(''A A e e e e e e e e A A由于'1e、1e及'2e、2e的夹角为θ,显然有⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛21212212211121cos sin sin cos ),'(),'(),'(),'(''A A A A e e e e e e e e A A θθθθ或记为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛2121)(''A A R A A θ 其中⎪⎪⎭⎫⎝⎛-=θθθθθcos sin sin cos )(R 是把A在两坐标中的表示⎪⎪⎭⎫⎝⎛''21A A 和⎪⎪⎭⎫⎝⎛21A A 联系起来的变换矩阵。
量⼦⼒学讲义IV.表象理论(矩阵表述)IV. 表象理论 ( 矩阵表述 )1.如何⽤矩阵表⽰量⼦态与⼒学量,并说明理由?答:矩阵表⽰⼀般⽤于本征值为离散谱的表象(相应的希尔伯空间维数是可数的)。
具体说,如果⼒学量的本征⽮为,相应本征值分别为。
假定⼀个任意态⽮为,将它展开For personal use only in study and research; not for commercial use则态⽮在表象中波函数便可⽤展开系数的⼀列矩阵表⽰其意义是:在态中,取的概率为,这与表象中波函数意义是类似的。
⼒学量⽤厄⽶⽅阵表⽰,。
显然,⼀列矩阵和⽅阵维数与希尔伯空间维数是相等的。
⽤矩阵表⽰⼒学量,有如下理由:第⼀可以反映⼒学量作⽤于⼀个量⼦态得到另⼀个量⼦态的事实。
设,式中,。
取,两端左乘,取标积得,即第⼆矩阵乘法⼀般不满⾜交换率,这恰好能满⾜两个⼒学量⼀般不对易的要求。
第三厄⽶矩阵的性质能体现⼒学量算符的厄⽶性。
对于本征值为连续谱的表象(希尔伯空间维数不可数),也可形式的运⽤矩阵表⽰,这时可将矩阵元素看成式连续分布的。
2.量⼦⼒学中,不同表象间:基⽮、波函数、⼒学量是如何变换的?答:量⼦⼒学中由⼀个表象到另⼀个表象的变换为⼳正变换,它类似于欧⽒空间中坐标转动。
设表象中的基⽮为表象中的基⽮为(1) 基⽮变换关系为式中,(为⼳正矩阵)。
设有任意态,则态在及表象中波函数分别为矩阵。
(2) 波函数变换规则为:矩阵。
(3) ⼒学量变换规则为:。
(式中与为⼒学量在、表象中矩阵)3.正变换有什么特征?答:⼳正变换特点:(1⼳正变换不改变态⽮的模,这⼀特征相当于坐标旋转变换;(2⼳正变换不改变⼒学量本征值;(3)⼒学量矩阵之迹 TrF与矩阵⾏列式 dgtF亦不因⼳正变换⽽改变.4. 学量在其⾃⾝表象中如何表⽰?其本征⽮是什么 ?答:如果⼒学量本征值为离散谱,那么,它在其⾃⾝表象中表⽰式为对⾓矩阵,为诸本征值。
本征⽮为单元素⼀列矩阵如果⼒学量本征值为连续谱,则它在其⾃⾝表象中为纯变量其本征⽮为函数。
第五章 量子力学的表象与表示§5.1 幺正变换和反幺正变换1, 幺正算符定义对任意两个波函数)(r ϕ、)(rψ,定义内积r d r r)()(),(ψϕψϕ*⎰=(5.1)按第一章中所说,(5.1)式的含义是:当微观粒子处在状态()rψ时,找到粒子处在状态()rϕ的概率幅。
依据内积概念,可以定义幺正算符如下:“对任意两个波函数ϕ、ψ,如果算符 U恒使下式成立 ),()ˆ,ˆ(ψϕψϕ=U U (5.2)而且有逆算符1ˆ-U存在,使得I U U U U ==--11ˆˆˆˆ1,称这个算符U ˆ为幺正算符。
”任一算符Aˆ的厄米算符+A ˆ定义为:+A ˆ在任意ϕ、ψ中的矩阵元恒由下式右方决定ˆˆ(,)(,)A A ϕψϕψ+= (5.3)由此,幺正算符Uˆ有另一个等价的定义: “算符Uˆ为幺正算符的充要条件是 I U U U U==++ˆˆˆˆ (5.4a) 或者说1ˆˆ-+=U U 。
