材料热力学1-2
- 格式:pdf
- 大小:906.59 KB
- 文档页数:10
第二章热力学基础材料热力学的基础:热力学的基本概念和基本定律经典热力学的核心和精髓:热力学3个(或称4个)基本定律2.1 热力学基本概念2.2 热力学第零定律(热平衡和温度)2.3 热力学第一定律(能量关系)2.4 热力学第二定律(过程方向)2.5 热力学第三定律(熵值计算)2.1 热力学基本概念(Basic concepts)1.体系(system)和环境(surroundings)2.系统的状态(State)和状态函数(State Function)3.系统的过程与途径4.体系的性质5.热力学平衡态体系(system):研究的对象(是大量分子、原子、离子等物质微粒组成的宏观集合体)。
人为地将所研究的一定范围的物体或空间与其余部分分开,作为我们研究的对象。
1. 体系(system)和环境(surroundings):环境(surroundings ):体系的周围部分1. 体系(system)和环境(surroundings):体系和环境的划分不是绝对的。
如何合适地选择体系,是解决热力学问题时必须考虑的。
例如:一个密闭容器,内装半容器水。
若以容器中的液体为体系,则为敞开体系。
因为液体水不仅可与容器内的空气(环境)交换热量,且可与液面上的水蒸气交换物质。
如果选整个容器为体系.则只与环境发生热量交换,故为封闭体系。
如果将容器及其外面的空气一起选为体系,则为孤立体系。
2 . 系统的状态和状态函数状态:体系有一定的外在的宏观表现形式,每一个外在表现形式称作体系的一个状态。
状态是体系所具有的宏观性质。
状态与性质单值对应,因此:系统的宏观性质也称为系统的状态函数。
当系统的状态变化时,状态函数的改变量只决定于系统的始态和终态,而与变化的过程或途径无关。
3.系统的过程与途径过程:系统由始态变化到终态的过渡。
途径:完成过程的具体步骤。
系统由始态变化到终态所经历的过程的总和。
系统的变化过程分为:•P、V、T变化过程,•相变化过程,•化学变化过程等。
第一章单组元材料热力学名词解释:1 可逆过程2 Gibbs自由能最小判据3 空位激活能4 自发磁化:5 熵:6 热力学第一定律热力学第二定律7 Richard定律填空题1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。
2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。
5 纯Fe的A3的加热相变会导致体积缩小6 Gibbs-Helmholtz方程表达式是7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化论述题1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应?2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。
3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。
4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。
计算题1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J•mol-1,试求将β-Ti过冷到800O C时,β→α的相变驱动力2若某金属形成空位的激活能为58.2KJ•mol-1,试求在700O C下,该金属的空位浓度。
3纯Bi在0.1MPa压力下的熔点为544K。
增加压力时,其熔点以3.55/10000K•MPa-1的速率下降。
另外已知融化潜热为52.7J•g-1,试求熔点下液、固两相的摩尔体积差。
(Bi的原子量为209g•mol-1.第二章二组元相名词解释:溶体:以原子或分子作为基本单元的粒子混合系统所形成的结构相同,性质均匀的相理想溶体:在宏观上,如果组元原子(分子)混合在一起后,既没有热效应也没有体积效应时所形成的溶体。
混合物:由结构不同的相或结构相同而成分不同的相构成的体系 化合物:两种或两种以上原子组成的具有特定结构的新相 溶解度:溶体相在与第二相平衡时的溶体成分(浓度),固溶体在与第二相平衡时的溶解度也成为固溶度。