走进重高讲义数学七年级上册人教版解析
- 格式:doc
- 大小:1.98 MB
- 文档页数:98
人教版七年级上册数学知识点梳理汇编含说课稿及答案(实用必备!)一. 教材分析人教版七年级上册数学知识点梳理汇编含说课稿及答案,本书主要面向七年级学生,帮助他们系统地学习和掌握数学知识。
本册内容主要包括有理数、方程、不等式、平面几何等基础知识。
这些知识不仅是初中数学的基础,也是高中数学的基础,对于学生未来的数学学习具有重要意义。
二. 学情分析七年级的学生已经初步掌握了小学数学的基本知识,对于一些简单的数学运算和概念有一定的了解。
但是,他们对于一些抽象的数学概念和理论的理解还比较薄弱,需要通过实例和实际操作来帮助他们理解和掌握。
此外,学生的学习习惯和方法也需要进一步的引导和培养。
三. 说教学目标1.知识与技能:使学生掌握有理数、方程、不等式、平面几何等基本知识,能够熟练运用这些知识解决实际问题。
2.过程与方法:通过实例和实际操作,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣和热情,培养他们积极学习数学的态度。
四. 说教学重难点1.教学重点:有理数、方程、不等式、平面几何等基本知识的掌握和运用。
2.教学难点:对于一些抽象的数学概念和理论的理解,以及数学思维能力的培养。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、小组合作学习法等,引导学生主动探究和解决问题。
2.教学手段:利用多媒体课件、教学卡片、实物模型等辅助教学,增强学生的学习兴趣和参与度。
六. 说教学过程1.导入:通过引入实际问题,激发学生的学习兴趣,引导学生思考和探究。
2.新课导入:介绍本节课的主要内容和知识点,引导学生了解和掌握。
3.实例讲解:通过具体的实例,解释和说明数学概念和理论,让学生理解和掌握。
4.学生练习:让学生进行相关的练习题,巩固和加深对知识的理解和运用。
5.小组讨论:让学生进行小组讨论,共同解决问题,培养学生的合作能力和解决问题的能力。
6.总结与拓展:对本节课的知识进行总结和拓展,引导学生思考和探究。
人教版初一数学(七年级)课程讲义第一章:有理数的意义(解析版)【例题1】体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0(1) 这8名男生有百分之几达到标准?(2) 他们共做了多少引体向上?【答案】(1)62.5%;(2)56个【解析】(1)由题意可知:正数或0表示达标,而正数或0的个数共有5个,所以百分率为:; 答:这8名男生有62.5%达到标准.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个)答:他们共做了引体向上56个.讲解用时:3分钟解题思路:解题时要注意对正负数的意义准确理解教学建议:一定要先引导学生弄清“基准”是什么.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习1.1】中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元【答案】C5100%62.5%8⨯=【解析】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.讲解用时:2分钟解题思路:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.教学建议:解题关键是引导学生理解“正”和“负”的相对性,确定一对具有相反意义的量.难度: 3 适应场景:当堂例题例题来源:无年份:2019【例题2】如图所示是几位同学所画的数轴,其中正确的是 ( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4) 【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.讲解用时:3分钟解题思路:数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.教学建议:对学生强调数轴的三要素难度: 3 适应场景:当堂例题例题来源:无年份:2019【练习2.1】填空:(1)数轴上离原点5个单位长度的点表示的数是________;(2)从数轴上观察,-3与3之间的整数有________个.【答案】±5;5个.【解析】画出数轴,即可观察出离原点5个单位长度的点表示的数是±5,同时可以数出-3与3之间的整数有5个讲解用时:2分钟解题思路:准确画出数轴,即可得出答案教学建议:熟练掌握数轴的画法及数轴的三要素难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题3】如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A .点AB .点BC .点CD .点D【答案】A【解析】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A ,B ,C ,D 这四个点中满足以上条件的是A .故选A .讲解用时:3分钟解题思路:考查相反数的定义:只有符号不同的两个数互为相反数.根据定义,结合数轴进行分析.教学建议:引导学生观察总结互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习3.1】51-的相反数是( ) A .5 B .51 C .51-D.-5 【答案】B【解析】根据相反数的概念:只有符号不同的两个数互为相反数即可得出答案为B讲解用时:3分钟解题思路:解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.教学建议:熟练掌握相反数的定义.难度: 3 适应场景:当堂例题 例题来源:无年份:2019 【例题4】当a≠0时,请解答下列问题:(1)求a a的值;(2)若b≠0,且0=+b b a a ,求ab ab的值.【答案】 (1)1±;(2)1-.【解析】解:(1)当a >0时,a a=1;当a <0时,a a=﹣1;(2)∵0=+b ba a,∴a ,b 异号,当a >0,b <0时,ab ab=﹣1;当a <0,b >0时,ab ab=﹣1;讲解用时:3分钟解题思路:(1)利用绝对值的代数意义化简即可求出值;(2)根据有理数的乘法法则和绝对值的代数意义化简即可求出值;教学建议:利用绝对值的代数意义化简是解本题的关键. 难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习4.1】计算:已知|x|=32,|y|=21,且x <y <0,求6÷(x ﹣y )的值.【答案】﹣36.【解析】解:∵|x|=32,|y|=21,且x <y <0,∴x=﹣32,y=﹣21,∴6÷(x ﹣y )=6÷(﹣32+21) =﹣36.讲解用时:4分钟解题思路:直接利用绝对值的性质结合有理数混合运算法则计算得出答案. 教学建议:利用绝对值的性质和有理数混合运算,正确得出x ,y 的值是解题关键.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题5】如图,数轴上的三点A ,B ,C 分别表示有理数a,b,c ,化简|a ﹣b|﹣|a+c|+|b ﹣c|.【答案】2c【解析】解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.讲解用时:3分钟解题思路:由数轴可知:c>0,a<b<0,所以可知:a﹣b<0,a+c<0,b﹣c <0.根据负数的绝对值是它的相反数可求值.教学建议:此题主要是考查学生对数轴和绝对值的理解,要求学生要对这些概念性的东西牢固掌握.难度: 3 适应场景:当堂例题例题来源:无年份:2019【练习5.1】已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.【答案】0或﹣12.【解析】解:∵|a﹣1|=9,|b+2|=6,∴a=﹣8或10,b=﹣8或4,∵a+b<0,∴a=﹣8,b=﹣8或4,当a=﹣8,b=﹣8时,a﹣b=﹣8﹣(﹣8)=0,当a=﹣8,b=4时,a﹣b=﹣8﹣4=﹣12.综上所述,a﹣b的值为0或﹣12.讲解用时:3分钟解题思路:本题考查了垂线段,利用垂线段最短是解题关键.教学建议:引导学生掌握绝对值的性质,熟记运算法则和性质并判断出a、b的对应情况是解题的关键.难度: 3 适应场景:当堂练习例题来源:无年份:2019【例题6】有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【答案】(1)<,<,>;(2)﹣2b.【解析】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.讲解用时:3分钟解题思路:(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.教学建议:必须让学生熟记三种位置角的形状.难度: 3 适应场景:当堂例题例题来源:无年份:2019【练习6.1】已知a、b、c都是负数,且0-+-+-=,则x + y + z______0.(填x a y b z c“>”、“<”、“=”).【答案】<【解析】利用绝对值的非负性,可得出x=a,y=b,z=c,则x+y+z=a+b+c<0讲解用时:4分钟解题思路:本题考查了绝对值的性质,准确识图观察出a、b、c的正负情况是解题的关键.教学建议:利用绝对值的非负性去掉绝对值符号是解此题的关键.难度: 3 适应场景:当堂练习例题来源:无年份:2019【例题7】已知:a=3,|b|=2,求(a+b)3的值.【答案】125或1.【解析】解:∵|b|=2,∴b=±2,当b=2时,(a+b)3=(3+2)3=125;当b=﹣2时,(a+b)3=(3﹣2)3=1,综上所述,(a+b)3的值为125或1.讲解用时:3分钟解题思路:利用绝对值的代数意义求出b的值,代入原式计算即可求出值.教学建议:熟练掌握绝对值的代数意义是解本题的关键.难度: 3 适应场景:当堂例题例题来源:无年份:2019【练习7.1】数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.②数轴上表示x和﹣2的两点之间的距离表示为|.数轴上表示x和5的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+3|的最小值=.④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣5|有最小值为.若﹣1<x<4,化简|x+1|+|4﹣x|.