收敛数列的性质
- 格式:doc
- 大小:260.51 KB
- 文档页数:8
§2.2 收敛数列的性质本节主要教学内容:收敛数列的性质;运算法则;子列及其收敛性。
教学方法与设计:性质的证明以保序性为重点,以训练)(N -ε定义为主要目的;多以例题讲解运算法则(包括迫敛性);子列及其收敛性为本节的难点,以子列的概念和)(N -ε定义突破之。
一、收敛数列的性质1、极限的唯一性:若}{n a 收敛,则它的极限是唯一的。
证明:设b a a a n n n n ==∞→∞→lim ,lim ,则由N -ε定义及P 3例2和P 4习题3知a=b 。
2、有界性:若}{n a 收敛,则}{n a 为有界数列。
即N n M ∈∀>∃,0有M a n ≤。
证明:设.l i m a n =∞→取N n N N >∀∈∃=,,1ε有.1<-a a n 即a a n +≤1,取{}N a a a a M ,,,,1m a x 21 +=,则N n ∈∀有.M a n ≤注意:有界性只是数列收敛的必要条件而非充分条件。
例如数列{}n)1(-有界但不收敛。
当然:无界⇒发散。
3、保序性:若b b a a n n n n ==∞→∞→lim .lim .且b a <,则N n >∀有n n b a <。
证明:取,0)(21>-=a b ε由N -ε定义有: ε<-⇒>∀∃a a N n N n 11,,即)(21b a a n +<; (1)ε<-⇒>∀∃b b N n N n 22,,即n b b a <+)(21。
(2)取},m ax {21N N N =,则N n >∀有n n b a <。
1o 、推论1:若.lim b a a n n <=∞→则b a N n N n <⇒>∀∃,.2o 、推论2:若0lim <=∞→a a n n ,则.0,<⇒>∀∃n a N n N3o 、推论3:(不等式定理)。
§1.2 收敛数列的性质收敛数列有如下一些重要性质:定理1(唯一性): 数列 n x 不能收敛于两个不同的极限。
即数列收敛,则它只有一个极限。
证明:设a 和b 为n x 的任意两个极限,下证b a =。
由极限的定义,对0>∀ε,必分别∃自然数21,N N ,当1N n >时,有ε<-a x n (1)当2N n >时,有 ε<-b x n (2)令{}21,N N Max N =,当N n >时,(1),(2)同时成立。
现考虑: εεε2)()(=+<-+-≤---=-a x b x a x b x b a n n n n 由于b a ,均为常数b a =⇒,所以n x 的极限只能有一个。
定理2 (有界性): 若数列{}n a 收敛,则{}n a 为有界数列。
即存在一个正数M ,使得对一切正整数n 有||n a M ≤。
证明:设lim n n a a →∞=。
取1ε=,则存在正数N ,对一切n N >有||1n a a -<即11n a a a -<<+。
记12max{||,||,,||,|1|,|1|}N M a a a a a =-+ ,则对一切正整数n 有||n a M ≤。
定理3(保不等式性): 设{}n a 与{}n b 均为收敛数列。
若存在正数0N ,使得当0n N >时有n n a b ≤,则limlim n n n n a b →∞→∞≤。
证明: 设lim ,lim n n n n a a b b →∞→∞==。
0ε∀>,分别存在正数1N 与2N ,使得当1n N >时有n a a ε-<,使得当2n N >时有n b b ε<+。
取012max{,,}N N N N =,则当n N >时有n n a a b b εε-<≤<+。
由此得到2a b ε<+。
收敛数列的性质
唯一性、有界性定义、保号性。
收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。
收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。
一个函数收敛则该函数必定有界,而一个函数有界则不能推出该函数收敛。
要说明的是,数列有界是全域有界,而函数有界仅仅是在去心邻域内局部有界。
如果数列收敛,那么它的极限唯一;如果数列收敛,那么数列一定有界;保号性;与子数列的关系一致.发散的数列有可能有收敛的子数列.子数列收敛于不同的极限,则数列发散.
