运筹学--第十三章 排队论
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
排队系统的符号表述描述符号:①/②/③/④/⑤/⑥各符号的意义:①——表示顾客相继到达间隔时间分布,常用以下符号:M——表示到达的过程为泊松过程或负指数分布;D——表示定长输入;EK——表示K阶爱尔朗分布;G——表示一般相互独立的随机分布。
②——表示效劳时间分布,所用符号与表示顾客到达间隔时间分布一样。
③——表示效劳台(员)个数:“1〞表示单个效劳台,“s〞(s>1)表示多个效劳台。
④——表示系统中顾客容量限额,或称等待空间容量。
如系统有K个等待位子,那么,0<K<∞,当K=0时,说明系统不允许等待,即为损失制。
K=∞时为等待制系统,此时一般∞省略不写。
K为有限整数时,表示为混合制系统。
⑤——表示顾客源限额,分有限与无限两种,∞表示顾客源无限,一般∞也可省略不写。
⑥——表示效劳规那么,常用以下符号FCFS:表示先到先效劳的排队规那么;LCFS:表示后到先效劳的排队规那么;PR:表示优先权效劳的排队规那么。
二、排队系统的主要数量指标描述一个排队系统运行状况的主要数量指标有:1.队长和排队长(队列长)队长是指系统中的顾客数(排队等待的顾客数与正在承受效劳的顾客数之和);排队长是指系统中正在排队等待效劳的顾客数。
队长和排队长一般都是随机变量。
2.等待时间和逗留时间从顾客到达时刻起到他开场承受效劳止这段时间称为等待时间。
等待时间是个随机变量。
从顾客到达时刻起到他承受效劳完成止这段时间称为逗留时间,也是随机变量。
3. 忙期和闲期忙期是指从顾客到达空闲着的效劳机构起,到效劳机构再次成为空闲止的这段时间,即效劳机构连续忙的时间。
这是个随机变量,是效劳员最为关心的指标,因为它关系到效劳员的效劳强度。
与忙期相对的是闲期,即效劳机构连续保持空闲的时间。
在排队系统中,忙期和闲期总是交替出现的。
4.数量指标的常用记号(1)主要数量指标L——平均队长,即稳态系统任一时刻的所有顾客数的期望值;L q——平均等待队长,即稳态系统任一时刻等待效劳的顾客数的期望值;W——平均逗留时间,即(在任意时刻)进入稳态系统的顾客逗留时间的期望值;W q——平均等待时间,即(在任意时刻)进入稳态系统的顾客等待时间的期望值。
退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页前一页后一页退出退出前一页后一页退出前一页后一页退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望退出前一页后一页退出前一页后一页退出前一页后一页随机服务系统理论与展望退出前一页后一页随机服务系统理论与展望随机服务系统理论与展望退出前一页后一页。
运筹学排队论引言排队论是运筹学中的一个重要分支,它研究的是如何优化排队系统的设计和管理。
排队论广泛应用于各个领域,如交通流量控制、银行业务流程优化、生产线调度等,对于提高效率和降低成本具有重要意义。
本文将介绍排队论的基本概念、排队模型以及应用案例,帮助读者了解运筹学中排队论的基本原理和应用方法。
什么是排队论排队论是一门研究排队现象的数学理论,它通过定义排队系统的各个要素,如顾客到达率、服务率、队列容量等,建立数学模型分析和优化排队系统的性能指标。
排队论主要研究以下几个方面:•排队系统的模型:包括单服务器排队系统、多服务器排队系统、顾客数量有限的排队系统等。
•排队系统的性能指标:包括平均等待时间、系统繁忙率、系统容量利用率等。
•排队系统的优化方法:包括服务策略优化、系统容量规划等。
排队论的基本概念到达过程排队论中的到达过程是指顾客到达排队系统的时间间隔的随机过程。
常用的到达过程有泊松过程、指数分布等。
到达过程的特征决定了顾客到达的规律。
服务过程排队论中的服务过程是指服务器对顾客进行服务的时间间隔的随机过程。
常用的服务过程有指数分布、正态分布等。
服务过程的特征决定了服务的速度和效率。
排队模型排队模型是排队论中的数学模型,用于描述排队系统的性能和行为。
常用的排队模型有M/M/1模型、M/M/s模型等。
这些模型分别表示单服务器排队系统和多服务器排队系统。
性能指标排队系统的性能指标用于评估系统的性能,常见的性能指标有平均等待时间、系统繁忙率、系统容量利用率等。
这些指标可以帮助决策者优化排队系统的设计和管理。
排队模型与分析M/M/1模型M/M/1模型是排队理论中最简单的排队系统模型,它是一个单服务器、顾客到达过程和服务过程均为指数分布的排队系统。
M/M/1模型的性能指标可以通过排队论的公式计算得出。
M/M/s模型M/M/s模型是排队理论中的多服务器排队模型,它是一个多个服务器、顾客到达过程和服务过程均为指数分布的排队系统。
排队论在日常生活和工作中,人们常常会为了得到某种服务而排队等候。
比如顾客到商店购买东西,病人到医院看病,汽车进加油站加油,轮船进港停靠码头等,都会因为拥挤而发生排队等候的现象。
这时,商店的售货员和顾客,医院的医生和病人,加油站的加油泵和待加油的汽车,码头的泊位和停泊的轮船等,形成了各自的排队服务系统,简称排队系统。
