四川省成都市石室中学高三数学第一次模拟考试试题 理(含解析)新人教A版
- 格式:doc
- 大小:380.50 KB
- 文档页数:16
2020年四川省成都市石室中学高考数学一诊试卷(理科)一.选择题:1.(5分)已知集合{|1}A x N x =∈>,{|5}B x x =<,则(A B = )A .{|15}x x <<B .{|1}x x >C .{2,3,4}D .{1,2,3,4,5}2.(5分)已知复数z 满足1iz i =+,则z 的共轭复数(z = )A .1i +B .1i -CD .1i --3.(5分)若等边ABC ∆的边长为4,则(AB AC = )A .8B .8-C .D .-4.(5分)在6(21)()x x y --的展开式中33x y 的系数为( ) A .50B .20C .15D .20-5.(5分)若等比数列{}n a 满足:11a =,534a a =,1237a a a ++=,则该数列的公比为() A .2-B .2C .2±D .126.(5分)若实数a ,b 满足||||a b >,则( ) A .a b e e > B .sin sin a b >C .11a ba be e e e +>+D .))ln a ln b >7.(5分)在正四棱柱1111ABCD A B C D -中,14AA =,2AB =,点E ,F 分别为棱1BB ,1CC 上两点,且114BE BB =,112CF CC =,则( ) A .1D E AF ≠,且直线1D E ,AF 异面 B .1D E AF ≠,且直线1D E ,AF 相交 C .1D E AF =,且直线1D E ,AF 异面 D .1D E AF =,且直线1D E ,AF 相交8.(5分)设函数21()92f x x alnx =-,若()f x 在点(3,f (3))的切线与x 轴平行,且在区间[1m -,1]m +上单调递减,则实数m 的取值范围是( ) A .2m …B .4m …C .12m <…D .03m <…9.(5分)国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为20:20时,获胜的一方需超过对方2分才算取胜,直至双方比分打成29:29时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为12,甲接发球赢球的概率为35,则在比分为20:20,且甲发球的情况下,甲以23:21赢下比赛的概率为( ) A .18B .320C .950D .72010.(5分)函数11()x f x e x-=-的图象大致为( ) A . B .C .D .11.(5分)设圆22:230C x y x +--=,若等边PAB ∆的一边AB 为圆C 的一条弦,则线段PC 长度的最大值为( )A B .C .4D .12.(5分)设函数()cos |2||sin |f x x x =+,下述四个结论: ①()f x 是偶函数;②()f x 的最小正周期为π;③()f x 的最小值为0;④()f x 在[0,2]π上有3个零点. 其中所有正确结论的编号是( ) A .①② B .①②③ C .①③④ D .②③④二.填空题:13.(5分)若等差数列{}n a 满足:11a =,235a a +=,则n a = .14.(5分)今年由于猪肉涨价太多,更多市民选择购买鸡肉、鸭肉、鱼肉等其它肉类.某天在市场中随机抽出100名市民调查,其中不买猪肉的人有30位,买了肉的人有90位,买猪肉且买其它肉的人共30位,则这一天该市只买猪肉的人数与全市人数的比值的估计值为 .15.(5分)已知双曲线22:13y C x -=的左,右焦点分别为1F ,2F ,过1F 的直线l 分别与两条渐进线交于A ,B 两点,若120F B F B =,1F A AB λ=,则λ= .16.(5分)若函数2,1()(2)(),1x e a x f x x a x a x ⎧-<=⎨--⎩…恰有2个零点,则实数a 的取值范围是 . 三.解答题:17.(12分)某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如表:该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题: (1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为X 元,求X 的分布列和数学期望()E X .18.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 2)cos 2B AC +=. (Ⅰ)求sin B ;(Ⅱ)若ABC ∆的周长为8,求ABC ∆的面积的取值范围.19.(12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,且60ADC ∠=︒,11AA CD ==,1AD =(Ⅰ)证明:平面1CDD ⊥平面ABCD ; (Ⅱ)求二面角1D AD C --的余弦值.。