数列趋于稳定于某一个值即收敛,其余的情况,趋于无穷大或在一定的跨度上摆动即发散。
收敛数列是求和有个确定的数值,而发散数列则求和等于无穷大没有意义。
使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。
若数列{xn}收敛于a,且a>0, 则存在正整数N,使得当时n>N时,有xn>0.。
第二章数列极限2 收敛数列的性质定理2.2(唯一性):若数列{ a n }收敛,则它只有一个极限.证:设a=,对任何b≠a,取ε0=,则在(a;ε0)之外有{ a n }的有限个项,从而,在(b;ε0)之内至多只有{ a n }的有限个项,所以b不是{ a n }的极限。
所以收敛数列只有一个极限.定理2.3(有界性):若数列{a n}收敛,则{a n}为有界数列,即存在正数M,使得对一切正整数n有:| a n |≤M.证:设=a,取ε=1,存在正数N,对一切n>N,有|a n -a|≤1;又|a n|-|a|≤|a n -a|≤1;∴|a n|≤1+|;记M=max{|a1|,|a2|,…, |a N|,1+|},则|a n|≤M,∴{a n}为有界数列.所以收敛数列有界.定理2.4(保号性):若=a>0(或<0),则对任何a’∈(0,a)(或a’∈(a,0)),存在正数N,使得当n>N时,有a n>a’(或a n<a’).(注:在应用保号性时,常取a’=)证:当a>0时,取ε=a-a’>0,则存在正数N,使得n>N时,有a n>a-ε=a’;当a<0时,取ε=a’-a>0,则存在正数N,使得n>N时,有a n<ε+a=a’.所以原命题得证.定理2.5(保不等式性):设{a n}与{b n}均为收敛数列. 若存在正数N0,使得当n> N0时,有a n≤b n,则.证:设,则∀ε,∃自然数N1 ,N2,使当n>N1时,有a n>a-ε;当n>N2时,有b n<ε+b.取N={N0,N1,N2},则当n>N时,有a-ε<a n≤b n<ε+b,∴a<b+2ε,由ε的任意性,得a≤b,即. 所以原命题得证.注:当a n<b n时,取ε0,则∃正数N1,N2,使当n>N1时,有a< a n +ε0;当n>N2时,有b> b n-ε0. 取N=max{N0,N1,N2},则当n>N时,有a<<b.∴a<b,即<.例1:设a n≥0(n=1,2,…). 证明=a,则.证:∀ε,∃自然数N,使得当n>N时,有|a n -a|<ε.∵a n≥0,由保不等式性可知a≥0;当a=0时,有a n<ε,则<ε,即|-0|<ε,∴.当a>0时,则有|-|=<, ∴.定理2.6(迫敛性):设收敛数列{a n},{b n}都以a为极限,数列{c n}满足:存在正数N0时有a n≤c n≤b n,则数列{c n}收敛,且=a.证:∀ε,∃正数N1,N2,使当n>N1时,有a n>a-ε;当n>N2时,有b n<ε+a. 取N=max{ N0,N1,N2},则当n>N时,有a-ε<a n≤c n≤b n<ε+a,即| c n -a|<ε; ∴数列{c n}收敛,且=a. 原命题得证。
2007/09/24§1.3 收敛数列的性质1. 唯一性定理1 每个收敛的数列只有一个极限.证,lim ,lim b x a x n n n n ==∞→∞→又设由定义知,使得 ,, ,021N N ∃>∀ε;,1ε<->a x N n n 恒有时当;,2ε<->b x N n n 恒有时当一、收敛数列的性质{},,max 21N N N =取时有则当N n >)()(a x b x b a n n ---=-ax b x n n -+-≤.2ε=ε+ε<.时才能成立上式仅当b a =故收敛数列极限唯一.2. 有界性定义: 对数列{n x }, 若存在正数M , 使得一切自然数n , 恒有M x n ≤成立, 则称数列{n x }有界, 否则, 称为无界.例如,};1{+n n 数列}.2{n 数列数轴上对应于有界数列的点n x 都落在闭区间],[M M -上.有界无界相应的, 可以给出有上界和有下界的定义定理2 收敛的数列必定有界.证,lim a x n n =∞→设由定义,,1=ε取,1,<->∃a x N n N n 时恒有使得当则.11+<<-a x a n 即有},1,1,,,max{1+-=a a x x M N 记,,M x n n ≤皆有则对一切自然数{}.有界故n x 注意:有界性是数列收敛的必要条件.推论无界数列必定发散.