排队论-引言(1)
- 格式:ppt
- 大小:262.00 KB
- 文档页数:45
排队论在物流仓储中的应用第一章:引言物流仓储作为现代物流体系的重要组成部分,扮演着货物集散、分拨和储存的角色。
在物流仓储过程中,如何有效地组织货物流动,提高仓储效率成为一个重要问题。
排队论作为一种数学模型,能够帮助我们预测和优化排队系统,同时也可以应用于物流仓储中。
本文将介绍排队论在物流仓储中的应用,并探讨其对物流仓储效率的影响。
第二章:排队论基础知识2.1 排队系统的基本组成排队系统一般由顾客、服务器和排队区域组成。
顾客指需要等待服务的单位,服务器指提供服务的单位,排队区域指顾客等待服务的区域。
2.2 排队模型排队模型主要包括M/M/1模型、M/M/c模型、M/G/1模型等。
其中,M表示到达率服从指数分布,G表示到达率服从一般分布,1表示单个服务器,c表示多个服务器。
不同的排队模型适用于不同的排队系统,可以通过模型来分析和优化系统性能。
第三章:排队论在物流仓储中的应用3.1 仓库收货区排队系统在物流仓储中,收货是货物进入仓库并进行初步处理的环节。
由于货物到达时间和数量的不确定性,仓库的收货区常常面临排队问题。
可以利用排队论来分析和优化收货区的服务水平和资源配置,以提高仓库的收货效率。
3.2 仓库出货区排队系统仓库的出货区是货物出仓库之前的最后一站,也是货物离开仓库的关键环节。
通过排队论模型,可以预测出货区的等待时间和排队长度,从而合理安排出货计划和资源配置,减少货物等待时间,提高出货效率。
3.3 仓库货架排队系统仓库货架是存放货物的重要设施,高效的货架排队系统可以使货物存储和取出的过程更加便捷。
通过排队论模型,可以确定货架的最佳布局和库存管理策略,从而提高仓库的货物流动效率。
3.4 仓库入库和出库设备排队系统在物流仓储中,入库和出库设备的排队和运行情况对仓库整体效率有着重要影响。
排队论可以帮助我们评估设备使用率和效率,并优化设备的运行策略,提高仓库的物流处理能力。
第四章:排队论在物流仓储中应用案例分析4.1 ABC物流仓库的收货排队系统优化通过对ABC物流仓库的收货排队系统进行分析和优化,减少货物排队时间和仓库运营成本,提高仓库的服务水平和效益。
排队论道路上交通流排队现象随时可见,如高速公路收费站的车辆排队,加油站等候加油的车辆排队等等。
因此,有必要研究交通流中的排队理论及其应用。
排队论是研究“服务”系统因“需求”拥挤而产生等待行列(即排队)的现象,以及合理协调“需求”与“服务”关系的一种数学理论,是运筹学中以概率论为基础的一门重要分支,亦称“随机服务系统理论”。
一、排队论的基本概念1.“排队”与“排队系统”“排队”单指等待服务的,不包括正在被服务的,而“排队系统”既包括了等待服务的,又包括了正在服务的车辆。
2.排队系统的三个组成部分(1)输入过程指各种类型的“顾客(车辆或行人)”按怎样的规律到来。
有各种类型的输入过程,例如:定长输入——顾客等时距到达。
泊松输入——顾客到达时距符合负指数分布。
这种输入过程最容易处理:因而应用最广泛。
爱尔朗分布——顾客到达时距符合爱尔朗分布。
(2)排队规则指到达的顾客按怎样的次序接受服务。
例如:损失制——顾客到达时,若所有服务台均被占,该顾客就自动消失,永不再来;等待制——顾客到达时,若所有服务台均被占,它们就排成队伍,等待服务。
服务次序有先到先服务(这是最通常的情形)和优先服务(如急救车、消防车)等多种规则;混合制——顾客到达时,若队长小于L,就排入队伍;若队长大于等于L,顾客就离去,永不再来。
(3)服务方式指同一时刻有多少服务台可接纳顾客,每一顾客服务了多少时间。
每次服务可以接待单个顾客,也可以成批接待,例如公共汽车一次就装载大批乘客。