【答案】① 3,4;②|x+2|,|5﹣x|;③4;④﹣3或﹣2或﹣1或0或1或2;⑤3,7;【解析】解:①数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示1和﹣3的两点之间的距离是1﹣(﹣3)=4,故答案为:3,4;②数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|,数轴上表示x和5的两点之间的距离表示为|5﹣x|,故答案为:|x+2|,|5﹣x|;③当x<﹣3时,|x﹣1|+|x+3|=1﹣x﹣x﹣3=﹣2x﹣2,当﹣3≤x≤1时,|x﹣1|+|x+3|=1﹣x+x+3=4,当x>1时,|x﹣1|+|x+3|=x﹣1+x+3=2x+2,在数轴上|x﹣1|+|x+3|的几何意义是:表示有理数x的点到﹣3及到1的距离之和,所以当﹣3≤x≤1时,它的最小值为4,故答案为:4;④当x<﹣3时,|x+3|+|x﹣2|=﹣x﹣3+2﹣x=﹣2x﹣1=5,解得:x=﹣3,此时不符合x<﹣3,舍去;当﹣3≤x≤2时,|x+3|+|x﹣2|=x+3+2﹣x=5,此时x=﹣3或x=﹣2或0或1或2;当x>2时,|x+3|+|x﹣2|=x+3+x﹣2=2x+1=5,解得:x=2,此时不符合x>2,舍去;当x=0时,|x+3|+|x﹣2|=5;当x=1时,|x+3|+|x﹣2|=5;当x=﹣1时,|x+3|+|x﹣2|=5;故答案为:﹣3或﹣2或﹣1或0或1或2;⑤∵设y=|x+2|+|x﹣3|+|x﹣5|,i、当x≥5时,y=x+2+x﹣3+x﹣5=3x﹣6,∴当x=5时,y最小为:3x﹣6=3×5﹣6=9;ii、当3≤x<5时,y=x+2+x﹣3+5﹣x=x+4,∴当x=3时,y最小为7;iii、当﹣2≤x<3时,y=x+2+3﹣x+5﹣x=10﹣x,∴此时y最小接近7;iiii、当x<﹣2时,y=﹣x﹣2+3﹣x+5﹣x=6﹣x,∴此时y最小接近8;∴y的最小值为7.故答案为:3,7.讲解用时:4分钟解题思路:①②在数轴上A、B两点之间的距离AB=|a﹣b|,依此即可求解;④根据绝对值的性质去掉绝对值号,然后计算即可得解;③首先将原式变形为y=|x﹣1|+|x+3|,然后分别从当x≥1时,当﹣3≤x<1时,当x<﹣3时去分析,根据一次函数的增减性,即可求得y的最小值;④当x<﹣3时,当﹣3≤x≤2时,当x>2时,当x=﹣1,当x=1,当x=0去分析,根据一次函数的增减性,即可求得答案;⑤当x≥5时,当3≤x<5时,当﹣2≤x<3时,当x<﹣2时去分析,根据一次函数的增减性,即可求得y的最小值.教学建议:本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.注意分类思想的运用.难度: 3 适应场景:当堂练习例题来源:无年份:2019课后作业【作业1】下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【答案】D【解析】A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.讲解用时:4分钟难度: 2 适应场景:练习题例题来源:无年份:2019【作业2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】108【解析】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) .小虫得到的芝麻数为54×2=108(粒) .讲解用时:4分钟难度: 4 适应场景:练习题例题来源:无年份:2019【作业3】同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数的点之间的距离.试探索:(1)求|5﹣(﹣2)|=.(2)若|x﹣3|=|x+1|,则x=.【答案】(1)7;(2)1.【解析】解:(1)|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)由题意得:x﹣3+x+1=0,解得:x=1,故答案为:1;讲解用时:5分钟难度: 3 适应场景:练习题例题来源:无年份:2019。
1.1正数和负数(1)正数: 大于0的数;负数: 小于0的数;(2)0既不是正数, 也不是负数;(3)在同一个问题中, 分别用正数和负数表示的量具有相反的意义;(4) — a不一定是负数, +a也不一定是正数;(5)自然数: 0和正整数统称为自然数;(6) a>0 a是正数;a>0 a是正数或0 a是非负数;a< 0 a是负数;a< 0 a是负数或0 a是非正数.1.2有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式, 这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:第一章有理数正有理数正整数正整数整数有理数零有理数负有理数负整数分数负整数正分数(4)数轴: 规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5) 一般地, 当a是正数时, 则数轴上表示数 a的点在原点的右边, 距离原点点在原点的左边, 距离原点 a个单位长度;(6)两点关于原点对称: 一般地, 设 a是正数, 则在数轴上与原点的距离为a的点有两个, 它们分别在原点的左右, 表示-a和a,我们称这两个点关于原点对称;(7)相反数: 只有符号不同的两个数称为互为相反数;(8) 一般地, a的相反数是一a;特别地, 0的相反数是0;(9)相反数的几何意义: 数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0 ;(即相反数之和为0)a ,b ,(11)a、b互为相反数一1或一1;(即相反数之商为—1)b a(12)a、b互为相反数|a|=|b| ;(即相反数的绝对值相等)(13)绝对值: 一般地, 在数轴上表示数a的点到原点的距离叫做 a的绝对值;([a|R)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;a (a 0)(15)绝对值可表示为: a 0 (a 0)a (a 0)(16) —1 a 0 ;— 1 a 0;a a(17)有理数的比较: 在数轴上表示有理数, 它们从左到右的顺序, 就是从小到大的顺序。
数学学习效率低的三种情况及解决方法很多同学,上课一听就会,但做题确实一做就错;更有很多同学,会做的题总因为粗心出错;还有些同学,学习心态不端正。
以上三种情况,就是导致学习效率低下的最主要原因。
现象一:一听就会,一做就错,总是在看到答案后恍然大悟很多学生在看到题目时觉得面熟,能肯定自己以前做过原题或类似的题目,但就是想不起来该怎么做,越是回忆以前做过的类似题目越是没有思路,等到答案时才大喊一声,哇,原来是这样的啊。
于是再做,发现还是不能独立的把题目完整的做出来,于是再看答案,在做。
原因:原来在做题目时没有真正理解题目的解法,只能是跟着老师的思路吧题目抄下来,没有自己动手整理,导致自己觉得会做了,其实只是在当时把题目背过了,一段时间以后就只记得题目不记得的解法了。
所以,“背题”是万万要不得的,考试的题目千千万万,背得过来吗?解决方法:在做完一道题目后,让孩子讲解给家长听,也可让同学帮你检查你对这个题目的理解还有什么欠缺,发现问题立即问老师,力争当堂把题目理解透彻。
家长可以在一两周之后把这道题目的数据换一下,在让孩子做一遍,这样就能做到让孩子彻底的掌握这种类型题目的解法,海能达到举一反三的效果。
现象二:会做,但总是粗心,不是抄错题就是算错数很多家长都反映说自己的孩子很粗心,经常把会做的题目算错,甚至有家长说孩子期末考试考了96分,丢掉的那4分全是粗心算错的,并对这个成绩很满意,还有很多学生也说,这些题目我会做就可以了,这次算错了没关系,到考试时能算对就可以了。
其实,作为多年教学经验的老师,我们告诉各位家长,会做做不对才是最可怕。
原因:粗心的原因有两个,一是心态问题,这个问题后面会详细的说。
第二个原因就是对知识掌握得不牢固,模棱两可,错误总是在你掌握不牢固的地方出现,那些看似是粗心犯的错,其实都是因为在应用知识的时候不熟练,导致出错。
解决方法:有选择的多做题目,在数学学习中,我们反对搞题海战术,但是要想学好数学,不做题目不进行针对性训练是无法把学到的知识掌握牢固的。
学习必备欢迎下载人教版七年级数学上册第一章有理数主要内容:主要内容是有理数的有关概念及其运算。
首先,从实例引入负数,接着引进关于有理数的一些概念(数轴、相反数、绝对值、倒数等),在此基础上,介绍有理数的加减法、乘除法和乘方运算的意义、法则和运算律。
重点:有理数的运算。
数轴的绘画以及运用。
绝对值以及相反数的运用。
科学记数法的掌握难点:对有理数运算法则的理解,特别是对有理数乘法法则的理解。
实例: 20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1.2= _______.6.20XX年北京奥运会的主场馆---- “鸟巢”的建筑面积是258000 平方米,将 258000用科学记数法表示应是____________________ 。
13.解集在数轴上表示如图所示的不等式组是()A.x2B. x2 C.x2 D.x2x1x1x1x1-20-120XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1.3的相反数是.2. 20XX年莆田市参加初中毕业、升学考试的学生总人数约为43000 人,将 43000用科学记数法表示是 ___________ .3.2x ,不等式组 4 的解集在数轴上表示正确的是()x 10A .1B.10202C.D.01210220XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1. 2 的倒数是()A. 2B.1C.1D.122510. 20XX 年我国全年国内生产总值约335000 亿元,用科学记数法表示为__________元18. 解不等式2 x 13x436,并把它的解集在数轴上表示出来.20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1.2011的相反数是()1 C . 2011 D .1 A . 2011 B .201120113. 已知点 P ( a ,a 1 )在平面直角坐标系的第一象限内,则 a 的取值范围在数轴上可表示为( )9. 一天有 86400 秒,用科学记数法表示为 ____________ 秒;分析 :从 08 到 11 年试卷的试题中出现的有关有理数的知识可以看出,每年的试题类型的差不多这几种。
第1讲 数 轴【知识要点】1、有理数都可以在数轴上表示出来,但数轴上不是所有的点都表示有理数,比如π;2、互为相反数的两点在数轴上关于原点对称;3、点A (a )与B (b )的中点表示的数为2a b。
1、在数轴上,到表示数3 的点距离为2个单位长度的点表示的数是__________。
2、在数轴上,5 与8 之间的距离是__________。
3、有理数,a b 在数轴上的位置如图所示,则2a b a b 化简的结果为( )。
A 、3b aB 、2a bC 、2a bD 、a b4、已知有理数,,a b c 在数轴上的对应点如图所示,其中,b c 在数轴上的对应点关于原点对称,化简:||||2||b a a c c b 。
5、有理数c b a ,,在数轴上的位置如图所示,化简:c c a b b a 11。
ab6、有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a 化简结果为( )。