例1.)1(1是发散的证明数列+-=n n x 证,lim a x n n =∞→设由定义,,21=ε对于,21,,成立有时使得当则<->∃a x N n N n ),21,21(,+-∈>a a x N n n 时即当区间长度为1.,1,1两个数无休止地反复取而-n x 不可能同时位于长度为1的区间内..)1(1发散所以数列+-=n n x3. 子列极限一致性定义:在数列中任意抽取无限多项并保持}{n x 这些项在原数列中的先后次序,这样得到的一个数列称为原数列}{n x 的子数列,简称子列.}{ k n x 记为一子数列也收敛于}{n x 定理3如果数列收敛于a , 那么它的任.a, N K =取,时则当K k >.N n n n N K k ≥=>,|ε<-a x k n 于是|证, }{ }{ 的任一子列是数列设n n x x k,lim a x n n =∞→由总有时使得当 , N n >. ||成立ε<-a x n ,N 0, *∈∃>∀N ε故对.lim a x k n n =∞→证得数列是发散的,通常利用此定理来证明是发散的数列}{sin n )14(P .)1( 1是发散的数列比如:+-=n n x4. 不等式性质P20证明见 ; ; ,, ,lim 14oβαβαβα<><<=∞→n n n n a a n a a a 充分大时有那么当满足设:定理; , ,lim ,lim 2 n n n n n n o b a n b a b b a a <<==∞→∞→充分大时有那么当且设. , ,lim ,lim 3 b a b a n b b a a n n n n n n o ≤≤==∞→∞→那么有有充分大时且当设定理5.0,lim )3(;][lim )2(;][lim )1(,lim ,lim ≠=⋅=⋅±=±==∞→∞→∞→∞→∞→b b a b a b a b a b a b a b b a a n n n n n n n n n n n n n 其中则设证二、极限的四则运算; )1(绝对值的三角形不等式; , , )2(绝对值不等式添加项收敛数列的有界性b b b nn 11lim ,0)3(=≠∞→时先证, . , ,0112||时当对于N n t s N b >∃>2||||b b b n <-.02||||>>b b n 且此时,1时所以当N n >.||22b b bn -≤|||||11| b b b b b b n n n -=-.11lim ,b b n n =∞→即证得.)2(易见结论成立再由.||2|11| 2ε<-≤-b b bb b n n . , 0, ,lim 2t s N b b n n ∃>∀=∞→ε对由于.2|| , 22εb b b N n n <->有时当便有时因此当 ,},max{21N N n >说明:有+无=无,无+无=不定;有=⨯⨯无=不定;无,不定无推广到有限项.例2:145432lim 22-++-∞→n n n n n 22145432lim nn n n n -++-=∞→221lim 4lim 5lim 4lim 3lim 2lim n n n n n n n n n n ∞→∞→∞→∞→∞→∞→-++-=52=例3:)...1(lim 12-∞→++++n n q q q q q q n n n ---=∞→∞→1lim 11lim n n q q q ∞→---=lim 1111 .11 q-=qq n n --=∞→11lim .)...1(lim ,1||12-∞→++++<n n q q q q 计算极限设:解三、无穷小:定义. ,,0 }{ 简称无穷小数列称为无穷小列那么这个的极限为如果收敛数列n a:6定理;}||{}{ 1 为无穷小为无穷小的充要条件是n n oa a ;)( 2仍是无穷小或差两个无穷小之和o ; }{ ,}{,}{ 3为无穷小那么为有界数列为无穷小设n n n n oa c c a;}{ ,}{,N ,0 4*也是无穷小那么为无穷小如果设n n n n o a b n b a ∈≤≤.