服务时间的分布主要有如下几种:定长分布——每一顾客的服务时间都相等;负指数分布——即各顾客的服务时间相互独立,服从相同的负指数分布;爱尔朗分布——即各顾客的服务时间相互独立,具有相同的爱尔朗分布。
3.排队系统的主要数量指标(1)等待时间——从顾客到达时起到开始接受服务时的这段时间; (2)忙期——服务台连续繁忙的时期,这关系到服务台的工作强度;(3)队长——有排队顾客数与排队系统中顾客数之分,这是排队系统提供的服务水平的一种衡量。
排队论第⼀节引⾔⼀、排队系统的特征及排队论排队论(queueing theory)是研究排队系统(⼜称为随机服务系统)的数学理论和⽅法,是运筹学的⼀个重要分⽀。
在⽇常⽣活中,⼈们会遇到各种各样的排队问题。
如进餐馆就餐,到图书馆借书,在车站等车,去医院看病,去售票处购票,上⼯具房领物品等等。
在这些问题中,餐馆的服务员与顾客、公共汽车与乘客、图书馆的出纳员与借阅者、医⽣与病⼈、售票员与买票⼈、管理员与⼯⼈等,均分别构成⼀个排队系统或服务系统(见表10-1)。
排队问题的表现形式往往是拥挤现象,随着⽣产与服务的⽇益社会化,由排队引起的拥挤现象会愈来愈普遍。
表排队除了是有形的队列外,还可以是⽆形的队列。
如⼏个顾客打电话到出租汽车站要求派车,如果出租汽车站⽆⾜够车辆,则部分顾客只得在各⾃的要车处等待,他们分散在不同地⽅,却形成了⼀个⽆形队列在等待派车。
排队的可以是⼈,也可以是物。
如⽣产线上的原材料或半成品在等待加⼯;因故障⽽停⽌运转的机器在等待修理;码头上的船只等待装货或卸货;要降落的飞机因跑道被占⽤⽽在空中盘旋等等。
当然,提供服务的也可以是⼈,也可以是跑道、⾃动售货机、公共汽车等。
为了⼀致起见,下⾯将要求得到服务的对象统称为“顾客”,将提供服务的服务者称为“服务员”或“服务机构”。
因此,顾客与服务机构(服务员)的含义完全是⼴义的,可根据具体问题⽽不同。
实际的排队系统可以千差万别,但都可以⼀般地描述如下:顾客为了得到某种服务⽽到达系统,若不能⽴即获得服务⽽⼜允许排队等待,则加⼊等待队伍,待获得服务后离开系统,见图10-1⾄图10-4。
类似地还可画出许多其他形式的排队系统,如串并混联的系统,⽹络排队系统等。
尽管各种排队系统的具体形式不同,但都可由图10-5加以描述。
图10-1 单服务台排队系统图10-2 s 个服务台,⼀个队列的排队系统图10-3 s 个服务台,s 个队列的排队系统图10-4 多个服务台得串联排队系统顾客到达顾客到达图10-5 随机服务系统通常称由10-5表⽰的系统为⼀个随机聚散服务系统,任⼀排队系统都是⼀个随机聚散服务系统。
运筹学排队论1. 简介排队论是运筹学中重要的一个分支,它研究了在人员、物品或信息流动过程中产生的排队现象,并通过建立数学模型和分析这些模型来探讨和优化系统中的排队行为。
排队论在各个领域都有广泛的应用,如交通运输、电信网络、生产制造等。
2. 排队模型排队论中常用的模型包括M/M/1模型、M/M/s模型、M/G/1模型等。
其中,M表示到达过程的分布,而G表示服务时间的分布。
而数字1或s则表示系统中的服务通道数。
2.1 M/M/1模型M/M/1模型是排队论中最简单的一个模型,它假设到达过程和服务时间都服从指数分布。
该模型中只有一个服务通道。
2.2 M/M/s模型M/M/s模型是M/M/1模型的扩展,它假设到达过程和服务时间仍然服从指数分布,但有s个服务通道。
M/M/s模型适用于有多个并行服务通道的排队系统。
2.3 M/G/1模型M/G/1模型假设到达过程服从泊松分布,而服务时间服从一般分布。
该模型在实际应用中更为常见,因为服务时间往往不服从指数分布。