A 、c b a 32B 、c b 3C 、c bD 、b c7、(长郡2022年秋期中)如图,有理数,,a b c 在数轴上的位置大致如下:(1)比较大小:b _______c ,a _______b ;(2)去绝对值符号:||b c _______,||a b _______; (3)化简:||||||b c a b a c 。
8、结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是_______;②数轴上表示2 和6 的两点之间的距离是_______; ③数轴上表示4 和3的两点之间的距离是_______;(2)归纳:一般地,数轴上表示数m 和数n 两点之间的距离等于||m n 。
(3)应用:①如果表示数a 和3两点之间的距离是7,则可记为:|3|7a ,那么a _______。
②如果数轴上表示数a 的点位于4 和3之间,求|4||3|a a 的值。
③当a 取何值时,|4||1||3|a a a 的值最小,最小值是多少?请说明理由。
基础巩固篇第一讲有理数思维导图重难点分析重点分析:1.回顾以前学过的关于“数”的知识,进一步理解自然数、分数的产生和发展的实际背景,通过学生身边的例子体验自然数与分数的意义和在它们计数、测量、排序、编码等方面的应用.2.从相反意义的量的表示,理解正数、负数的概念,理解有理数产生的必然性、合理性.3.有理数的分类:按有理数的整分性可以分为整数和分数;按有理数的正负性可以分为正有理数、负有理数和零.难点分析:1.分数都可以化为小数,有些小数(有限小数和无限循环小数)可以化为分数.2.相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量(必须是同一类量,数量大小可以不相等).例题精析例1、判断:(1)前进和后退是两个具有相反意义的量;(2)零上6℃的相反意义的量只有零下6℃;(3)收入50万元和亏损20万元是两个具有相反意义的量;(4)上涨100元和下降50点是两个具有相反意义的量.思路点拨:先判断意义是否相反,再看是不是有数量.解题过程:(1)前进和后退具有相反意义,但没有数量,所以错误.(2)相反意义的量中数量可以不相等,所以错误.(3)收入和支出才具有相反意义,所以错误.(4)相反意义的量中数量必须是同一类量,100元和50点不是同一类量,所以错误.方法归纳:判断是否是相反意义的量时要抓住两个要素:一是它们的意义要相反;二是它们都具有数量(必须是同一类量,数量大小可以不相等).易错误区:注意(3)中收入的相反意义是支出,亏损的相反意义是盈利,不要混淆.例2、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,龙岩开往北京的普快列车“海西号”的车次号可能是( ). A.96 B.118 C.335 D.336思路点拨:根据普快列车的车次号在301~398之间,开往北京的列车车次号为双数作答. 参考答案:D方法归纳:本题是材料题,要仔细阅读所给信息,才能得出正确的结论. 易错误区:解题时要把火车票车次号的两个意义相结合.例3、(1)已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝 瓶矿泉水; (2)师生共52人外出春游,到达后,班主任要给每人买一瓶矿泉水,给了班长买矿泉水的钱.班长到商店后,发现商店正在进行促销活动,规定每5个空瓶可换1瓶矿泉水.班长只要买 瓶矿泉水,就可以保证每人一瓶.思路点拨:(1)看15里面有几个4,再看余下的空瓶包含几个4,把个数相加即可;(2)因为5个空瓶=1个空瓶+1瓶的水,可知4个空瓶可以换1瓶的水,因此花4瓶的钱可以喝到5瓶水,所以花40瓶的钱可以喝到50瓶水,还差2瓶单买.解题过程:(1)15÷4=3……3,可先换3瓶矿泉水,喝完后还剩3+3=6个空瓶,拿出4个空瓶换一瓶矿泉水,还剩3个空瓶,找人借一个空瓶凑齐4个空瓶换一瓶矿泉水,喝完还剩一个空瓶再把这个空瓶还给那个人,故最多可以喝5瓶矿泉水. (2)52÷5=10组……2瓶;4×10+2=42瓶.答:班长只要买42瓶矿泉水,就可以保证每人一瓶.方法归纳:本题考查的知识点是推理与论证,关键要抓住“5个空瓶可换1瓶矿泉水”这个条件,得出“4个矿泉水空瓶可以换矿泉水一瓶”这一结论,然后再列式计算. 易错误区:换来的矿泉水喝完又是空瓶,可以继续换.例4、分子为1的分数叫做单位分数.早在三千多年前,古埃及人就利用单位分数进行书写和计算.将一个分数拆分为几个不同的单位分数之和是一个古老且有意义的问题.例如:2141424142143+=+=+=;216163616316432+=+=+==. (1)仿照上例分别把分数85和53拆分成两个不同的单位分数之和.85= ;53= ; (2)在上例中,214143+=,又因为316162616216321+=+=+==,所以31614143++=,即43可以写成三个不同的单位分数之和.按照这样的思路,它也可以写成四个,甚至五个不同的单位分数之和.根据这样的思路,探索分数85能写出哪些两个以上的不同的单位分数之和.思路点拨:(1)由单位分数的意义可知将一个分数拆分为几个不同的单位分数之和,就是利用同分母分数的加法或约分的性质,把这个分数拆成两个同分母分数,使其中一个分子是1,另一个分数分子能整除分母;(2)只要根据单位分数的转化方法,把其中的一个单位分数利用分数的性质继续拆分即可.解题过程:(1)21101105110653,218184185+=+==+=+=. (2)41121618185,2112124185,31618185+++=++=++=.方法归纳:本题考查了分数性质的灵活应用、同分母分数的相加以及约分方法,也考查了学生的观察能力.易错误区:分子为1的分数叫做单位分数,最大的单位分数是11,21是整数,不是分数.例5、已知有A ,B ,C 三个数集,每个数集中所含的数都写在各自的大括号内,请把这些 数填入图中相应的部分. A.{-5,2.7,-9,7,2.1} B.{-8.1,2.1,-5,9.2,-71} C.{2.1,-8.1,10,7}思路点拨:由已知观察,先找出三个数集相同的数,再找出每两个数集相同的数,把相同的数分别填入公共部分. 解题过程:通过观察,A ,B ,C 三个数集都含有2.1, A ,B 数集都含有-5, A ,C 数集都含有7, B ,C 数集都含有-8.1.方法归纳:本题主要考查学生对数集的理解与应用.易错误区:每个数在图中只能出现一次,多个数集都有的数要填在公共部分.例6、把下列各数填入相应的数集内: -100,+12,331,-72,0.01,68,-10%,0,18‰,-241,2.0,0.4·5·,π. 正有理数集:{ …};负有理数集:{ …}; 整数集:{ …}; 分数集:{ …};自然数集:{ …}; 非负数集:{ …}.思路点拨:按照有理数的分类进行判断:有理数包括:整数和分数或者正有理数、负有理数和零;整数包括:正整数、0和负整数;分数包括:正分数和负分数;自然数包括:零和正整数.解题过程:正有理数集:{+12,331,0.01,68,18‰,2.0,0.4·5·,…}; 负有理数集:{-100,-72,-10%,-241,…};整数集:{-100,+12,68,0,2.0,…}; 分数集:{331,-72,0.01,-10%,18‰,-241,0.4·5·,…}; 自然数集:{+12,68,0,2.0,…}; 非负数集:{+12,331,0.01,68,0,18‰,2.0,0.4·5·,π,…}. 方法归纳:本题考查了有理数的概念,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数等的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数. 易错误区:π是无限不循环小数,不能转化为分数,所以它既不是分数,也不是有理数.探究提升例、请根据各数之间的关系,找规律填空.思路点拨:(1)观察图形中的数字可知:(9+6)×1=15;(6+7)×4=52;(5+8)×3=39;由此可得,每个三角形中:(上面的数字+左下的数字)×右下的数字=中间的数字;(2)根据图形中的数字可知:中间的数字=上下数字之差;左边的数字=中间的数字×右边的数字;由此即可解答;(3)观察每组图形中的三个数字特点可知:下边的数字由三部分组成:最左边的数字是右上方的数字十位上的数字;最右边的数字是左上方的数字个位上的数字;中间的数字是左上方的数字十位上的数字与右上方的数字个位上的数字之和,由此即可解答. 解题过程:①(11+3)×2=28.故?=28. ②61-56=5,5×3=15.故?=5,△=15.③最左边数字是6,最右边数字是8,中间数字是1+1=2,所以这个数是628.故?=628. 方法归纳:主要考查了学生通过对特例进行分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.易错误区:规律的确定通常至少要三个特例,从一个或两个特例中总结出的结论不一定正确,所以归纳出的一般结论要检验,使每一个特例都满足规律.专项训练拓展训练A组略B组略走进重高1.略2.【台湾】在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排列,求第10个数为( ).A.13B.14C.16D.173.【金华】有四包真空小包装火腿,每包以标准克数(450g)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示的实际克数最接近标准克数的是( ).A.+2B.-3C.+3D.+44.略5.略6.略7.【仙游】有一口9m深的水井,蜗牛和乌龟同时从井底向上爬.因为井壁滑,蜗牛白天向上爬2m,晚上向下滑1m;乌龟白天向上爬3m,晚上向下滑1m.当乌龟爬到井口时,蜗牛距井口 m.高分夺冠1.略2.略3.五羊矿泉水为了环境保护而回收空矿泉水瓶.允许消费者用4个空瓶换1瓶矿泉水(少于4个空瓶则不能换),花城中学买了1999瓶五羊牌矿泉水,如果尽可能把空瓶拿去换矿泉水,那么花城中学师生一共能喝上瓶矿泉水;反过来,如果一共能喝上3126瓶矿泉水,那么最初应该买了瓶矿泉水.4.略5.某路公交车从起点经过A,B,C,D四站到达终点,途中上下乘客如下表所示.(用正数表(1)到终点下车还有多少人?填在表格相应位置;(2)车行驶在哪两站之间车上的乘客最多?站和站;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?要求写出算式.第二讲数轴和绝对值思维导图重难点分析重点分析:1.数轴的三要素:原点、单位长度、正方向.2.理解有理数可以用数轴上的点表示,数轴上的点不一定表示有理数.3.相反数:实数a与-a互为相反数,零的相反数仍是零.若a,b互为相反数,则a+b=0.4.倒数:若两个实数的乘积为1,就称这两个实数互为倒数,零没有倒数.5.绝对值的几何意义:表示这个数到原点的距离.6.比较有理数大小的两种基本方法:利用数轴比较大小;利用法则比较大小.难点分析:1.数轴涉及数和形两个方面,是解决许多数学问题的重要工具.2.绝对值具有非负性,去绝对值问题往往会涉及较复杂的符号问题.例题精析例1、下列所画的数轴正确的有( ).A.1条B.2条C.3条D.4条思路点拨:利用数轴的概念和三要素(原点,正方向和单位长度)来判断正误.解题过程:第一条数据顺序不对,错误;第二条正确;第三条没有正方向,错误;第四条刻度不均匀,错误.所以正确的共有1条.故选A.