}{lim 5为无穷小的充要条件是a a a a n n n o -=∞→....lim ,lim :421a na a a a a n n n n =+++=∞→∞→求证已知例分析:a na a a n n =+++∞→...lim 210)()()(lim 21=-++-+-∞→na a a a a a n n ⇔.0lim 21=+++∞→n n n ααα 则0)(lim lim =-⇔=∞→∞→a a a a n n n n ,a a n n -=α令,0lim =∞→n n α若证明:, a a n n -=α令,0lim =∞→n n α若.0lim 21=+++∞→n n n ααα 则:则待证结果转化为,0lim =∞→n n α由 0,>∀ε对.2 ,εα<>n N n 时当,N *∈∃N 使得所以2)(||21εααα⋅-++++<n N n n N n nN αααα+++++ 212||21εααα++++<n N ,0lim 21=+++∞→n N n ααα 而,,N 1*1N N N >∈∃所以,1时使得当N n >,2||21εααα<+++n N ,22 21εεεααα=+<+++n n 故......所以四、夹逼准则(两边夹法则)定理7 如果数列}{},{n n y x 及}{n z 满足条件:,lim ,lim )2()3,2,1()1(a z a y n z x y n n n n nn n ===≤≤∞→∞→那末数列{n x }的极限存在, 且a x n n =∞→lim .证,,a z a y n n →→ 使得,0,0,021>>∃>∀N N ε,1ε<->a y N n n 时恒有当},,max{21N N N =取恒有时当,N n >,ε+<<ε-a y a n 即,2ε<->a z N n n 时恒有当,ε+<<ε-a z a n 上两式同时成立,,εε+<≤≤<-a z x y a n n n ,成立即ε<-a x n .lim a x n n =∴∞→例5).12111(lim 222nn n n n ++++++∞→ 求解,11112222+<++++<+n nn n n n n n nn n n n n 111lim lim 2+=+∞→∞→又,1=22111lim1limnn n n n +=+∞→∞→,1=由夹逼定理得.1)12111(lim 222=++++++∞→nn n n n1lim : 0, 61=>∞→na a n 求证设例nn na a n a 111 , 1, :≤≤>≥我们有时当先设证明,1lim 1=∞→nn n 由于知由夹逼定理 ,.11lim 1成立对≥=∞→a a nn 于是这时再设 ,1 ),1,0(1>∈-aa .1111lim 1lim 11==⎪⎭⎫⎝⎛=∞→∞→n na a n n)13( lim :7 --+∞→n n n 求极限例n n n n n n 434134)13( 0 :<+≤-++=--+<我们有不等式解0.)13( lim ,}4{=--+∞→n n nn 所以是无穷小因为例8.ka a a ≤≤≤≤ 210设则knnkn n n a a a a =+++∞→ 21lim证明:kn n k n n k n n n n k k a ka a a a a a →≤+++≤= 21由夹逼定理,knnkn n n a a a a =+++∞→ 21lim五、小结收敛数列的性质有界性、唯一性、子列极限一致性、不等式性质极限的四则运算无穷小夹逼准则(两边夹法则)作业(习题集)习题1-3 A:2;3(偶数);5;6;8;9.。
§2.2 收敛数列的性质教学内容:第二章 数列极限——§2.2 收敛数列的性质 教学目标:熟悉收敛数列的性质;掌握求数列极限的常用方法.教学要求:(1)使学生理解并能证明数列性质、极限的唯一性、局部有界性、保号性、保不等式性;(2)掌握并会证明收敛数列的四则运算定理、迫敛性定理,并会用这些定理求某些收敛数列的极限.教学重点:迫敛性定理及四则运算法则及其应用. 教学难点:数列极限的计算. 教学方法:讲练结合. 教学过程: 引 言上节引进“数列极限”的定义,并通过例题说明了验证lim n n a a →∞=的方法,这是极限较基本的内容,要求掌握.为了学习极限的技巧及其应用极限来解决问题.还需要对数列的性质作进一步讨论.一、收敛数列的性质性质1(极限唯一性) 若数列}{n a 收敛,则它的极限唯一.证法一 假设b a 与都是数列}{n a 的极限,则由极限定义,对0>∀ε,12,N N ∃∈,当1N n >时,有 ε<-a a n ; 2N n >时,有 ε<-b a n . 取),m ax (21N N N =,则当N n >时有ε2|||||)()(|||<-+-≤---=-b a a a a a b a b a n n n n ,由ε的任意性,上式仅当b a =时才成立. 