” (5.4b)证明:若),()ˆ,ˆ(ψϕψϕ=U U成立,则按+U ˆ定义, ),ˆˆ()ˆ,ˆ(),(ψϕψϕψϕU U U U+== 由于ϕ、ψ任意,所以I U U=+ˆˆ 又因为Uˆ有唯一的逆算符1ˆ-U 存在,对上式右乘以1ˆU -,即得 1ˆˆUU +-= 这就从第一种定义导出了第二种定义。
类似,也能从第二种定义导出第一种定义。
从而,幺正算符的这两种定义是等价的。
2, 幺正算符的性质幺正算符有如下几条性质:i, 幺正算符的逆算符是幺正算符证明:设 1-+=U U , 则()()(),111--+++-===U U U U 所以1-U 也是幺正1这里强调了 U-1既是对 U右乘的逆又是对 U 左乘的逆。
和有限维空间情况不同,无限维空间情况下,任一算符 U有逆算符的三种情况:1)有一个左逆算符和无穷多个右逆算符;2)有一个右逆算符和无穷多个左逆算符;3)有一个左逆算符和一个右逆算符,并且它俩相等,唯有此时可简单地写为 U-1。
量子力学的表象变换量子力学是描述微观粒子行为的理论,它具有许多奇特的特性和规律。
其中一个重要的概念就是表象变换,它是一个数学工具,用于描述在不同的观测角度下,量子系统的性质和行为。
量子力学的表象变换可以理解为从一个视角切换到另一个视角,就像在观察一幅画时,可以从不同的角度看到不同的景象一样。
这种变换的目的是为了更好地理解和描述量子系统的行为。
在量子力学中,存在多种不同的表象,如波函数表象(也称为薛定谔表象)和狄拉克表象(也称为自由度表象)。
在波函数表象中,系统的状态由波函数描述,而在狄拉克表象中,系统的状态由态矢量描述。
表象变换的基本原理是变换矩阵的应用。
这个变换矩阵是一个数学工具,用于在不同的表象之间建立联系。
它可以将一个态矢量或波函数从一个表象变换到另一个表象,从而描述量子系统在不同观测角度下的行为。
在量子力学中,表象变换有两种基本形式,即基态表象变换和幺正变换。
基态表象变换是将系统的基矢量从一个表象变换到另一个表象,通过变换矩阵的作用,得到新的基矢量。
幺正变换则是将整个系统的态矢量或波函数进行变换,通过变换矩阵的作用,得到新的态矢量或波函数。
通过表象变换,我们可以更好地理解和描述量子系统的性质和行为。
例如,在不同的表象下,量子系统的能量、动量和位置等物理量的表达式可以有所不同。
通过表象变换,我们可以在不同的表象下计算这些物理量,从而得到更全面的量子力学描述。
除了基本的表象变换之外,量子力学还涉及到更复杂的变换,如相互作用表象变换和相互作用绘景变换。
这些变换是为了更好地描述量子系统在相互作用下的行为和演化。
表象变换在量子力学中发挥着重要的作用。
它不仅为我们提供了一种理解和描述量子系统行为的数学工具,也为实际应用提供了基础。
例如,在量子计算和量子通信中,表象变换可以用于描述和控制量子态的演化和传输,从而实现更高效和安全的量子信息处理。
最后,需要注意的是,量子力学的表象变换本质上是一种数学工具,它并不涉及具体的实验操作。
第一章 量子力学的诞生[1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅;( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率;( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m 2时的窗子所衍射.[2] 用h,e,c,m (电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 )经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂[3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内,( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命.