方法归纳:本题主要考查了数轴的三要素:原点、正方向和单位长度.三个要素缺一不可. 易错误区:数轴的单位长度可以根据实际需要选取.例2、数轴上点A,B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为 .思路点拨:点A表示的数是-1,点B表示的数是3,所以|AB|=4;点B关于点A的对称点为C,所以点C到点A的距离|AC|=4.设点C表示的数为x,则-1-x=4,解出x即可求得点C表示的数.解题过程:如图,点A表示的数是-1,点B表示的数是3,所以|AB|=4.又点B关于点A的对称点为C,所以点C到点A的距离|AC|=4.设点C表示的数为x,则-1-x=4,解得x=-5.故答案为-5.方法归纳:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.易错误区:数轴上两点间的距离是表示这两个点的数的差的绝对值.例3、已知数轴上A,B两点分别为-3,-6,若在数轴上找一点C,使得A与C的距离为4;找一点D,使得B与D的距离为1,则下列( )不可能为C与D的距离.A.0B.2C.4D.6思路点拨:将点A,B,C,D在数轴上表示出来,然后根据绝对值与数轴的意义计算CD的长度.解题过程:根据题意,点C与点D在数轴上的位置如图所示:在数轴上使AC的距离为4的点C有两个:C1,C2,数轴上使BD的距离为1的点D有两个:D1,D2,∴C与D的距离为:①C2D2=0;②C2D1=2;③C1D2=8;④C1D1=6.综合①②③④,知C与D的距离可能为:0,2,6,8.故选C.方法归纳:本题综合考查了数轴,绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.易错误区:在数轴上找一点C,使得A与C的距离为4,满足这个条件的点A有两个;同理找一点D,使得B与D的距离为1,满足条件的点D也有两个,注意不要遗漏.例4、如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示-4,点G表示8.(1)点B表示的有理数是,表示原点的是点是;(2)图中的数轴上另有点M到点A、点G距离之和为13,则这样的点M表示的有理数是;(3)若相邻两点之间的距离不变,将原点取在点D,则点C表示的有理数是,此时点B与点表示的有理数互为相反数.思路点拨:(1)先根据数轴上两点之间的距离公式求出点A到点G的距离,再求出相邻两点之间的距离即可解答;(2)设点M表示的有理数是m,根据数轴上两点之间距离的定义即可求出m的值;(3)根据两点间的距离是2可求出C点坐标,再根据相反数的定义即可求出结论.解题过程:(1)∵数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示-4,点G 表示8,∴AG=|8+4|=12. ∴相邻两点之间的距离=612=2. ∴点B 表示的有理数是-4+2=-2,点C 表示的有理数-2+2=0. 故答案为:-2;C.(2)设点M 表示的有理数是m ,则|m+4|+|m-8|=13, ∴m=-4.5或m=8.5. 故答案为:-4.5或8.5. (3)若将原点取在点D , ∵每两点之间距离为2, ∴点C 表示的有理数是-2.∵点B 与点F 在原点D 的两侧且到原点的距离相等, ∴此时点B 与点F 表示的有理数互为相反数. 故答案为:-2;F. 方法归纳:本题考查的是数轴的特点及数轴上两点之间距离的定义,熟知数轴上两点之间距离公式是解答本题的关键.易错误区:第(2)题中A ,G 两点间的距离为12,所以数轴上到点A 、点G 距离之和为13的点M 在线段AG 外,这样的点有两个.例5、已知|a+3.5|+|b-9|+|c-13.5|=0,求ab+c 的值.思路点拨:根据非负数的性质可求出a ,b ,c 的值,再将它们代入ab+c 中求解即可. 解题过程:∵|a+3.5|+|b-9|+|c-13.5|=0, ∴a+3.5=0,b-9=0,c-13.5=0. ∴a=-3.5,b=9,c=13.5. ∴ab+c=-3.5×9+13.5=-18.方法归纳:非负数的性质:有限个非负数的和为零,那么每一个加数也必为零. 易错误区:只有当若干个非负数相加等于零时,才能得出每个非负数都同时为零.探究提升例、观察下列每对数在数轴上的对应点之间的距离4与-2,3与5,-2与-6,-4与3,回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答: ;(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则点A 与点B 两点间的距离可以表示为 ;(3)结合数轴求得|x-2|+|x+3|的最小值为 ,取得最小值时x 的取值范围为 ;(4)满足|x+1|+|x+4|>3的x 的取值范围为 .思路点拨:(1)通过观察容易得出结论;(2)在数轴上找到点B 所在的位置,点A 可以位于数轴上的任意位置,分三种情况进行分类讨论;(3)(4)根据(2)中的结论,利用数轴分析. 解题过程:(1)相等.(2)结合数轴,分以下三种情况:当x ≤-1时,距离为-x-1当-1<x≤0时,距离为x+1当x>0,距离为x+1综上,我们得到A与B两点间的距离可以表示为x+1.(3)|x-2|即x与2的差的绝对值,它可以表示数轴上x与2之间的距离.|x+3|=|x-(-3)|即x与-3的差的绝对值,它也可以表示数轴上x与-3之间的距离.如图,x在数轴上的位置有三种可能:图1图2图3图2符合题意,所以|x-2|+|x+3|的最小值为5,取得最小值时x的取值范围为-3≤x≤2.(4)同理|x+1|表示数轴上x与-1之间的距离,|x+4|表示数轴上x与-4之间的距离.所以本题即求:当x在什么范围内时x与-1之间的距离加上x与-4之间的距离会大于3.借助数轴,我们可以得到正确答案:x<-4或x>-1.方法归纳:借助数轴可以使有关绝对值的问题转化为数轴的距离问题,反之,有关数轴上的距离问题也可以转化为绝对值问题.这种相互转化在解决某些问题时可以带来方便.事实上,|a-b|表示的几何意义就是在数轴上表示数a与数b的点之间的距离.这是一个很有用的结论,我们正是利用这一结论并结合数轴的知识解决了(3)、(4)这两道难题.易错误区:|a-b|表示的几何意义就是在数轴上表示数a与数b的点之间的距离,|a+b|表示的几何意义就是在数轴上表示数a与数-b的点之间的距离.专项训练拓展训练A组略B组略走进重高1.略2.【菏泽】如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( ).A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点B 与点C 之间或点C 的右边(第2题)(第3题)3.【遵义】如图,A ,B 两点在数轴上表示的数分别是a ,b ,则下列式子中成立的是( ).A.a+b <0B.-a <-bC.1-2a >1-2bD.|a|-|b|>04.略5.略(第6题)6.【咸宁】实数a ,b 在数轴上对应点的位置如图所示,则|a | |b |(填“>”“<”或“=”).7.【略8.【咸宁】在数轴上,点A (表示整数a )在原点的左侧,点B (表示整数b )在原点的右侧.若|a-b|=2013,且AO=2BO ,则a+b 的值为 .高分夺冠1.略2.当x 满足条件 时,y=|x-1|+|x-2|+|x-3|+…+|x-2010|会得到最小值.3.求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值.4.略5.有理数a ,b ,c 均不为0,且a+b+c=0.设x=||||||||ba c a cbc b a +++++,试求代数式x 19+99x+2013之值.第三讲有理数的加减思维导图重难点分析重点分析:1.有理数加法法则:(1)同号相加,取相同符号,并把绝对值相加;(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.2.加法交换律:a+b=b+a,两个数相加,交换加数的位置,和不变.加法结合律:a+b+c=(a+b)+c=a+(b+c),三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.3.有理数减法法则:减去一个非零的数,等于加上这个数的相反数.其中,两变:减法运算变加法运算,减数变成它的相反数;一不变:被减数不变.可以表示成:a-b=a+(-b).难点分析:1.在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用哪一条法则.在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了.2.在进行有理数加法运算时,一般采取:(1)是互为相反数的先加(抵消);(2)同号的先加;(3)同分母的先加;(4)能凑整数的先加;(5)异分母分数相加,先通分,再计算.例题精析例1,、钟面上有1,2,3,4,5,…,12共12个数.(1)试在某5个数的前面添加负号,使这5个负数与其余7个正数的和为0;(2)在解题过程中你能总结出一些什么规律?思路点拨:先求出1,2,3,4,5,…,12这12个数的和为78,将78÷2得出5个负数绝对值的和为39,找到12个数中5个数绝对值的和等于39的数前面添加负号即可.解题过程:(1)1+2+3+4+5+…+12=78,78÷2=39.∵1+6+9+11+12=39,∴5个数为1,6,9,11,12(答案不唯一).(2)规律:5个负数绝对值的和等于1,2,3,4,5,…,12这12个数的和的一半.方法归纳:认真审题,找出“5个负数绝对值的和等于1,2,3,4,5,…,12这12个数的和的一半”这一规律是解答本题的关键所在.易错误区:要利用互为相反数的两个数相加和为0,从而找到规律,不能盲目乱凑.例2、计算:(1)-6-8-2+3.54-4.72+16.46-5.28; (2)75.1)321()432()323(------.思路点拨:(1)注意运算过程中的简便方法,让能够凑成整十的两个数相结合;(2)首先化简,然后利用有理数的加法法则和加法的交换律进行计算.解题过程:(1)原式=(-6-8-2-4.72-5.28)+(3.54+16.46)=-26+20=-6.(2)原式=)431432()321323(431321432323-++-=-++-=-2+1=-1. 方法归纳:在计算时要灵活运用运算定律使运算更加简便.易错误区:当使用运算定律后不能使运算更简便的,就按一般运算顺序计算.例3、用简便方法计算:(1)111.1+(-12)+0.9;(2)(+13)+(-21)+(+28)+(-10);(3)4.33+(-7.52)+(-4.33); (4))76()61()71(65-+-+-+. 思路点拨:(1)能凑整的先凑整简称凑整结合法;(2)把正数与负数分别结合在一起再相加简称同号结合法;(3)有相反数的先把相反数相加简称相反数结合法;(4)遇到分数,先把同分母的数相加,简称同分母结合法.解题过程:(1)原式=111.1+0.9+(-12)=112+(-12)=100.(2)原式=[(+13)+(+28)]+[(-21)+(-10)]=(+41)+(-31)=10.(3)原式=(-7.52)+[(+4.33)+(-4.33)]=(-7.52)+0=-7.52.