新人教版22.1.2-二次函数y=ax2的图象和性质
- 格式:ppt
- 大小:1.78 MB
- 文档页数:19
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教案一. 教材分析人教版九年级数学上册第22.1.2节《二次函数y=ax^2的图象和性质》是九年级数学的重要内容,主要让学生了解二次函数的图象特征和性质。
通过本节课的学习,学生能理解二次函数的一般形式,掌握二次函数的图象特征,了解二次函数的增减性和对称性,从而为后续的函数学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念,具备了一定的函数知识。
但对于二次函数的图象和性质,可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,引导学生理解和掌握二次函数的图象和性质。
三. 教学目标1.让学生理解二次函数的一般形式,掌握二次函数的图象特征。
2.让学生了解二次函数的增减性和对称性,能运用二次函数的性质解决实际问题。
3.培养学生的观察能力、分析能力和解决问题的能力。
四. 教学重难点1.二次函数的一般形式和图象特征。
2.二次函数的增减性和对称性。
五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的图象和性质。
2.利用多媒体辅助教学,直观展示二次函数的图象,帮助学生理解。
3.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.二次函数图象和性质的相关教学素材。
3.学生分组合作学习的材料。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾一次函数和正比例函数的图象和性质,为新课的学习做好铺垫。
同时,教师可以利用多媒体展示二次函数的图象,让学生初步感受二次函数的特点。
呈现(10分钟)教师给出二次函数的一般形式y=ax^2,让学生观察并分析二次函数的图象特征。
学生通过观察多媒体展示的二次函数图象,总结出二次函数的开口方向、顶点坐标等特征。
操练(10分钟)教师给出几个二次函数的实例,让学生分析其图象特征。
学生通过小组合作学习,探讨并分析二次函数的增减性和对称性。
22.1.2二次函数y=ax2的图象和性质课前预习1.二次函数y=ax2的图象是一条抛物线,对称轴是y 轴,顶点坐标是(0,0).当a>0时,抛物线开口向上,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大,此时抛物线有最低点,即当x=0时,y取得最小值0 ;当a<0时,抛物线开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,此时抛物线有最高点,即当x=0时,y取得最大值0 .|a|越大,抛物线的开口越小,|a|相等说明抛物线的开口大小相同.课堂练习知识点1 二次函数y=ax2的图象1.填写下列抛物线的开口方向、对称轴、顶点坐标以及最值.2.某同学画二次函数y=ax2的图象时,列下列表格:(1)将表格中的空格补全;(2)这个二次函数的解析式为y=-1x2;2(3)在平面直角坐标系中画出二次函数的图象.解:(3)函数图象如图所示.知识点2 二次函数y=ax2的性质3.已知二次函数y=(m-2)x2的图象开口向上,则m的取值范围是m>2 .4.下列各点在二次函数y=-2x2图象上的是( B )A.(-1,2)B.(-1,-2)C.(-2,-4)D.(-2,4)5.关于函数y=x2的图象,下列说法错误的是( C )A.它的图象是一条抛物线B.它的开口向上,且关于y轴对称C.它的顶点是抛物线的最高点D.它的顶点在原点处,坐标为(0,0)课时作业1.与二次函数y=x2开口大小相同,方向相反的二次函数是y=-x2.2.二次函数y=-0.2x2的图象是一条开口向下的抛物线,对称轴是y轴,顶点坐标为(0,0).当x= 0 时,函数有最大值0 ;当x >0时,y随x的增大而减小.3.关于函数y=3x2的性质,下列说法正确的是( C )A.无论x为任何实数,y的值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、第三象限内4.已知A (-1,y ₁),B (-2,y ₂)都在二次函数y=x 2上,则y ₁,y ₂之间的大小关系是( C )A.y ₁>y ₂B.y ₁=y ₂C.y ₁<y ₂D.不能确定 5.二次函数y=ax 2(a >0)的图象经过点(3,4),则其图象一定经过点( C ) A.(3,-4) B.