量子力学概论第5章 全同粒子
- 格式:ppt
- 大小:363.00 KB
- 文档页数:10
第5章 微扰理论到现在为止,我们利用薛定谔方程求出了六大体系的本征值和本征函数 1、一维自由粒子体系:2ˆˆ2x p H m=, x p ip x x ex ⋅=πψ21)(, 22xp E m=)(∞<<-∞x p , 1=f2、一维无限深势阱222,0ˆ200a x x d H m dx x a ⎧∞<>⎪=-+⎨≤≤⎪⎩ , x an a n πψs i n 2=,22222n n E ma π= ,3,2,1=n ,1=f 3、一维线性谐振子体系:2222021ˆ,22d H m x dx ωμ=-+ ,)()(2221x H e N x n x n n αψα-=, m ωα=,ω )21(+=n E n ,,3,2,1,0=n ,1=f4、平面刚性转子2ˆˆ2z l H I=, ϕπϕim m e21)(=Φ, Im E m 222 =,,2,1,0±±=m ,5、空间刚性转子2ˆˆ2l HI=,ϕθϕθim nl lm lm e P N Y )(cos ),(=,Il l E l 2)1(2+=,,2,1,0=l ,l m ±±±=,,2,1,0 ,12+=l f6、氢原子与类氢原子222ˆ2ze H rμ=-∇-,),()(),,(ϕθϕθψlm nl nlm Y r R r =,242222222n z e z eE n aμμ=-=- , ,3,2,1=n ,1,,2,1,0-=n l ,l m ±±±=,,2,1,0 ,2n f =在量子力学中,能精确求解的问题为数是有限的,要么非常特殊,要么非常简单。
我们在这章中,介绍一些常用的近似处理方法。
也就是说,当将量子力学原理用于实际问题中,我们必须进行一些近似处理,才能得到所要的结果,才能将问题解决。
微扰论是从简单问题的精确解出发来求较复杂问题的近似解。
第五章 中心力场§5.1 中心力场中粒子运动的一般性质一、角动量守恒与径向方程设质量为μ的粒子在中心力场中运动,则哈密顿量算符表示为:2ˆˆ()2p H V r μ=+ 22()2V r μ=-∇+ ,与经典力学中一样,角动量 l r p =⨯ 也是守恒量,即ˆ0l t∂=∂ˆˆ[,]0l H = 222221ˆ()22l H r V r r r r rμμ∂∂⎛⎫=-++ ⎪∂∂⎝⎭ 2,0z l l ⎡⎤=⎢⎥⎣⎦; 2ˆ,0l H ⎡⎤=⎢⎥⎣⎦ ; ()2ˆ,,z H l l构成力学量完全集,存在共同本征态; 定态薛定谔(能量本征方程):222221()22l r V r E r r r r ψψμμ⎡⎤∂∂⎛⎫⎢⎥-++= ⎪∂∂⎝⎭⎢⎥⎣⎦上式左边第二项称为离心势能,第一项称为径向动能算符。
取ψ为 ()2,,z H l l 共同本征态,即:()()(),,,l lmr R r Y ψθϕθϕ= (),lm Y θϕ是()2,z l l共同本征态:0,1,2,...l =,0,1,2,...,m l =±±± 分离变量:()()22222120l l l E V l l d d R R R r dr dr r μ-+⎛⎫++-= ⎪⎝⎭径向方程可写为:()()22222()120l l l E V r l l dR d R R dr r dr r μ-+⎡⎤++-=⎢⎥⎣⎦,0,1,2,...l = (1) 为求解径向方程,引入变换:()()l l r R r rχ=;径向方程简化为:()()22222()10l l E V r l l d dr r μχχ-+⎡⎤+-=⎢⎥⎣⎦ (2) 不同的中心力场中粒子的能量本征波函数的差别仅在于径向波函数R l (r )或χl (r ),它们由中心势V (r )的性质决定。
一般而言,中心力场中粒子的能级是2l +1重简并的。
写出全同粒子系统的总轨道角动量lz和l2的二次量子化形式1. 引言1.1 概述本文旨在探讨全同粒子系统的总轨道角动量lz和l2的二次量子化形式。
在量子力学中,全同粒子系统是一类具有相同物理性质的粒子组成的系统,它们之间没有任何区别。
而总轨道角动量lz和l2则是描述这些粒子在空间中运动时所拥有的角动量。
1.2 文章结构本文按照以下结构进行论述:首先,我们将介绍全同粒子系统总轨道角动量lz 的定义,并给出相关概念和数学表示;其次,我们将阐述lz的本征值及其对应的本征态表示;最后,我们将推导和解释lz的二次量子化表达式。
随后,我们将进行类似的分析并讨论全同粒子系统总轨道角动量l2的二次量子化形式。
1.3 目的本文旨在深入理解全同粒子系统总轨道角动量lz和l2,并通过推导和解释其二次量子化形式,进一步揭示全同粒子系统中这两个重要物理概念的内涵和意义。
这对于更好地理解多粒子体系及其特性、研究复杂体系的性质和行为具有重要的理论与实际意义。
同时,本文还将探讨相关研究的未来发展方向。
以上是“1. 引言”部分内容的详细清晰撰写。
2. 全同粒子系统总轨道角动量lz的二次量子化形式2.1 全同粒子系统总轨道角动量lz的定义在全同粒子系统中,总轨道角动量lz表示所有单个粒子的轨道角动量在z方向上的矢量和。
它是各个粒子的单个轨道角动量lz值之和。
2.2 lz的本征值和本征态表示根据量子力学理论,lz具有离散值,可用来描述全同粒子系统在z方向上的旋转运动。
其本征值为mħ,其中m为整数或半整数,ħ为约化普朗克常数。
对于N个全同粒子构成的系统,其总轨道角动量lz可以通过求解含有N个因素化项的哈密顿算符得到。
由于全同粒子系统需要满足泡利不相容原理,因此泡利原理会导致只有一部分选定组态有效。