[4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由.( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz 实验;( 4 ) Davisson -Ger - mer 实验;( 5 ) Compton 散射.[5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B 缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1)h 2e m ;(2)h 2nm ;(3)hc第二章 波函数与Schr ödinger 方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] [2] 一维运动的粒子处在⎩⎨⎧<≥=-0,00,)(x x Axe x x 当当λψ的状态,其中0>λ,求:(1)粒子动量的几率分布函数;(2)粒子动量的平均值。
第五章习题课1.设一维谐振子的哈密顿算符为(0)ˆH,再加上微扰2ˆH gx '=,系统的哈密顿算符为 2(0)222122p H HH x gx μωμ⎛⎫'=+=++ ⎪⎝⎭试用微扰法求能量近似值。
解:(0)(0)(0)(0)ˆn n nH E ψψ= (0)12n E n ω⎛⎫=+ ⎪⎝⎭(1)2222212(21)221(21)22n nnE H n H ng n x n x n n n n gg n n αωαμω''===⎤↓=-+++⎦⎛⎫=+=+⋅ ⎪⎝⎭ 222(2)/2/(0)(0)(0)(0)22,2,,22222222,2,2(0)(0)(0)(0)42221(21)2(1)(1)(2)4224mnmn n mmn m n m mn m n m n m n n n n n n n n n x H E g E E E E x m x n n x x g n n n n g E E E E g δααωω-+-+-+'==--⎤↓==+++⎦⎛⎫-++⎡⎤ ⎪=+=-⎢⎥ ⎪--⎣⎦⎝⎭=-∑∑2424421222n g n ωαωμω+⎛⎫=-+⋅ ⎪⎝⎭所以2(0)(1)(2)2241122n nn ng g E EE En ωμωμω⎛⎫⎛⎫=++=++- ⎪ ⎪⎝⎭⎝⎭ 实际上22222222221121222222p p g p H x gx x x μωμωμωμμμμ⎛⎫'=++=++=+ ⎪⎝⎭ 所以2112122n g E n n ωωμω⎛⎫⎛⎫'=+=++ ⎪ ⎪⎝⎭⎝⎭ 展开式的前三项正是微扰法的结果。
2.在(0)H 表象中,若哈密顿算符的矩阵形式为(0)1(0)2E a b H b E a ⎡⎤+=⎢⎥+⎣⎦其中,a 、b 为小的实数,且(0)(0)12E E ≠。
求能量至二级修正,并与精确解作比较。
第四章 表象与变换内容简介:本章讨论各种不同的表象以及它们之间的变换关系。
这就如同,在数学中给定坐标系后,应该讨论坐标系之间的坐标变换一样。
另外,我们还曾指出,一个量子态,相当于一个态“矢量”。
在数学中,一个矢量,在选定坐标系后,可以用它在该坐标系中的一组分量来表示。
但是,一个矢量,也可以用一个矢量符号表示。
这种表示并不依赖于坐标系的选取,但同样可以进行各种矢量运算。
同样,在量子力学中,一个态矢量也可用类似的方法表示,这就是狄拉克符号。
在本章将介绍这种表示法以及运算规则。
除表象外,本章还要介绍一些有关绘景的知识。