(4)原式=31)1(32)]76()71[()]61(65[-=-+=-+-+-+. 方法归纳:认真观察算式的特点,合理利用简便计算规则:①凑整结合法;②同号结合法;③相反数结合法;④同分母结合法.易错误区:不是所有的计算都有简便方法的.例4、一天,有个年轻人来到“高记”童鞋店里买了一双鞋,这双鞋的成本是15元,标价是21元,这个年轻人掏出一张50元的人民币要买这双鞋,鞋店当时没有零钱,就用那张50元钱向街坊换了50元的零钱,找给年轻人29元,但是,街坊后来发现那张50元的钱是假钞,鞋店老板无奈之下,还了街坊50元,那么鞋店在这次交易中共损失了( ).A.15元B.44元C.50元D.100元思路点拨根据题意可知,鞋店老板首先损失了这双鞋的成本15元,然后损失了找给年轻人的29元,共损失了44元.解题过程:15+29=44(元).答:鞋店老板共损失了44元.方法归纳:本题的关键在于充分理解题意,若那张50元的钱是真钞,鞋店老板就没有损失了.易错误区:注意还给街坊的50元不属于损失之列,因为换零钱时街坊也给了鞋店老板50元.例5、小张上周末买进股票(1)到本周三,小张所持股票每股是多少元?(2)本周内,股票最高价出现在星期几?是多少元?(3)已知小张买进股票时付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和3‰的交易税.如果小张在本周末卖出全部股票,他的收益如何?思路点拨:(1)由表中数据可以算出股票每天每股的价格;(2)比较五天涨跌可知,星期一和星期二都是涨,则该股票最高价出现在星期二,进而求出每股的价格;(3)收益=卖股票收入-买股票支出-卖股票手续费和交易税-买股票手续费,代入求值即可.解题过程:(1)20+4+5-1=28(元).答:到本周三,小张所持股票每股28元.(2)20+4+5=29(元).答:本周内,股票最高价出现在星期二,是29元.(3)29-1-3-6=19(元),1000×19=19000(元),1000×20=20000(元),19000-20000-20000×1.5‰-19000×(1.5‰+3‰)=-1000-30-85.5=-1115.5(元).答:小张亏了1115.5元.方法归纳:本题主要考查正负数及有理数的运算在实际生活中的应用.所以学生在学这一部分时一定要联系实际,活学活用.易错误区:股票的涨跌是以前一天股票的价格为基准的.例6、实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A-C表示观测点A相对观测点C的高度)根据这次测量的数据,可得观测点A相对观测点B的高度是( ).A.210 mB.130 mC.390 mD.-210 m思路点拨:认真审题可以发现:A比C高90 m,C比D高80 m,D比E高60 m,F比E高50 m,F比G高70 m,B比G高40 m.然后转化为算式,通过变形得出A-B的关系即可.解题过程:由表中数据可知:A-C=90…①,C-D=80…②,D-E=60…③,E-F=-50…④,F-G=70…⑤,G-B=-40…⑥.①+②+③+…+⑥,可得(A-C)+(C-D)+(D-E)+(E-F)+(F-G)+(G-B)=A-B=90+80+60-50+70-40=210.∴观测点A相对观测点B的高度是210 m.故选A.方法归纳:解答本题的关键是理解表格中数据的实际意义,然后转化为算式,本题也可以通过画线段图来求解.易错误区:注意A-C 与C-A 表示的意义不同.探究提升例、观察下列等式4131431,3121321,211211-=⨯-=⨯-=⨯,将以上三个等式两边分别相加得:4341141313121211431321211=-=-+-+-=⨯+⨯+⨯. (1)猜想并写出:)1(1+n n = ; (2)直接写出下列各式的计算结果: ①201320121...431321211⨯++⨯+⨯+⨯= ; ②431321211⨯+⨯+⨯+…+)1(1+⨯n n = ; (3)探究并计算:201420121...861641421⨯++⨯+⨯+⨯; (4)计算1801...40124112141+++++. 思路点拨:(1)观察可得分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,即111)1(1+-=+n n n n ;(2)根据此规律把各分数转化,再进行分数的加减运算;(3)先提出41,然后按照前面的运算方法计算即可;(4)根据)901...1216121(211801...40124112141++++=+++++计算即可. 解题过程:(1) 111+-n n (2)①20132012 ②1+n n (3)原式=20145031007100641)100710061...321211(41=⨯=⨯++⨯+⨯. (4)原式=.20910921)1091...431321211(21)901...1216121(2190121...1212161212121=⨯=⨯++⨯+⨯+⨯=++++=⨯++⨯+⨯+⨯ 方法归纳:本题考查了关于数字的变化规律:通过观察数字之间的变化规律,得到一般性的结论,再利用此结论解决问题.易错误区:(3)(4)要注意观察算式的特点,转化为第(2)题中的运算方法.专项训练拓展训练A 组略B 组略走进重高1.略2.略3.【武汉】-8的绝对值与它的相反数的差是( ).A.8B.-8C.0D.164.略5.【芜湖】请阅读一小段约翰斯特劳斯的作品,根据乐谱中的信息,确定最后一个音符的时值长应为( ).A.81B.21C.41D.43(第5题)(第6题)6.【常德】如图,一个数表有7行7列,设a ij 表示第i 行第j 列上的数(其中i=1,2,3,…,j=1,2,3,…).例如:第5行第3列上的数a 53=7,则:(1)(a 25-a 22)+(a 52-a 53)= ;(2)此数表中的四个数a np ,a nk ,a mp ,a mk ,满足(a np -a nk )+(a mk -a mp )= .高分夺冠1.略2.略3.如图的号码是由14位数字组成的,把每一位数字写在下面的方格中,若任意相邻的三个(第3题)4.略5.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2-cdx的值;(2)10箱苹果,如果每箱以30kg为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,-1,-1.5,-2,+1,-1,-1,-0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10支钢笔,准备以一定的价格出售,如果每支钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,-1,-1.5,0.8,1,-1.5,-2.1,9,0.9.①这10支钢笔的最高售价和最低售价各是几元?②当小亮卖完钢笔后是盈还是亏?。
第七讲 实数及其运算例1计算:.213625)1(-⨯ ).1()32(3)2(-⨯-- .27091)3(3--+ ).12(3)]23(25)[4(+⨯--⨯-例2 (1)比较513-与51的大小. (2)比较⋅-21与31-的大小.例3 如图,在4×4方格中每个小正方形的边长都为1. (1)直接写出图1中正方形ABCD 的面积及边长.(2)在图2的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上), 并把图2中的数轴补充完整,然后用圆规在数轴上表示实数.8例4 已知x ,y 为实数,,214422-+-+-=x x x y 试求y x 43+的值.例5 观察下列一组式子的变形过程,然后回答问题:.,45451,34341,23231,12121 -=+-=+-=+-=+(1)请你用含n(n 为正整数)的关系式表示上述各式子的变形规律. (2)利用上面的结论,求式子的值:⋅++++++++202020211341231121例6 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,但是由于,221<<所以2的整数部分为1,将2减去其整数部分1,所得的差-21就是其小数部分.根据以上内容,解答下面的问题:5)1(的整数部分是_______,小数部分是________. 21)2(+的整数部分是_______,小数部分是________.(3)若设32+的整数部分是x ,小数部分是y ,求y x 3-的值.例 化简:==2,00)1(_______=-2)2(______=2,a ______.==3333,00)2(______=-33)3(,______=33,a(3)根据以上信息,观察图中a ,b 所在的位置,完成化简:.)()(3322b a b a a +--+拓展训练 A 组1.下列说法中:①无限小数是无理数;②无理数是无限小数;③无理数的平方一定是无理数;④实数与数轴上的点是一一对应的.正确的个数是( ). 1.A 2.B 3.C 4.D 2.在算式)33(-口)53(-的口中填上运算符号,使结果最大,这个运算符号是( ). A.加号 B .减号 C .乘号 D .除号 3.若,322<-<a 则a 的值可以是( ).7.-A 316.B 213.C 12.D 4.下列等式:=--=-=±=-=33628;436427;001.0101;4)4(;81161⑤④③②①;83- .25)5(2=--⑥其中正确的有( ).A.2个 B .3个 C .4个 D .5个 5.当a 为实数时,a a -=2在数轴上对应的点在( ).A .原点右侧B .原点左侧C .原点或原点右侧D .原点或原点左侧 6.把下列各数分别填人相应的集合内.⋅---3,11121211211121.2,27,4,32,14.3,15,0,5.63π 整数集合:{ }; 有理数集合:{ …};无理数集合:{ …}; 正实数集合:{ …}; 负实数集合:{ …}. 7.计算:=56.2_________=327125;________=-16949;_______=-96.144.1;_________ =-2224145;_________=+)32(2;________=+)313(3;_________.8.求下列各式的值:.27)6(9)1(32---- ⋅-⨯--⨯-+-)91(2781)2(1)2(332⋅-+---+-3212564)2(|23||23|)3( .|6|)4(125.041)3)(4(232---+---- 9.如图,一只蚂蚁从点A 沿数轴向右爬行3个单位长度到达点B ,若点A 表示,3-设点B 所表示的数为m .(1)求m 的值.(2)求1)6(3|1|+++-m m 的值.(第9题)10.阅读理解: 求103的近似值.解:设,10103x +=其中,10<<x 则,)10(1032x +=即.201001032x x ++=.10,102<<∴<<x x,20100103x +≈∴解得103,15.0即≈x 的近似值为10.15.理解应用:利用上面的方法求95的近似值(结果精确到0.01).11.(1)若,622=----y x x 求x y 的立方根.(2)已知有理数a 满足,2021|2020|a a a =-+-求22020-a 的值.B 组12.