在一个排队系统中,通常包括一个或多个“服务设施”,服务设施可以指人,如售货员,医院大夫等。
也可以是物,如加油泵、码头泊位等。
同时还包括许多进入排队系统要求得到服务的“顾客”。
这里的顾客是指请求服务的人或物。
如到医院看病的病人,或等待加油的汽车等。
作为顾客总希望一到系统马上就能得到服务,但客观情况并非如此。
由于顾客的到达和服务机构对每个顾客的服务时间具有随机性,因此出现排队现象几乎是不可避免的。
当然,为了方便顾客减少排队时间,排队系统可以多开设服务设施。
但那将增加系统的投资和运营成本,还可能发生空闲浪费。
排队论(Queueing Theory)是为解决上述问题而发展起来的一门学科。
排队论起源于上世纪初,当时的美国贝尔(Bell)电话公司发明了自动电话后,满足了日益增长的电话通讯的需要。
但另一方面,也带来了新的问题,即如何合理配置电话线路的数量,以尽可能减少用户的呼叫次数。
如今,通讯系统仍然是排队论应用的主要领域。
同时在运输、港口泊位设计、机器维修、库存控制等领域也获得了广泛的应用。
6. 1 排队系统的基本概念6. 1. 1排队系统的一般表示一个排队系统可以抽象描述为:为了获得服务的顾客到达服务设施前排队,等候接受服务。
服务完毕后就自行离开。
其中把要求得到服务的对象称为顾客,而把服务者统称为服务设施或服务台。
在排队论中,把顾客的到达和离开称为排队系统的输入和输出。
而潜在的顾客总体又称为顾客源或输入源。
因此任何一个排队系统是一种输入-输出系统,其基本结构如图6-1所示。
排队系统图6-16. 1. 2排队系统的特征由排队系统的基本结构可知,任何一个排队系统的特征可以从以下三个方面加以描述。
328
习题十三
13.1 某市消费者协会一年365天接受顾客对产品质量的申诉。
设申诉以λ=4件/天的普阿松流到达,该协会每天可以处理申诉5件,当天处理不完的将移交专门小组处理,不影响每天业务。
试求:
(1)一年内有多少天无一件申诉;
(2)一年内多少天处理不完当天的申诉。
13.2 来到某餐厅的顾客流服从普阿松分布,平均每小时20人。
餐厅于上午11:00开始营业,试求:
(1)当上午11:07有18名顾客在餐厅时,于11:12恰好有20名顾客的概率(假定该时间段内无顾客离去);
(2)前一名顾客于11:25到达,下一名顾客在11:28至11:30之间到达的概率。
13.3 某银行有三个出纳员,顾客以平均速度为4人/分钟的泊松流到达,所有的顾客排成一队,服务时间服从均值为0.5分钟的负指数分布,试求:
(1) 银行内空闲时间的概率;
(2) 银行内顾客数为n 时的稳态概率;
(3) 平均队列长Lq ;
(4) 银行内的顾客平均数Ls ;
(5) 平均逗留时间Ws ;
(6) 平均等待时间Wq 。
13.4 某加油站有一台油泵。
来加油的汽车按普阿松分布到达,平均每小时20辆,但当加油站中已有n 辆汽车时,新来汽车中将有一部分不愿等待而离去,离去概率为4
n (n =0,1,2,3,4)。
油泵给一辆汽车加油所需时间为具有均值3分钟的负指数分布。
(1)画出此排队系统的速率图;
(2)导出其平衡方程式;
(3)求出加油站中汽车数的稳态概率分布;
(4)求那些在加油站的汽车的平均逗留时间。
13.5 某无线电修理商店保证每件送到的电器在一小时内修完取货,如超过一小时则分文不取。
已知该商店每修理一件平均收费10元,其成本平均每件5.50元。
已知送来修理的电器按普阿松分布到达,平均每小时6件,每维修一件的时间平均为7.5分钟,服从负指数分布。
试问:
(1)该商店在此条件下能否盈利;
(2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。
13.6 某企业有5台车运货,已知每台车每运行100小时平均需维修2次,每次需时20分钟,以上分别服从普阿松及负指数分布。
求该企业全部车辆正常运
行的概率,及分别有1,2,3辆车不能正常运行的概率。
13.7 要求在某机场着陆的飞机服从普阿松分布,平均每小时18架次,每次着陆需占用基础跑道的时间为2.5分钟,服从负指数分布。
试问该机场应设置多少条跑道,使要求着陆飞机需要在空中等待的概率不超过5%;求这种情况下跑道的平均利用率。
13.8 某仓库贮存的一种商品,每天的到货与出货量分别服从普阿松分布,其平均值为λ和μ,因此该系统可以近似看成为M/M/1/∞/∞的排队系统。
设该仓库贮存费为每天每件c1元,一旦发生缺货时,其损失为每天每件c2元,已知c2>c1,要求:
(1)推导每天总期望费用的公式;
(2)使总期望费用为最小的ρ=λ/μ值。
13.9 某电话亭有一部电话,来打电话的顾客服从普阿松分布,相继两个人到达的平均时间为10分钟,通话时间服从负指数分布,平均为3分钟。
求:(1)顾客到达电话亭要等待的概率;
(2)等待打电话的平均顾客数;
(3)打一次电话要等10分钟以上的概率是多少?;
(4)当一个顾客至少要等待3分钟才能打电话时,电信局打算增设一台电话机,问到达速度增加到多少时,安装第二台电话机才是合理的?
(5)第二台电话机安装后,顾客的平均等待时间为多少?
329。