证法二 (反证)假设}{n a 极限不唯一,即至少有两个不相等的极限值,设为b a ,aa n n =∞→lim , b a n n =∞→lim 且b a ≠故不妨设b a <,取02>-=ab ε, 由定义,1N ∃∈,当1N n >时有ε<-a a n ⇒2b a a a n +=+<ε. 又2N ∃∈,当2N n >时有 ε<-b a n⇒2b a b a n +=->ε,因此,当),m ax (21N N n >时有 n n a ba a <+<2 矛盾,因此极限值必唯一. 性质2(有界性) 如果数列}{n a 收敛,则}{n a 必为有界数列.即0>∃M ,使对n ∀有 Ma n ≤||证明 设aa n n =∞→lim 取1=ε,0>∃N 使得当N n >时有 1<-a a n即1||||||<-≤-a a a a n n⇒1||||+<a a n . 令|)|,|,||,||,|1m ax (21N a a a a M +=则有对n ∀Ma n ≤||即数列}{n a 有界.注:①有界性只是数列收敛的必要条件,而非充分条件,如})1{(n-. ②在证明时必须分清何时用取定ε,何时用任给ε.上面定理3.2证明中必须用取定ε,不能用任给ε,否则N 随ε在变,找到的M 也随ε在变,界M 的意义就不明确了.性质3(保序性) 设aa n n =∞→lim ,ba n n =∞→lim ,(1) 若b a >,则存在N 使得当N n >时有nn b a >;(2) 若存在N ,当N n >时有nn b a ≥,则b a ≥(不等式性质).证明 (1)取02>-=b a ε,则存在1N ,当1N n >时2||ba a a n -<-,从而22ba b a a a n +=-->.又存在2N ,当2N n >时2||b a b b n -<-⇒22ba b a b b n +=-+< ⇒ 当),m ax (21N N n >时n n a ba b <+<2.(2)(反证)如b a <,则由⑴知必N ∃当N n >时nn b a >这与已知矛盾.推论(保号性) 若ba a n n >=∞→lim 则N ∃,当N n >时b a n >.特别地,若0lim ≠=∞→a a n n ,则N ∃,当N n >时n a 与a 同号.思考 如把上述定理中的nn b a ≥换成nn b a >,能否把结论改成nn n n b a ∞→∞→>lim lim ?例 设≥n a ( ,2,1=n ),若a a n n =∞→lim ,则a a n n =∞→lim证明 由保序性定理可得 0≥a .若0=a ,则0>∀ε,1N ∃,当1N n >时有2ε<n a ⇒ε<n a 即aa n n ==∞→0lim .若0>a ,则0>∀ε,2N ∃,当2N n >时有 εa a a n <-||⇒ε<-≤+-=-aa a aa a a a a n n n n |||||| .数列较为复杂,如何求极限? 性质4(四则运算法则) 若}{n a 、}{n b 都收敛,则}{n n b a +、}{n n b a -、}{n n b a 也都收敛,且nn n n n n n b a b a ∞→∞→∞→±=±lim lim )(lim ,nn n n n n n b a b a ∞→∞→∞→=lim lim lim .特别地,nn n n a c ca ∞→∞→=lim lim ,c 为常数如再有0lim ≠∞→n n b 则}{nn b a也收敛,且n n nn nn n b a b a ∞→∞→∞→=lim lim lim .证明 由于nn n n b a b a )1(-+=-,nn n n b a b a 1⨯=,故只须证关于和积与倒数运算的结论即可.设a a n n =∞→lim ,b b n n =∞→lim ,0>∀ε,1N ∃,当1N n >时 ε<-a a n ;2N ∃,当2N n >时ε<-b b n ,取),m ax (21N N N =,则当N n >时上两式同时成立. (1)|||||||||)()(|||b b a b a a b b a b a a ab b a n n n n n n n n -+-≤-+-=-,由收敛数列的有界性,0>∃M ,对n ∀有M b n ≤||故当N n >时,有ε|)|(||a M ab b a n n +<-,由ε的任意性知ab b a n n n =∞→lim .