曾谨言量子力学第4章ppt课件
- 格式:ppt
- 大小:1011.50 KB
- 文档页数:63
第四章 量子力学的表述形式(本章对初学者来讲是难点)表象:量子力学中态和力学量的具体表示形式。
为了便于理解本章内容,我们先进行一下类比:矢量(欧几里德空间) 量子力学的态(希尔伯特空间) 基矢),,(321e e e~三维 本征函数,...),...,,(21n ψψψ~无限维任意矢展开∑=ii i e A A任意态展开 ∑=nn n a ψψ),,(z y x e e e),...)(),...,(),((21x x x n ψψψ 取不同坐标系 ),,(ϕθe e e r取不同表象 ),...)(),...,(),((21p C p C p C n ………. ………. 不同坐标之间可以进行变换 不同表象之间可以进行变换由此可见,可以类似于矢量A,将量子力学“几何化”→在矢量空间中建立它的一般形式。
为此,我们将① 引进量子力学的矢量空间~希尔伯特空间; ② 给出态和力学量算符在该空间的表示; ③ 建立各种不同表示之间的变换关系。
最后介绍一个典型应用(谐振子的粒子数表象)和量子力学的三种绘景。
4.1希尔伯特空间 狄拉克符号狄拉克符号“”~类比:),,(z y x A A A欧氏空间的矢量 A→坐标系中的分量 ),,(ϕθA A A r……….)(rψ →表象下的表示)(p C……….引入狄拉克符号的优点:①运算简洁;②勿需采用具体表象讨论。
一、 希尔伯特空间的矢量定义:希尔伯特空间是定义在复数域上的、完备的、线性内积空间,并且一般是无限维的。
1、线性:①c b a =+;②a b λ=。
2、完备性:∑=nn n a a 。
3、内积空间:引入与右矢空间相互共轭的左矢空间∑==↔+nn n a a a a *;)(:。
定义内积:==*ab b a 复数,0≥a a 。
1=a a ~归一化;b a b a ,~0=正交;m n n m δ=~正交归一;)(x x x x '-='δ~连续谱的正交归一。
第四章:力学量用算符表示P186 15.设A 与B 为厄米算符,则()BA AB +21和()BA AB i-21也是厄米算符。
由此证明,任何一个算符F 均可分解为-++=iF F F ,+F 与-F 均为厄米算符,且()()+++-=+=F F iF F F F 21,21 证:ⅰ)()()()()BA AB AB BA B A A B BA AB +=+=+=⎥⎦⎤⎢⎣⎡++++++21212121()BA AB +∴21为厄米算符。
ⅱ)()()()()BA AB i AB BA i B A A B i BA AB i -=--=--=⎥⎦⎤⎢⎣⎡-+++++21212121()BA AB i-∴21也为厄米算符。
ⅲ)令AB F =,则()BA A B AB F ===++++,且定义 ()()+++-=+=F F iF F F F 21 ,21 (1) 由ⅰ),ⅱ)得-+-+++==F F F F ,,即+F 和-F 皆为厄米算符。
则由(1)式,不难解得 -++=iF F F4.1证 (A n 是实数)是厄密算符证明:此算符不能简化,可以用多次运算证明,首先假定已经证明动量是厄密算符,则运用这个关系于下面的计算:τϕ∑τψτϕτψd P A d P F n n ˆ)ˆ(⋅≡⋅⎰⎰⎰⎰⎰⎰*⎰⎰⎰⋅∑=*ττϕψd P A n nn ˆ⎰⎰⎰-*⋅∑=τϕψd P P A n n )ˆ(ˆ1 ⎰⎰⎰-*⋅∑=τϕψd P P A n n )ˆ()ˆ(1⎰⎰⎰-*⋅∑=τϕψd P P P A n n )ˆ(ˆ)(2 τϕψd PP P P A n n )ˆ(ˆ)ˆˆ(3-*⋅∑=⎰⎰⎰⎰⎰⎰-∙∑=τϕψd P P PA n n )ˆ(ˆ)ˆ(32τϕψd P P P A n n )ˆ(ˆ)ˆ(42-∙∑= ⎰⎰⎰-∙∑=τϕψd P P PA n n )ˆ(ˆ)ˆ(42 ⎰⎰⎰∙=ττϕψd PF ])ˆ([ )ˆ(PF 满足厄密算符的定义。