(-3,-4) C.(-3,4) D.(4,3)6.如图,当ab >0时,函数y=ax 2与函数y=bx+a 的大致图象是( C )7.二次函数y=2x 2,y=-2x 2,y=12x 2的共同性质是( B ) A.开口向上 B.对称轴是y 轴 C.都有最高点 D.y 随x 的增大而增大 8.已知函数y=(m+2)226m m x +-是关于x 的二次函数. (1)求m 的值;(2)当m 为何值时,函数图象的顶点为最低点? (3)当m 为何值时,函数图象的顶点为最高点? 解:(1)根据二次函数的定义得22026 2.m m m +≠+-=⎧⎨⎩,解得⎩⎨⎧-==.4,221m m ∴m 的值为2或-4;(2)当m=2时,抛物线的开口向上,函数有最小值,函数图象的顶点为最低点; (3)当m=-4时,抛物线的开口向下,函数有最大值,函数图象的顶点为最高点.9.在同一个平面直角坐标系中,画出下列函数的图象:①y=x 2;②y=12x 2;③y=-x 2;④y=-12x 2.从图象上对比,说出解析式中二次项系数a对抛物线的形状有什么影响?解:列表如下描点、连线,函数图象如图所示a的绝对值相同,抛物线的形状相同;a的绝对值越大,开口越小.10.如图,A,B为抛物线y=x2上的两点,且AB∥x轴,与y轴交于点C,以点O为圆心,OC为半径画圆,若2.解:∵AB=22∴BC=122∴点B的横坐标为2代入抛物线的解析式得y=2.∵AB∥x轴,∴点B与点C的纵坐标相同.∴OC=2,即圆的半径为2.由二次函数的对称性得,图中阴影部分的面积等于圆面积的14, 即S 阴影=14π×22=π.11.函数y=ax 2(a ≠0)的图象与直线y=2x-3交于点(1,b ). (1)求a 和b 的值;(2)x 在什么范围时,二次函数y=ax 2中的y 随x 的增大而增大? (3)求抛物线y=ax 2与直线y=-2的两个交点及顶点所围成的三角形的面积. 解:(1)把点(1,b )代入y=2x-3,得b=-1. ∴交点坐标为(1,-1). 把(1,-1)代入y=ax 2,得a=-1. ∴a=-1,b=-1;(2)由(1)得y=-x 2,当x ≤0时,y 随x 的增大而增大; (3)根据题意,得2,2.y x y ⎧=-⎨=-⎩解得2x y ⎧=⎪⎨=-⎪⎩或 2.x y ⎧=⎪⎨=-⎪⎩ ∴两交点坐标分别为(-2),(-2).故S △=12×。
人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》教学设计一. 教材分析人教版九年级数学上册22.1.2《二次函数y=ax2的图象和性质》这一节主要介绍了二次函数y=ax2的图象和性质。
内容包括:二次函数的图象是抛物线,讨论了抛物线的开口方向、对称轴、顶点坐标等,并学习了如何通过a的值来判断抛物线的性质。
这部分内容是整个初中数学的重要知识点,对于学生来说,理解和掌握二次函数的图象和性质对于后续学习其他数学知识有着重要的基础作用。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的定义,对于函数有一定的认识和理解。
但在学习这一节内容时,学生可能对于抛物线的性质和开口方向的判断还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、探究等活动,加深对二次函数图象和性质的理解。
三. 教学目标1.理解二次函数y=ax^2的图象和性质,能够判断抛物线的开口方向、对称轴和顶点坐标。
2.培养学生观察、操作、思考、探究的能力,提高学生解决问题的能力。
3.培养学生的合作意识和团队精神,提高学生的沟通表达能力。
四. 教学重难点1.二次函数y=ax^2的图象和性质的理解和掌握。
2.抛物线开口方向、对称轴和顶点坐标的判断。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、探究等活动,自主发现和总结二次函数的图象和性质。
2.采用小组合作学习法,让学生在小组内进行讨论、交流、分享,提高学生的合作意识和团队精神。
3.采用案例分析法,通过具体的例子,让学生理解和掌握二次函数的图象和性质。
六. 教学准备1.PPT课件2.教学工具(黑板、粉笔等)七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数y=ax^2的概念,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT课件,展示二次函数y=ax^2的图象和性质,让学生直观地感受和理解。
3.操练(10分钟)让学生通过观察、操作、思考、探究等活动,自主发现和总结二次函数的图象和性质。