对实数a ,b 定义“★”运算规则如下:⎪⎩⎪⎨⎧>-≤=),(),(*22b a b a b a b b a 则)3*2(*7等于( ).1.A2.B 1.-C 2.-D13.若53+的小数部分是53,-a 的小数部分是b ,则b a +的值为( ).0.A 1.B 1.-C 2.D14.我们知道,方程12-=x 没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足12-=i (即方程12-=x 有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,1,21-==i i i =⋅=i i i 23,1)1()(,)1(2224=-==-=⋅-i i i i 从而对于任意正整数n ,我们可以得到 =⋅=+i i i n n 414,)(4i i i n =⋅同理可得.1,,143424=-=-=++n n n i i i i 那么20202019432i i i i i i ++++++ 的值为( ). 0.A 1.B 1.-C i D .15.请在如图的两个圆圈中各选两个数,再用÷⨯-+,,,中的3种运算符号,使得结果为正整数,写出你的运算式子:(第15题)16.如图,将3,2,1三个数按图中方式排列,若规定(a ,b)表示第a 行第b 列的数,则(8,2)与)2020,2020( 表示的两个数的积是_________.(第16题)17.阅读下列材料:为什么2不是有理数?假设2是有理数,那么存在两个互质的正整数m ,n ,使得,2mn=于是有.222n m = 22m 是偶数,2n ∴也是偶数,n ∴是偶数,设t n 2=(t 是正整数),则m t m m t n ∴=∴==.2,2422222也是偶数.n m ,∴都是偶数,不是互质数,与假设矛盾,.‘.假设错误.2∴不是有理数, 用类似的方法,请证明3不是有理数.18.我们规定:用[x 表示实数x 的整数部分,如,2]8[,3]14.3[==在此规定下解决下列问题: (1)填空:=++++]6[]3[]2[]1[ (2)求]49[]4[]3[]2[]1[+++++ 的值. 19.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为,12dm 则此正方形的对角线AC 的长为________.dm(2)若一圆的面积与这个正方形的面积都是,22Cm π设圆的周长为,圆C 正方形的周长为,正C 则圆C ______正C (填“>”“<”或“=”). (3)如图2,若正方形的面积为,162cm 李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由.(第19题)走进重高1.【南通】如图,数轴上的点D C O B A ,,,,分别表示数,2,1,0,1,2--则表示数52-的点P 应落在( ).(第1题)A.线段AB 上 B .线段BO 上 C .线段OC 上 D .线段CD 上 2.【福建】已知,34+=m 则以下对m 的估算正确的( ).32.<<m A 43.<<m B 54.<<m C 65.<<m D3.下列运算中,错误的个数为( ).;1251144251=①;4)4(2±=-②;2222-=-③⋅=+=+43214141161④ 1.A 2.B 3.C 4.D4.【湘西州】用科学计算器按如图的步骤操作,若输入的数值是3,则输出的值为______(结果精确到0.1).(第4题)5.对于任意不相等的两个数a ,b 定义一种运算“*”如下:,*ba b a b a -+=例如:=-+=23232*3.5那么=)1*3(*12________. 6.请按要求解答下列问题:(1)实数a ,b 满足.03=+b a 若a ,b 都是非零整数,请写出一对符合条件的a ,b 的值. (2)实数a ,b 满足.33-=+b a 若a ,b 都是分数,请写出一对符合条件的a ,b 的值.7.如图1是由5个边长为1的小正方形组成的纸片,可以用下面的方法把它剪拼成一个正方形.(1)拼成的正方形的面积是__________,边长是_________.(2)你能在3×3的正方形方格(如图2)中,连结四个点组成面积为5的正方形吗? (3)如图3是由10个小正方形组成的纸片,你能把它剪开并拼成一个大正方形吗?若能,请画出示意图,并写出边长为多少.(第7题)高分夺冠1.若,0<<b a 化简233233)()(b a b a b a -+---的结果为( ).b a A -3. )(3.a b B - b a C -. a b D -.2.已知a 和b 都是无理数,且,b a =/下面提供的6个数:b a ab b a ab baab b a b a ++-+-+,,,,,可能成为有理数的有___________个.3.已知9,16和a 三个数,使这三个数中的一个数是另外两个数乘积的一个平方根,写出所有符合条件的数a 的值:___________________________. 4.已知212171-的整数部分为a ,小数部分为b ,则=b _________=-bb 4,____________. 5.如图,a ,b ,c 分别是数轴上点A ,B ,C 所对应的实数.化简:.||)(||332c b b a b a c -+++-+(第5题)6.10414-的整数部分为a ,小数部分为b ,求ba b a -++11的值.。
基础巩固篇第一讲有理数思维导图重难点分析重点分析:1.回顾以前学过的关于“数”的知识,进一步理解自然数、分数的产生和发展的实际背景,通过学生身边的例子体验自然数与分数的意义和在它们计数、测量、排序、编码等方面的应用.2.从相反意义的量的表示,理解正数、负数的概念,理解有理数产生的必然性、合理性.3.有理数的分类:按有理数的整分性可以分为整数和分数;按有理数的正负性可以分为正有理数、负有理数和零.难点分析:1.分数都可以化为小数,有些小数(有限小数和无限循环小数)可以化为分数.2.相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量(必须是同一类量,数量大小可以不相等).例题精析例1、判断:(1)前进和后退是两个具有相反意义的量;(2)零上6℃的相反意义的量只有零下6℃;(3)收入50万元和亏损20万元是两个具有相反意义的量;(4)上涨100元和下降50点是两个具有相反意义的量.思路点拨:先判断意义是否相反,再看是不是有数量.解题过程:(1)前进和后退具有相反意义,但没有数量,所以错误.(2)相反意义的量中数量可以不相等,所以错误.(3)收入和支出才具有相反意义,所以错误.(4)相反意义的量中数量必须是同一类量,100元和50点不是同一类量,所以错误.方法归纳:判断是否是相反意义的量时要抓住两个要素:一是它们的意义要相反;二是它们都具有数量(必须是同一类量,数量大小可以不相等).易错误区:注意(3)中收入的相反意义是支出,亏损的相反意义是盈利,不要混淆.例2、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,龙岩开往北京的普快列车“海西号”的车次号可能是( ). A.96 B.118 C.335 D.336思路点拨:根据普快列车的车次号在301~398之间,开往北京的列车车次号为双数作答. 参考答案:D方法归纳:本题是材料题,要仔细阅读所给信息,才能得出正确的结论. 易错误区:解题时要把火车票车次号的两个意义相结合.例3、(1)已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝 瓶矿泉水; (2)师生共52人外出春游,到达后,班主任要给每人买一瓶矿泉水,给了班长买矿泉水的钱.班长到商店后,发现商店正在进行促销活动,规定每5个空瓶可换1瓶矿泉水.班长只要买 瓶矿泉水,就可以保证每人一瓶.思路点拨:(1)看15里面有几个4,再看余下的空瓶包含几个4,把个数相加即可;(2)因为5个空瓶=1个空瓶+1瓶的水,可知4个空瓶可以换1瓶的水,因此花4瓶的钱可以喝到5瓶水,所以花40瓶的钱可以喝到50瓶水,还差2瓶单买.解题过程:(1)15÷4=3……3,可先换3瓶矿泉水,喝完后还剩3+3=6个空瓶,拿出4个空瓶换一瓶矿泉水,还剩3个空瓶,找人借一个空瓶凑齐4个空瓶换一瓶矿泉水,喝完还剩一个空瓶再把这个空瓶还给那个人,故最多可以喝5瓶矿泉水. (2)52÷5=10组……2瓶;4×10+2=42瓶.答:班长只要买42瓶矿泉水,就可以保证每人一瓶.方法归纳:本题考查的知识点是推理与论证,关键要抓住“5个空瓶可换1瓶矿泉水”这个条件,得出“4个矿泉水空瓶可以换矿泉水一瓶”这一结论,然后再列式计算. 易错误区:换来的矿泉水喝完又是空瓶,可以继续换.例4、分子为1的分数叫做单位分数.早在三千多年前,古埃及人就利用单位分数进行书写和计算.将一个分数拆分为几个不同的单位分数之和是一个古老且有意义的问题.例如:2141424142143+=+=+=;216163616316432+=+=+==. (1)仿照上例分别把分数85和53拆分成两个不同的单位分数之和.85= ;53= ; (2)在上例中,214143+=,又因为316162616216321+=+=+==,所以31614143++=,即43可以写成三个不同的单位分数之和.按照这样的思路,它也可以写成四个,甚至五个不同的单位分数之和.根据这样的思路,探索分数85能写出哪些两个以上的不同的单位分数之和.思路点拨:(1)由单位分数的意义可知将一个分数拆分为几个不同的单位分数之和,就是利用同分母分数的加法或约分的性质,把这个分数拆成两个同分母分数,使其中一个分子是1,另一个分数分子能整除分母;(2)只要根据单位分数的转化方法,把其中的一个单位分数利用分数的性质继续拆分即可.解题过程:(1)21101105110653,218184185+=+==+=+=. (2)41121618185,2112124185,31618185+++=++=++=.方法归纳:本题考查了分数性质的灵活应用、同分母分数的相加以及约分方法,也考查了学生的观察能力.易错误区:分子为1的分数叫做单位分数,最大的单位分数是11,21是整数,不是分数.例5、已知有A ,B ,C 三个数集,每个数集中所含的数都写在各自的大括号内,请把这些 数填入图中相应的部分. A.{-5,2.7,-9,7,2.1} B.{-8.1,2.1,-5,9.2,-71} C.{2.1,-8.1,10,7}思路点拨:由已知观察,先找出三个数集相同的数,再找出每两个数集相同的数,把相同的数分别填入公共部分. 解题过程:通过观察,A ,B ,C 三个数集都含有2.1, A ,B 数集都含有-5, A ,C 数集都含有7, B ,C 数集都含有-8.1.方法归纳:本题主要考查学生对数集的理解与应用.易错误区:每个数在图中只能出现一次,多个数集都有的数要填在公共部分.例6、把下列各数填入相应的数集内: -100,+12,331,-72,0.01,68,-10%,0,18‰,-241,2.0,0.4·5·,π. 正有理数集:{ …};负有理数集:{ …}; 整数集:{ …}; 分数集:{ …};自然数集:{ …}; 非负数集:{ …}.思路点拨:按照有理数的分类进行判断:有理数包括:整数和分数或者正有理数、负有理数和零;整数包括:正整数、0和负整数;分数包括:正分数和负分数;自然数包括:零和正整数.