3. 排队论的性能度量排队论的性能度量是对排队模型进行定量分析和评估的重要手段,常见的性能度量指标包括平均等待时间、平均逗留时间、系统繁忙率等。
3.1 平均等待时间平均等待时间是指在排队系统中,每个顾客平均等待的时间长度。
通过对排队模型的分析和计算,可以得到平均等待时间的具体数值。
3.2 平均逗留时间平均逗留时间是指每个顾客在排队系统中逗留的平均时间长度。
它等于平均等待时间加上服务时间。
3.3 系统繁忙率系统繁忙率是指服务通道在单位时间内处于工作状态的比例。
它可以用来评估系统是否能够满足顾客的需求。
4. 排队论的应用4.1 交通运输排队论在交通运输领域的应用非常广泛。
例如,交通信号灯的控制就可以通过排队论进行优化,以减少车辆的等待时间和交通拥堵。
4.2 电信网络在电信网络中,排队论被用于研究数据包的传输和路由机制。
通过对排队论模型的分析,可以提高网络的传输效率和质量。
排队论一、引言:日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,食堂买饭排队,列车调用,计算机进程调用,市内电话占线等现象。
凡是具有公共服务性质的事业和工作,凡是出现拥挤现象的领域,都是排队论的用武之地。
排队论是研究服务系统中排队现象随机规律的学科,广泛应用于计算机网络、生产、运输、库存等各项资源共享的随机服务系统,其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。
排队论研究的内容有3个方面:统计推断,根据资料建立模型;系统的性态,即和排队有关的数量指标的概率规律性;系统的优化问题。
二、排队论的起源与历史:排队论起源于20世纪初的电话通话。
1909年丹麦电话工程师 A.K.埃尔朗:话务理论,导出著名的埃尔朗电话损失率公式,自20世纪初以来,电话系统的设计一直在应用这个公式。
20世纪30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流,瑞典数学家巴尔姆又引入有限后效流等概念和定义。
20世纪50年代初美国数学家关于生灭过程的研究,英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法, L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。
20世纪70年代以来人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。
三、排队论的定义:排队论(queuing theory), 或称随机服务系统理论, 是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。
四、排队系统:(一)、排队系统的构成排队系统又称随机服务系统,是研究服务过程和拥挤现象的随机模型。
服务系统由服务机构和服务对象(顾客)构成,顾客到达系统的时间是随机的,服务员为每一位客户服务的时间也是随机的,所以整个排队系统的状态也是随机的。
运筹学排队论引言排队论是运筹学中的一个重要分支,它研究的是如何优化排队系统的设计和管理。
排队论广泛应用于各个领域,如交通流量控制、银行业务流程优化、生产线调度等,对于提高效率和降低成本具有重要意义。
本文将介绍排队论的基本概念、排队模型以及应用案例,帮助读者了解运筹学中排队论的基本原理和应用方法。
什么是排队论排队论是一门研究排队现象的数学理论,它通过定义排队系统的各个要素,如顾客到达率、服务率、队列容量等,建立数学模型分析和优化排队系统的性能指标。
排队论主要研究以下几个方面:•排队系统的模型:包括单服务器排队系统、多服务器排队系统、顾客数量有限的排队系统等。