(2) 0lim ≠=∞→b b n n .由保号性,00>∃N 及0>k ,对0N n >∀有k b n >||(如可令2||b k =).取),m ax (20N N N =,则当N n >时有|||||||||||11|b k b k b b b b b b b b n n n n ε<-<-=-,由ε的任意性得b b nn 11lim=∞→ . 用数学归纳法,可得有限个序列的四则运算:∑∑=∞→=∞→=Nk k nn Nk k nn x x1)(1)(lim lim ,∏∏=∞→=∞→=Nk k nn Nk k nn x x1)(1)(lim lim .但将上述N 换成∞,一般不成立.事实上∑∞=1k 或∏∞=1k 本身也是一种极限,两种极限交换次序是个非常敏感的话题,是高等分析中心课题,一般都不能交换,在一定条件下才能交换,具体什么条件,到后面我们会系统研究这个问题.性质5(两边夹定理或迫敛性) 设有三个数列}{n a 、}{n b 、}{n c ,如N ∃,当N n >时有nn n b c a ≤≤,且∞→n lim =n a ∞→n lim l b n=,则∞→n lim lc n=.证明 ∞→n lim =n a ∞→n lim lb n=⇒0>∀ε,21,N N ∃, 当1N n >时, εε+<<-l a l n ;当2N n >时,εε+<<-l b l n ,取),,m ax (210N N N N =,则当N n >时以上两式与已知条件中的不等式同时成立,故有N n >时 εε+<≤≤<-l b c a l n n n ⇒ε<-||l c n 即∞→n lim l c n =.该定理不仅提供了一个判定数列收敛的方法,而且也给出了一个求极限的方法.推论 若N ∃,当N n >时有n n b c a ≤≤(或a c b n n ≤≤)且a b n n =∞→lim ,则a c n n =∞→lim . 例 求证∞→n lim0!=n a n(0>a ).证明 k ∃∈使得a k >,从而当k n >时有<0!n a n n ak a n a k a k a a a k ⨯≤⨯⨯+⨯⨯⨯⨯=!121 , 由于∞→n lim n a k a k ⋅!=!k a k ∞→n limn a 0= 由推论即可得结论.例 设1a ,2a ,…,m a 是m 个正数,证明∞→n lim ),,,max(2121m n n m n n a a a a a a =++.证明 设),,m ax (21m a a a A =,则 ≤A nnm n n a a a ++21A m n ≤1>m ⇒∞→n lim n m1=,由迫敛性得结论. 例1 )1(1lim>=∞→a a nn .在证明中, 令01>-=nn a h , nn h a )1(+=,得n ah n <<0,由此推出0→n h .由此例也看出由n n n y z x <<和nn n n y a x ∞→∞→==lim lim , 也推出a z n n =∞→lim .例2 证明1lim=∞→nn n .证明 令 n nh n +=1,)3(2)1(2)1(1)1(22>-≥++-++=+=n h n n h h n n nh h n nnn n n n n ,120-<<n h n两边夹推出 0→n h ,即1→nn .在求数列的极限时,常需要使用极限的四则运算法则.下举几例:例3 求极限 93164lim 22++++∞→n n n n n .解 3434lim 93164lim 22911622=++++=++++∞→∞→n n n n n n n n n n .例4 求极限 )10()1(lim <<+++∞→a a a n n .解 a a a a a n n nn -=--=+++∞→∞→1111lim )1(lim . 例5 )11(lim )13(lim 1lim 13lim )113(lim n n n n n n n n n n n n n n n ++=++=+⨯+∞→∞→∞→∞→∞→313)1lim 1lim )(1lim 3lim (=⨯=++=∞→∞→∞→∞→n n n n n n .例6 求01110111lim b n b n b n b a n a n a n a k k k k m m m m n ++++++++----∞→ ,k m ≤,0≠m a ,0≠k b . 