解题过程:正有理数集:{+12,331,0.01,68,18‰,2.0,0.4·5·,…}; 负有理数集:{-100,-72,-10%,-241,…};整数集:{-100,+12,68,0,2.0,…}; 分数集:{331,-72,0.01,-10%,18‰,-241,0.4·5·,…}; 自然数集:{+12,68,0,2.0,…}; 非负数集:{+12,331,0.01,68,0,18‰,2.0,0.4·5·,π,…}. 方法归纳:本题考查了有理数的概念,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数等的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数. 易错误区:π是无限不循环小数,不能转化为分数,所以它既不是分数,也不是有理数.探究提升例、请根据各数之间的关系,找规律填空.思路点拨:(1)观察图形中的数字可知:(9+6)×1=15;(6+7)×4=52;(5+8)×3=39;由此可得,每个三角形中:(上面的数字+左下的数字)×右下的数字=中间的数字;(2)根据图形中的数字可知:中间的数字=上下数字之差;左边的数字=中间的数字×右边的数字;由此即可解答;(3)观察每组图形中的三个数字特点可知:下边的数字由三部分组成:最左边的数字是右上方的数字十位上的数字;最右边的数字是左上方的数字个位上的数字;中间的数字是左上方的数字十位上的数字与右上方的数字个位上的数字之和,由此即可解答. 解题过程:①(11+3)×2=28.故?=28. ②61-56=5,5×3=15.故?=5,△=15.③最左边数字是6,最右边数字是8,中间数字是1+1=2,所以这个数是628.故?=628. 方法归纳:主要考查了学生通过对特例进行分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.易错误区:规律的确定通常至少要三个特例,从一个或两个特例中总结出的结论不一定正确,所以归纳出的一般结论要检验,使每一个特例都满足规律.专项训练拓展训练A组略B组略走进重高1.略2.【台湾】在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排列,求第10个数为( ).A.13B.14C.16D.173.【金华】有四包真空小包装火腿,每包以标准克数(450g)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示的实际克数最接近标准克数的是( ).A.+2B.-3C.+3D.+44.略5.略6.略7.【仙游】有一口9m深的水井,蜗牛和乌龟同时从井底向上爬.因为井壁滑,蜗牛白天向上爬2m,晚上向下滑1m;乌龟白天向上爬3m,晚上向下滑1m.当乌龟爬到井口时,蜗牛距井口 m.高分夺冠1.略2.略3.五羊矿泉水为了环境保护而回收空矿泉水瓶.允许消费者用4个空瓶换1瓶矿泉水(少于4个空瓶则不能换),花城中学买了1999瓶五羊牌矿泉水,如果尽可能把空瓶拿去换矿泉水,那么花城中学师生一共能喝上瓶矿泉水;反过来,如果一共能喝上3126瓶矿泉水,那么最初应该买了瓶矿泉水.4.略5.某路公交车从起点经过A,B,C,D四站到达终点,途中上下乘客如下表所示.(用正数表(1)到终点下车还有多少人?填在表格相应位置;(2)车行驶在哪两站之间车上的乘客最多?站和站;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?要求写出算式.第二讲数轴和绝对值思维导图重难点分析重点分析:1.数轴的三要素:原点、单位长度、正方向.2.理解有理数可以用数轴上的点表示,数轴上的点不一定表示有理数.3.相反数:实数a与-a互为相反数,零的相反数仍是零.若a,b互为相反数,则a+b=0.4.倒数:若两个实数的乘积为1,就称这两个实数互为倒数,零没有倒数.5.绝对值的几何意义:表示这个数到原点的距离.6.比较有理数大小的两种基本方法:利用数轴比较大小;利用法则比较大小.难点分析:1.数轴涉及数和形两个方面,是解决许多数学问题的重要工具.2.绝对值具有非负性,去绝对值问题往往会涉及较复杂的符号问题.例题精析例1、下列所画的数轴正确的有( ).A.1条B.2条C.3条D.4条思路点拨:利用数轴的概念和三要素(原点,正方向和单位长度)来判断正误.解题过程:第一条数据顺序不对,错误;第二条正确;第三条没有正方向,错误;第四条刻度不均匀,错误.所以正确的共有1条.故选A.方法归纳:本题主要考查了数轴的三要素:原点、正方向和单位长度.三个要素缺一不可. 易错误区:数轴的单位长度可以根据实际需要选取.例2、数轴上点A,B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为 .思路点拨:点A表示的数是-1,点B表示的数是3,所以|AB|=4;点B关于点A的对称点为C,所以点C到点A的距离|AC|=4.设点C表示的数为x,则-1-x=4,解出x即可求得点C表示的数.解题过程:如图,点A表示的数是-1,点B表示的数是3,所以|AB|=4.又点B关于点A的对称点为C,所以点C到点A的距离|AC|=4.设点C表示的数为x,则-1-x=4,解得x=-5.故答案为-5.方法归纳:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.易错误区:数轴上两点间的距离是表示这两个点的数的差的绝对值.例3、已知数轴上A,B两点分别为-3,-6,若在数轴上找一点C,使得A与C的距离为4;找一点D,使得B与D的距离为1,则下列( )不可能为C与D的距离.A.0B.2C.4D.6思路点拨:将点A,B,C,D在数轴上表示出来,然后根据绝对值与数轴的意义计算CD的长度.解题过程:根据题意,点C与点D在数轴上的位置如图所示:在数轴上使AC的距离为4的点C有两个:C1,C2,数轴上使BD的距离为1的点D有两个:D1,D2,∴C与D的距离为:①C2D2=0;②C2D1=2;③C1D2=8;④C1D1=6.综合①②③④,知C与D的距离可能为:0,2,6,8.故选C.方法归纳:本题综合考查了数轴,绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.易错误区:在数轴上找一点C,使得A与C的距离为4,满足这个条件的点A有两个;同理找一点D,使得B与D的距离为1,满足条件的点D也有两个,注意不要遗漏.例4、如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示-4,点G表示8.(1)点B表示的有理数是,表示原点的是点是;(2)图中的数轴上另有点M到点A、点G距离之和为13,则这样的点M表示的有理数是;(3)若相邻两点之间的距离不变,将原点取在点D,则点C表示的有理数是,此时点B与点表示的有理数互为相反数.思路点拨:(1)先根据数轴上两点之间的距离公式求出点A到点G的距离,再求出相邻两点之间的距离即可解答;(2)设点M表示的有理数是m,根据数轴上两点之间距离的定义即可求出m的值;(3)根据两点间的距离是2可求出C点坐标,再根据相反数的定义即可求出结论.解题过程:(1)∵数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示-4,点G 表示8,∴AG=|8+4|=12. ∴相邻两点之间的距离=612=2. ∴点B 表示的有理数是-4+2=-2,点C 表示的有理数-2+2=0. 故答案为:-2;C.(2)设点M 表示的有理数是m ,则|m+4|+|m-8|=13, ∴m=-4.5或m=8.5. 故答案为:-4.5或8.5. (3)若将原点取在点D , ∵每两点之间距离为2, ∴点C 表示的有理数是-2.∵点B 与点F 在原点D 的两侧且到原点的距离相等, ∴此时点B 与点F 表示的有理数互为相反数. 故答案为:-2;F. 方法归纳:本题考查的是数轴的特点及数轴上两点之间距离的定义,熟知数轴上两点之间距离公式是解答本题的关键.易错误区:第(2)题中A ,G 两点间的距离为12,所以数轴上到点A 、点G 距离之和为13的点M 在线段AG 外,这样的点有两个.例5、已知|a+3.5|+|b-9|+|c-13.5|=0,求ab+c 的值.思路点拨:根据非负数的性质可求出a ,b ,c 的值,再将它们代入ab+c 中求解即可. 解题过程:∵|a+3.5|+|b-9|+|c-13.5|=0, ∴a+3.5=0,b-9=0,c-13.5=0. ∴a=-3.5,b=9,c=13.5. ∴ab+c=-3.5×9+13.5=-18.方法归纳:非负数的性质:有限个非负数的和为零,那么每一个加数也必为零. 易错误区:只有当若干个非负数相加等于零时,才能得出每个非负数都同时为零.探究提升例、观察下列每对数在数轴上的对应点之间的距离4与-2,3与5,-2与-6,-4与3,回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答: ;(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则点A 与点B 两点间的距离可以表示为 ;(3)结合数轴求得|x-2|+|x+3|的最小值为 ,取得最小值时x 的取值范围为 ;(4)满足|x+1|+|x+4|>3的x 的取值范围为 .思路点拨:(1)通过观察容易得出结论;(2)在数轴上找到点B 所在的位置,点A 可以位于数轴上的任意位置,分三种情况进行分类讨论;(3)(4)根据(2)中的结论,利用数轴分析. 解题过程:(1)相等.(2)结合数轴,分以下三种情况:当x ≤-1时,距离为-x-1当-1<x≤0时,距离为x+1当x>0,距离为x+1综上,我们得到A与B两点间的距离可以表示为x+1.(3)|x-2|即x与2的差的绝对值,它可以表示数轴上x与2之间的距离.|x+3|=|x-(-3)|即x与-3的差的绝对值,它也可以表示数轴上x与-3之间的距离.如图,x在数轴上的位置有三种可能:图1图2图3图2符合题意,所以|x-2|+|x+3|的最小值为5,取得最小值时x的取值范围为-3≤x≤2.(4)同理|x+1|表示数轴上x与-1之间的距离,|x+4|表示数轴上x与-4之间的距离.所以本题即求:当x在什么范围内时x与-1之间的距离加上x与-4之间的距离会大于3.借助数轴,我们可以得到正确答案:x<-4或x>-1.方法归纳:借助数轴可以使有关绝对值的问题转化为数轴的距离问题,反之,有关数轴上的距离问题也可以转化为绝对值问题.这种相互转化在解决某些问题时可以带来方便.事实上,|a-b|表示的几何意义就是在数轴上表示数a与数b的点之间的距离.这是一个很有用的结论,我们正是利用这一结论并结合数轴的知识解决了(3)、(4)这两道难题.易错误区:|a-b|表示的几何意义就是在数轴上表示数a与数b的点之间的距离,|a+b|表示的几何意义就是在数轴上表示数a与数-b的点之间的距离.专项训练拓展训练A组略B组略走进重高1.略2.【菏泽】如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( ).A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点B 与点C 之间或点C 的右边(第2题)(第3题)3.【遵义】如图,A ,B 两点在数轴上表示的数分别是a ,b ,则下列式子中成立的是( ).A.a+b <0B.