•排队系统的性能指标:包括平均等待时间、系统繁忙率、系统容量利用率等。
•排队系统的优化方法:包括服务策略优化、系统容量规划等。
排队论的基本概念到达过程排队论中的到达过程是指顾客到达排队系统的时间间隔的随机过程。
常用的到达过程有泊松过程、指数分布等。
到达过程的特征决定了顾客到达的规律。
服务过程排队论中的服务过程是指服务器对顾客进行服务的时间间隔的随机过程。
常用的服务过程有指数分布、正态分布等。
服务过程的特征决定了服务的速度和效率。
排队模型排队模型是排队论中的数学模型,用于描述排队系统的性能和行为。
常用的排队模型有M/M/1模型、M/M/s模型等。
这些模型分别表示单服务器排队系统和多服务器排队系统。
性能指标排队系统的性能指标用于评估系统的性能,常见的性能指标有平均等待时间、系统繁忙率、系统容量利用率等。
这些指标可以帮助决策者优化排队系统的设计和管理。
排队模型与分析M/M/1模型M/M/1模型是排队理论中最简单的排队系统模型,它是一个单服务器、顾客到达过程和服务过程均为指数分布的排队系统。
M/M/1模型的性能指标可以通过排队论的公式计算得出。
M/M/s模型M/M/s模型是排队理论中的多服务器排队模型,它是一个多个服务器、顾客到达过程和服务过程均为指数分布的排队系统。
关于排队的数学故事摘要:1.引言:排队现象的普遍性和数学在排队问题中的应用2.排队论的基本概念和模型3.排队论在日常生活中的应用实例4.排队论在我国的发展和研究方向5.总结:排队论的价值和启示正文:排队是我们日常生活中常见的现象,无论是在超市、银行还是地铁站,我们都会遇到排队等待的情况。
与此同时,数学在解决排队问题方面发挥着重要作用。
本文将探讨排队论的基本概念、应用实例以及在我国的研究现状。
首先,我们来了解一下排队论的基本概念。
排队论是研究队在等待服务过程中排队现象的数学分支。
它主要关注三个指标:队长、等待时间和系统吞吐量。
队长指的是等待服务的队伍中的人数;等待时间是指顾客从到达队伍末尾到被服务的时间;系统吞吐量是指服务系统在单位时间内能够服务的顾客数量。
在日常生活中,排队论的应用无处不在。
举个例子,我们在医院看病时,常常会注意到挂号、缴费和取药等环节的排队情况。
通过排队论,医院可以合理安排窗口数量和工作人员,以减少患者的等待时间。
同样,在物流配送领域,排队论也大有用武之地。
通过分析排队现象,物流公司可以优化配送路线和时间,提高配送效率。
在我国,排队论的研究和发展取得了显著成果。
众多学者致力于探索新的排队模型,以解决实际问题。
例如,针对排队系统中顾客到达和离开的规律,研究者们提出了各种概率模型;针对服务过程中的优先级问题,研究者们发展了优先级排队论。
此外,随着互联网技术的发展,我国学者还将排队论应用于网络服务、云计算等领域。
总之,排队论作为一种数学工具,在解决实际排队问题中具有重要的价值。
通过对排队现象的深入研究,我们可以发现并解决生活中的诸多难题。
无论是在日常生活中的等待问题,还是在繁忙时段的交通拥堵,排队论都为我们提供了有力的理论支持。
第八章 排队论排队是日常生活和经济管理经常遇到的问题,如医院等待看病的病人、加油站等待加油的汽车、工厂等待维修的机器、港口等待停泊的船只等。
在排队论中把服务系统中这些服务的客体称为顾客。
由于系统中顾客的到来以及顾客在系统中接受服务的时间等均是随机的,因此排队现象是不可避免的。
对于随机服务系统,若扩大系统设备,会提高服务质量,但会增加系统费用。
若减少系统设备,能节约系统费用,但可能使顾客在系统中等待的时间加长,从而降低了服务质量,甚至会失去顾客而增加机会成本。