2.3 lz的二次量子化表达式推导与解释在二次量子化中,我们使用产生算符a†和湮灭算符a来描述波函数。
这些算符与单个粒子态以及多体态之间的关系如下所示:$$\begin{align*}a^\dagger_i |0⟩ & = \text{产生一个粒子在单粒子态} |i⟩ \\a_i |0⟩ & = 0\end{align*}$$其中,$|0⟩$表示全空模式,没有任何粒子。
第五章习题解5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r Edr e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,434410200300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ)⎰∞'=τψψd H E 111 ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Ze 。
∴ ⎰⎰+--=0302404220330024)1(1)3(2r r rdr a e Z dr r r r r a e Z Eπεπε2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 2032452r a e Z s = #5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。
全同粒子本讲介绍多粒子体系的量子力学基本原理。
首先从全同粒子的基本概念出发,根据全同性原理,给出描述全同粒子体系的波函数;最后以氦原子为例讨论多粒子体系问题。
1. 全同粒子的基本概念1.1 全同粒子:静质量、电荷、自旋等固有性质完全相同的微观粒子。
例如,电子、质子,中子等。
在经典力学中,粒子是用坐标和动量来描述,可以根据各自的运动轨迹来区分。
而在 量子力学中,微观全同粒子的状态是用波函数来描述,每个粒子的波函数弥散于整个空 间,即处于同一区域各粒子波函数重迭,对粒子无法加以区分;另外,对全同粒子体系进 行测量时,关心的是在空间某点附近粒子出现的概率(或数目),而这个概率(或数目) 究竟属于体系中的哪几个,是无法确定的。
即全同粒子具有不可区分性,这是微观粒子的 基本性质之一。
1.2 全同性原理:由于全同粒子具有不可区分性,则在全同粒子体系中,任意两个全同粒子相互交换后并不会引起整个体系物理状态的改变,即不会出现任何可观测的物理效应,该论断称为量子力学中的全同性原理。
这是量子力学基本原理之一。
1.3哈密顿算符∧H 的交换对称性考虑N 个全同粒子组成的体系,i q 表示第i 个粒子的空间坐标i r与自旋变量i S ,),(t q u i 表示 第i 个粒子在外场中的能量,),(j i q q w 表示第i 、j 粒子的相互作用能量,则体系的哈密顿算符∧H 写为∑∑<++∇-=ji j i i i i N j i q q w t q u t q q q q q H ),()],(2[),,,(ˆ2221μ (1) 任何两个粒子(如第i 个与第j 个)相互交换后,∧H 显然是不变的,记为),,,(ˆ21t q q q q q H P Nj i ij ∧),,,(ˆ21t q q q q q H Ni j = ),,,(ˆ21t q q q q q HNji= (2) ij P ∧称为交换算符,它同时交换两个粒子的坐标和自旋,哈密顿算符的这种交换对称性又可记为0,=⎥⎦⎤⎢⎣⎡∧∧H P ij (3)1.4 全同粒子波函数的交换对称性 (1)ij P ∧对波函数的作用设N 个全同粒子体系用波函数),,,,,(21t q q q q q N j i Φ描述,则有),,,,,(),,,,,(2121t q q q q q t q q q q q P N i j N j i ij Φ=Φ∧(4)根据全同性原理,Φ∧ij P 与Φ所描述的是同一量子态,而量子力学中描述同一量子态的波函数之间最多只能相差一个常数因子λ,即Φ=Φ∧λij P (5) 上式用ij P ∧再作用一次,相当于Φ中的交换复原,即Φ=Φ=Φ=Φ∧∧22λλij ijP P (6)由此得12=λ,所以交换算符的本征值为 1±=λ (7) (2)波函数的交换对称性当λ=+1时,则Φ=Φ∧ij P ,表示交换两个粒子后波函数不变,这时的波函数称为对称波函数,记为S Φ 。
第五章习题解5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r Edr e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,434410200300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ)⎰∞'=τψψd H E 111 ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Ze 。
∴ ⎰⎰+--=0302404220330024)1(1)3(2r r rdr a e Z dr r r r r a e Z Eπεπε2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 2032452r a e Z s = #5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。