-a <-bC.1-2a >1-2bD.|a|-|b|>04.略5.略(第6题)6.【咸宁】实数a ,b 在数轴上对应点的位置如图所示,则|a | |b |(填“>”“<”或“=”).7.【略8.【咸宁】在数轴上,点A (表示整数a )在原点的左侧,点B (表示整数b )在原点的右侧.若|a-b|=2013,且AO=2BO ,则a+b 的值为 .高分夺冠1.略2.当x 满足条件 时,y=|x-1|+|x-2|+|x-3|+…+|x-2010|会得到最小值.3.求|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值.4.略5.有理数a ,b ,c 均不为0,且a+b+c=0.设x=||||||||ba c a cbc b a +++++,试求代数式x 19+99x+2013之值.第三讲有理数的加减思维导图重难点分析重点分析:1.有理数加法法则:(1)同号相加,取相同符号,并把绝对值相加;(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.2.加法交换律:a+b=b+a,两个数相加,交换加数的位置,和不变.加法结合律:a+b+c=(a+b)+c=a+(b+c),三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.3.有理数减法法则:减去一个非零的数,等于加上这个数的相反数.其中,两变:减法运算变加法运算,减数变成它的相反数;一不变:被减数不变.可以表示成:a-b=a+(-b).难点分析:1.在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用哪一条法则.在应用过程中,一定要牢记“先符号,后绝对值”,熟练以后就不会出错了.2.在进行有理数加法运算时,一般采取:(1)是互为相反数的先加(抵消);(2)同号的先加;(3)同分母的先加;(4)能凑整数的先加;(5)异分母分数相加,先通分,再计算.例题精析例1,、钟面上有1,2,3,4,5,…,12共12个数.(1)试在某5个数的前面添加负号,使这5个负数与其余7个正数的和为0;(2)在解题过程中你能总结出一些什么规律?思路点拨:先求出1,2,3,4,5,…,12这12个数的和为78,将78÷2得出5个负数绝对值的和为39,找到12个数中5个数绝对值的和等于39的数前面添加负号即可.解题过程:(1)1+2+3+4+5+…+12=78,78÷2=39.∵1+6+9+11+12=39,∴5个数为1,6,9,11,12(答案不唯一).(2)规律:5个负数绝对值的和等于1,2,3,4,5,…,12这12个数的和的一半.方法归纳:认真审题,找出“5个负数绝对值的和等于1,2,3,4,5,…,12这12个数的和的一半”这一规律是解答本题的关键所在.易错误区:要利用互为相反数的两个数相加和为0,从而找到规律,不能盲目乱凑.例2、计算:(1)-6-8-2+3.54-4.72+16.46-5.28; (2)75.1)321()432()323(------.思路点拨:(1)注意运算过程中的简便方法,让能够凑成整十的两个数相结合;(2)首先化简,然后利用有理数的加法法则和加法的交换律进行计算.解题过程:(1)原式=(-6-8-2-4.72-5.28)+(3.54+16.46)=-26+20=-6.(2)原式=)431432()321323(431321432323-++-=-++-=-2+1=-1. 方法归纳:在计算时要灵活运用运算定律使运算更加简便.易错误区:当使用运算定律后不能使运算更简便的,就按一般运算顺序计算.例3、用简便方法计算:(1)111.1+(-12)+0.9;(2)(+13)+(-21)+(+28)+(-10);(3)4.33+(-7.52)+(-4.33); (4))76()61()71(65-+-+-+. 思路点拨:(1)能凑整的先凑整简称凑整结合法;(2)把正数与负数分别结合在一起再相加简称同号结合法;(3)有相反数的先把相反数相加简称相反数结合法;(4)遇到分数,先把同分母的数相加,简称同分母结合法.解题过程:(1)原式=111.1+0.9+(-12)=112+(-12)=100.(2)原式=[(+13)+(+28)]+[(-21)+(-10)]=(+41)+(-31)=10.(3)原式=(-7.52)+[(+4.33)+(-4.33)]=(-7.52)+0=-7.52.(4)原式=31)1(32)]76()71[()]61(65[-=-+=-+-+-+. 方法归纳:认真观察算式的特点,合理利用简便计算规则:①凑整结合法;②同号结合法;③相反数结合法;④同分母结合法.易错误区:不是所有的计算都有简便方法的.例4、一天,有个年轻人来到“高记”童鞋店里买了一双鞋,这双鞋的成本是15元,标价是21元,这个年轻人掏出一张50元的人民币要买这双鞋,鞋店当时没有零钱,就用那张50元钱向街坊换了50元的零钱,找给年轻人29元,但是,街坊后来发现那张50元的钱是假钞,鞋店老板无奈之下,还了街坊50元,那么鞋店在这次交易中共损失了( ).A.15元B.44元C.50元D.100元思路点拨根据题意可知,鞋店老板首先损失了这双鞋的成本15元,然后损失了找给年轻人的29元,共损失了44元.解题过程:15+29=44(元).答:鞋店老板共损失了44元.方法归纳:本题的关键在于充分理解题意,若那张50元的钱是真钞,鞋店老板就没有损失了.易错误区:注意还给街坊的50元不属于损失之列,因为换零钱时街坊也给了鞋店老板50元.例5、小张上周末买进股票(1)到本周三,小张所持股票每股是多少元?(2)本周内,股票最高价出现在星期几?是多少元?(3)已知小张买进股票时付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和3‰的交易税.如果小张在本周末卖出全部股票,他的收益如何?思路点拨:(1)由表中数据可以算出股票每天每股的价格;(2)比较五天涨跌可知,星期一和星期二都是涨,则该股票最高价出现在星期二,进而求出每股的价格;(3)收益=卖股票收入-买股票支出-卖股票手续费和交易税-买股票手续费,代入求值即可.解题过程:(1)20+4+5-1=28(元).答:到本周三,小张所持股票每股28元.(2)20+4+5=29(元).答:本周内,股票最高价出现在星期二,是29元.(3)29-1-3-6=19(元),1000×19=19000(元),1000×20=20000(元),19000-20000-20000×1.5‰-19000×(1.5‰+3‰)=-1000-30-85.5=-1115.5(元).答:小张亏了1115.5元.方法归纳:本题主要考查正负数及有理数的运算在实际生活中的应用.所以学生在学这一部分时一定要联系实际,活学活用.易错误区:股票的涨跌是以前一天股票的价格为基准的.例6、实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A-C表示观测点A相对观测点C的高度)根据这次测量的数据,可得观测点A相对观测点B的高度是( ).A.210 mB.130 mC.390 mD.-210 m思路点拨:认真审题可以发现:A比C高90 m,C比D高80 m,D比E高60 m,F比E高50 m,F比G高70 m,B比G高40 m.然后转化为算式,通过变形得出A-B的关系即可.解题过程:由表中数据可知:A-C=90…①,C-D=80…②,D-E=60…③,E-F=-50…④,F-G=70…⑤,G-B=-40…⑥.①+②+③+…+⑥,可得(A-C)+(C-D)+(D-E)+(E-F)+(F-G)+(G-B)=A-B=90+80+60-50+70-40=210.∴观测点A相对观测点B的高度是210 m.故选A.方法归纳:解答本题的关键是理解表格中数据的实际意义,然后转化为算式,本题也可以通过画线段图来求解.易错误区:注意A-C 与C-A 表示的意义不同.探究提升例、观察下列等式4131431,3121321,211211-=⨯-=⨯-=⨯,将以上三个等式两边分别相加得:4341141313121211431321211=-=-+-+-=⨯+⨯+⨯. (1)猜想并写出:)1(1+n n = ; (2)直接写出下列各式的计算结果: ①201320121...431321211⨯++⨯+⨯+⨯= ; ②431321211⨯+⨯+⨯+…+)1(1+⨯n n = ; (3)探究并计算:201420121...861641421⨯++⨯+⨯+⨯; (4)计算1801...40124112141+++++. 思路点拨:(1)观察可得分子为1,分母为两个相邻整数的分数可化为这两个整数的倒数之差,即111)1(1+-=+n n n n ;(2)根据此规律把各分数转化,再进行分数的加减运算;(3)先提出41,然后按照前面的运算方法计算即可;(4)根据)901...1216121(211801...40124112141++++=+++++计算即可. 解题过程:(1) 111+-n n (2)①20132012 ②1+n n (3)原式=20145031007100641)100710061...321211(41=⨯=⨯++⨯+⨯. (4)原式=.20910921)1091...431321211(21)901...1216121(2190121...1212161212121=⨯=⨯++⨯+⨯+⨯=++++=⨯++⨯+⨯+⨯ 方法归纳:本题考查了关于数字的变化规律:通过观察数字之间的变化规律,得到一般性的结论,再利用此结论解决问题.易错误区:(3)(4)要注意观察算式的特点,转化为第(2)题中的运算方法.专项训练拓展训练A 组略B 组略走进重高1.略2.略3.【武汉】-8的绝对值与它的相反数的差是( ).A.8B.-8C.0D.164.略5.【芜湖】请阅读一小段约翰斯特劳斯的作品,根据乐谱中的信息,确定最后一个音符的时值长应为( ). A.81 B.21 C.41 D.43(第5题)(第6题)6.【常德】如图,一个数表有7行7列,设a ij 表示第i 行第j 列上的数(其中i=1,2,3,…,j=1,2,3,…).例如:第5行第3列上的数a 53=7,则:(1)(a 25-a 22)+(a 52-a 53)= ;(2)此数表中的四个数a np ,a nk ,a mp ,a mk ,满足(a np -a nk )+(a mk -a mp )= .高分夺冠1.略2.略3.如图的号码是由14位数字组成的,把每一位数字写在下面的方格中,若任意相邻的三个(第3题)4.略5.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2-cdx的值;(2)10箱苹果,如果每箱以30kg为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,-1,-1.5,-2,+1,-1,-1,-0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10支钢笔,准备以一定的价格出售,如果每支钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,-1,-1.5,0.8,1,-1.5,-2.1,9,0.9.①这10支钢笔的最高售价和最低售价各是几元?②当小亮卖完钢笔后是盈还是亏?。