因此,对于管理人员来说,解决排队系统中的问题是:在服务质量的提高和成本的降低之间取得平衡,找到最适当的解。
排队论是优化理论的重要分支。
排队论是1909年由丹麦工程师爱尔郎(A.K.Erlang )在研究电话系统时首先提出,之后被广泛应用于各种随机服务系统。
第一节 排队论的基本概念及所研究的问题一、基本概念(一)排队系统的组成一般的排队系统有三个基本组成部分:顾客的到达(输入过程)、排队规则和服务机构,如图8—1所示。
1.输入过程输入过程指顾客按什么样的规律到达。
包括如下三个方面的内容:(1)顾客总体(顾客源) 指可能到达服务机构的顾客总数。
顾客总体数可能是有限的,也可能是无限。
如工厂内出现故障而等待修理的机器数是有限的,而到达某储蓄所的顾客源相当多,可近似看成是无限的。
(2)顾客到达的类型 指顾客的到达是单个的还是成批的;(3)顾客相继到达的时间间隔分布 即该时间间隔分布是确定的(定期运行的班车、航班等)还是随机的,若是随机的,顾客相继到达的时间间隔服从什么分布(一般为负指数分布);2.排队规则排队规则指顾客接受服务的规则(先后次序),有以下几种情况。
(1)即时制(损失制) 当顾客来到时,服务台全被占用,顾客随即离去,不排队等候。
这种排队规则会损失许多顾客,因此又称为损失制。
(2)等待制 当顾客来到时,若服务台全被占用,则顾客排队等候服务。
在等待制中,又可按顾客顾客达到排队系统 图8—1服务的先后次序的规则分为:先到先服务(FCFS,如自由卖票窗口等待卖票的顾客)、先到后服务(FCLS,如仓库存放物品)、随机服务(SIRO,电话交换台服务对话务的接通处理)和优先权服务(PR,如加急信件的处理)。
第七部分 排队论第十九章 排队论排队论又称随机服务系统理论,它是通过对各种服务系统在排队等待现象中概率特性的研究,来解决服务系统最优设计与最优控制一门学科。
目前,排队论已在计算机系统、计算机通信网络系统、电子对抗系统、交通运输系统、医疗卫生系统、库存管理系统、军事作战系统等方面有着重要的应用,并已成为工程技术人员、管理人员在系统分析与设计中的重要数学工具之一。
§1 排队系统的基本概念在人们的日常生活中,一个服务系统在工作过程中由于拥挤而产生的排队等待现象是经常发生的.例如,顾客在理发店内等待理发(见图)、用户在电话机前等候通话、发生故障的机器等候工人修理、进入机场上空的飞机等候降落等等。
如果我们把服务系统的含义再拓广一下,则进入雷达接收机的信号等待处理、通信系统的报文在缓冲器上等候传送、多微机系统的处理机等候访问公共内存、计算机网的用户等候使用某资源、进入水库的流水等待开闸泄放等等都可看作服务系统在运行过程中所产生的排队等候现象。
我们就将这种具有排队等候现象的服务系统通称为排队系统。
任何一个服务系统总是由两个相辅相成的要素:顾客和服务员(或服务台)所构成。
凡是要求接受服务的人与物统称为顾客;凡是给予顾客服务的人与物统称为服务员(或服务台)。
对于一个排队系统来说,如果顾客的到达时刻和对顾客的服务时间是固定的话,人们总可以适当安排或调整服务员个数、服务速率,从而使顾客到达后少排队甚至不排队而迅速进入服务,亦即容易达到供求之间的平衡关系,如通常情况下的火车调度就属于以上情况。
然而由于客观环境的复杂多变以及种种随机因素的影响,使得在绝大数情况下,顾客到达服务系统的时刻以及对顾客的服务时间都是随机的,这就给服务系统造成了一系列供求之间的矛盾。
例如,有时顾客到得多而服务跟不上(供不应求),而另一些时候则由于顾客少(或无顾客)而使服务员处于空闲状态(供过于求)。
因此,排队论的主要任务就是:通过对排队系统概率规律性的探讨来寻求某些能达到供求平衡的手段与策略,这也就是排队系统的所谓最优设计与最优控制问题。