解 原式=k k k k k k k m m k m m n n b n b n b b n a n a n a n a ----------∞→++++++++0111101111lim ⎪⎩⎪⎨⎧≠==k m k m b a mm,0,,即有理式的极限⎩⎨⎧0高次,则为分子最高次低于分母最,为最高次系数之比分子分母最高次数相同.如327103542lim 323=---+∞→n n n n n . 例7=-+∞→)1(lim n n nn 11lim112n n →∞===+.例8 设0,>b a ,证明 ),max (limb a b a nn n n =+∞→.证明),max(),max(2),max(),max(b a b a b a b a b a nn n n n n n →≤+≤=. 二、 数列的子列 (一) 引言极限是个有效的分析工具.但当数列{}n a 的极限不存在时,这个工具随之失效.这能说明什么呢?难道{}n a 没有一点规律吗?当然不是! 出现这种情况原因是我们是从“整个”数列的特征角度对数列进行研究.那么,如果“整体无序”,“部分”是否也无序呢?如果“部分”有序,可否从“部分”来推断整体的性质呢?简而言之,能否从“部分”来把握“整体”呢?这个“部分数列”就是要讲的“子列”. (二) 子列的定义定义1 设{}n a 为数列,{}k n 为正整数集N +的无限子集,且123k n n n n <<<<<,则数列12,,,,k n n n a a a称为数列{}n a 的一个子列,简记为{}k n a .注1 由定义可见,{}n a 的子列{}k n a 的各项都来自{}n a 且保持这些项在{}n a 中的的先后次序.简单地讲,从{}n a 中取出无限多项,按照其在{}n a 中的顺序排成一个数列,就是{}n a 的一个子列(或子列就是从{}n a 中顺次取出无穷多项组成的数列).注2 子列{}k n a 中的k n 表示k n a 是{}n a 中的第k n 项,k 表示 k n a 是{}k n a 中的第k 项,即{}k n a 中的第k 项就是{}n a 中的第k n 项,故总有k n k >. 特别地,若k n k =,则k n n a a =,即{}{}k n n a a =.注 3 数列{}n a 本身以及{}n a 去掉有限项以后得到的子列,称为{}n a 的平凡子列;不是平凡子列的子列,称为{}n a 的非平凡子列.如{}{}221,k k a a -都是{}n a 的非平凡子列.由上节例知:数列{}n a 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限.那么数列{}n a 的收敛性与的非平凡子列的收敛性又有何关系呢?此即下面的结果:定理2.8 数列}{n a 收敛的充要条件是:}{n a 的任何非平凡子列都收敛. 证明 必要性: 设}{,lim k n n n a a a =∞→是}{n a 的任一子列.任给0>ε,存在正数N ,使得当Nk >时有.ε<-a a k 由于,k n k ≥故当N k >时有N n k >,从而也有ε<-a a k n ,这就证明了}{kn a 收敛(且与}{n a 有相同的极限).充分性: 考虑}{n a 的非平凡子列}{2k a ,}{12-k a 与}{3k a .按假设,它们都收敛.由于}{6k a 既是}{2k a ,又是}{3k a 的子列,故由刚才证明的必要性,.lim lim lim 362k k k k k k a a a ∞→∞→∞→==(9)又}{36-k a 既是}{12-k a 又是}{3k a 的子列,同样可得.lim lim 312k k k k a a ∞→-∞→=(10)(9)式与(10)式给出122lim lim -∞→∞→=k k k k a a .所以由课本例7可知}{n a 收敛.由定理2.8的证明可见,若数列}{n a 的任何非平凡子列都收敛,则所有这些子列与}{n a 必收敛于同一个极限.于是,若数列}{n a 有一个子列发散,或有两个子列收敛而极限不相等,则数列}{n a 一定发散.例如数列},)1{(n -其偶数项组成的子列})1{(2n-收敛于1,而奇数项组成的子列})1{(12--k 收敛于1-,从而})1{(n-发散.再如数列}2{s in πn ,它的奇数项组成的子列}212{s in π-k 即为})1{(1--k ,由于这个子列发散,故数列}2{sin πn 发散.由此可见,定理2.8是判断数列发散的有力工具.。