§ 4.1 矢量空间§ 4.2 态和算符的表象表示§ 4.3 量子力学公式的矩阵表示§ 4.4 幺正变换§ 4.5 狄拉克符号§ 4.6 线性谐振子粒子数表象§ 4.7 绘景的分类1.线性矢量空间定义:无穷多个抽象的数学元素的集合,规定了下列两种运算,则称这个集合为一个线性矢量空间。
运算一:集合内任意两个矢量 和 ,总有一个确定的 与 之对应,记作 这种对应法称为加法。
加法运算满足下列条件:① 交换律 ② 结合律存在唯一零矢量 ,对任意矢量 都有 ④ 对集合中的任意矢量 ,都有唯一的逆矢量 存 在,满足运算二:规定一种确定的对应方法,使得 中的任意矢量 和数域中任意数 ,在集合中总有一个矢量 与之对应,这种对应法则叫数乘,记作 数乘满足下列条件: ② ③2.线性相关与线性无关线性无关:对于线性矢量空间 个矢量集合 ,若线性组合 ,只有当所有系数 时才成立,则称 个矢量线性无关,否则 个矢量称线性相关。
一个线性矢量空间中可以找到的线性无关矢量个数的最大值 ,称为该线性矢量空间的维数。
3.内积运算 规定一种确定的对应方法,对于线性矢量空间中的任意两个矢量 和 ,总有一个复数 与之对应,且满足下列条件,则称为矢量的内积: 4.标准正交基作为标准正交基,必须满足下列条件:① 是线性无关的; ②③ 具有完备性:内积空间的任意矢量 可以表示为4.2 态和算符的表象表示 在量子力学中,态和力学量的具体表达方式称为表象。
量⼦⼒学的矩阵形式及表象理论量⼦⼒学习题(三年级⽤)北京⼤学物理学院⼆O O三年第⼀章绪论1、计算下列情况的Broglie d e-波长,指出那种情况要⽤量⼦⼒学处理:(1)能量为eV .0250的慢中⼦()克2410671-?=µ.n;被铀吸收;(2)能量为a MeV 的5粒⼦穿过原⼦克2410646-?=µ.a;(3)飞⾏速度为100⽶/秒,质量为40克的⼦弹。
2、两个光⼦在⼀定条件下可以转化为正、负电⼦对,如果两光⼦的能量相等,问要实现这种转化,光⼦的波长最⼤是多少?3、利⽤Broglie d e -关系,及园形轨道为各波长的整数倍,给出氢原⼦能量可能值。
第⼆章波函数与波动⼒学1、设()()为常数a Ae x x a 2221-=(1)求归⼀化常数(2).?p ?,x x ==2、求ikrikr ere r -=?=?1121和的⼏率流密度。
3、若(),Be e A kx kx -+=?求其⼏率流密度,你从结果中能得到什么样的结论?(其中k 为实数)4、⼀维运动的粒⼦处于()?<>=λ-000x x Axe x x的状态,其中,0>λ求归⼀化系数A 和粒⼦动量的⼏率分布函数。
5、证明:从单粒⼦的薛定谔⽅程得出的粒⼦的速度场是⾮旋的,即求证0=??其中ρ=υ/j6、⼀维⾃由运动粒⼦,在0=t时,波函数为 ()()x ,x δ=?0求:)t ,x (=2第三章⼀维定态问题1、粒⼦处于位场()000000≥=V x V x V中,求:E >0V 时的透射系数和反射系数(粒⼦由右向左运动)2、⼀粒⼦在⼀维势场>∞≤≤<∞=0000x a x x V )x ( 中运动。
(1)求粒⼦的能级和对应的波函数;(2)若粒⼦处于)x (n ?态,证明:,/a x 2= ().n a x x ??π-=-222261123、若在x 轴的有限区域,有⼀位势,在区域外的波函数为如DS A S B D S A S C 22211211+=+=这即“出射”波和“⼊射”波之间的关系,证明:01122211211222221212211=+=+=+**S S S S S S S S这表明S 是么正矩阵4、试求在半壁⽆限⾼位垒中粒⼦的束缚态能级和波函数()>≤≤<∞=ax V a x x V X 0000 5、求粒⼦在下列位场中运动的能级()>µω≤∞=021022x x x V X6、粒⼦以动能E ⼊射,受到双δ势垒作⽤()[])a x ()x (V V x -δ+δ=0求反射⼏率和透射⼏率,以及发⽣完全透射的条件。