四川省成都市石室中学高三数学模拟试卷(理科)一、选择题:只有唯一正确答案,每小题5分,共50分2.(5分)复数的虚部是()解:复数==i3.(5分)已知,则的值为()...)﹣﹣﹣)﹣(﹣)4.(5分)阅读右边的程序框图,运行相应的程序,则输出s的值为()6.(5分)函数f(x)=Asin(ωx+φ)的部分图象如图所示,则此函数的解析式为()..D,由=3,T=.x+∴×.2=≥﹣8.(5分)O为平面上的定点,A、B、C是平面上不共线的三点,若,则△ABC是(),由条件可得2,故⊥∵∴﹣2∴•,∴⊥9.(5分)反复抛掷一枚质地均匀的骰子,每一次抛掷后都记录下朝上一面的点数,当记录10.(5分)已知关于x的方程﹣2x2+bx+c=0,若b、c∈{0,1,2,3,4},记“该方程有实数....二、填空题:每小题5分,共25分11.(5分)已知数列{a n}的前n项和,则a n=﹣3×2n﹣1(n∈N*).,得(12.(5分)(1+2x)n的展开式中x3的系数等于x2的系数的4倍,则n等于8.(•,4=4,=2×,解得13.(5分)如图是一个空间几何体的主视图、左视图、俯视图,如果主视图、左视图所对应的三角形皆为边长为2的正三角形,俯视图对应的四边形为正方形,那么这个几何体的体积为.高为的正四棱锥,,高为的正四棱锥V==故答案为:14.(5分)设向量与的夹角为θ,,,则cosθ等于.先求出解:∵∴=∴==故答案为:15.(5分)定义在(﹣1,1)上的函数f(x)满足:对任意x,y∈(﹣1,1),恒成立.有下列结论:①f(0)=0;②函数f(x)为(﹣1,1)上的奇函数;③函数f(x)是定义域内的增函数;④若,且a n∈(﹣1,0)∪(0,1),则数列{f(a n)}为等比数列.其中你认为正确的所有结论的序号是①②④.,可证出,当,,则,则,所以,,,则=f三、解答题(共6小题,满分75分)16.(12分)已知△ABC的面积S满足,的夹角为θ.(Ⅰ)求θ的取值范围;(Ⅱ)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.)由题意知=3tan∵∴,∴,∴.,∴,即时,,)的最大值为17.(12分)三棱锥P﹣ABC中,PA=PB=PC,∠ACB=90°,AC=CB=2.(Ⅰ)求证:平面PAB⊥平面ABC;(Ⅱ)若,且异面直线PC与AD的夹角为60°时,求二面角P﹣CD﹣A的余弦值.中,∴∵为正三角形,解得,,,∵,∴,∵,取的法向量为∴18.(12分)设函数y=f(x)满足:对任意的实数x∈R,有f(sinx)=﹣cos2x+cos2x+2sinx ﹣3.(Ⅰ)求f(x)的解析式;(Ⅱ)若方程有解,求实数a的取值范围.先验证当时方程2a=的值域即可,分类讨论:①当时,当时,时,,则,因为函数时,,则,,+3(19.(12分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)﹣﹣取最大值,且时,当且仅当x=x=21.(13分)设数列{a n}为单调递增的等差数列,a1=1,且a3,a6,a12依次成等比数列.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)若,求数列{b n}的前n项和S n;(Ⅲ)若,求证:.∴,)证明:22.(14分)已知函数.(Ⅰ)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;(Ⅱ)当x>0时,恒成立,求整数k的最大值;(Ⅲ)试证明:(1+1•2)•(1+2•3)•(1+3•4)•…•(1+n(n+1))>e2n﹣3.时,恒成立,即)知:)解:由题恒成立,即,则,则,知:∴=高考资源网版权所有!投稿可联系QQ:1084591801。
成都石室阳安高三数学(理科)入学考试一、单选题1.设集合1{|}2S x x =>-,31{|21}x T x -=<,则S T Ç=A.∅B.1{|}2x x <- C.1{|}3x x > D.11{|}23x x -<<2.在复平面内,复数z 对应的点的坐标为()2,1--,则iz=()A.12i-- B.2i -- C.12i-+ D.2i-3.走路是最简单优良的锻炼方式,它可以增强心肺功能,血管弹性,肌肉力量等,甲、乙两人利用手机记录了去年下半年每个月的走路里程(单位:公里),现将两人的数据绘制成如图所示的折线图,则下列结论中正确的是()A.甲走路里程的极差等于10B.乙走路里程的中位数是26C.甲下半年每月走路里程的平均数小于乙下半年每月走路里程的平均数D.甲下半年每月走路里程的标准差小于乙下半年每月走路里程的标准差4.若实数x ,y 满足约束条件10240230y x y x y +≥⎧⎪+-≤⎨⎪-+≥⎩,则3z y x =-的最大值为()A.-12B.2C.5D.85.下列命题正确的是()A.命题“p q ∧”为假命题,则命题p 与命题q 都是假命题B.命题“若x y =,则sin sin x y =”的逆否命题为真命题C.若0x 使得函数()f x 的导函数()00f x '=,则0x 为函数()f x 的极值点;D.命题“0x ∃∈R ,使得20010x x ++<”的否定是:“x ∀∈R ,均有210x x ++<”6.已知中心在原点,焦点在y 轴上的双曲线的离心率为,则它的渐近线方程为()A.2y x =±B.52y x =±C.12y x =±D.y =7.把一个铁制的底面半径为4,侧面积为16π3的实心圆柱熔化后铸成一个球,则这个铁球的表面积为()A.16πB.12πC.24πD.9π8.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.25B.35C.12D.139.已知函数()y f x =是定义在R 上的奇函数,且满足()()20f x f x ++=,当[]0,1x ∈时,()21x f x =-,则112f ⎛⎫= ⎪⎝⎭()A.1- B.1- C.1 D.1-10.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为()A.72B.132C.D.11.设38a =,0.5log 0.2b =,4log 24c =,则()A.a c b<< B.a b c<< C.b a c<< D.<<b c a12.过点()1,2可作三条直线与曲线3()3f x x x a =-+相切,则实数a 的取值范围为()A.()1,2 B.()2,3 C.()3,4 D.()4,5二、填空题13.若直线220(,0)ax by a b +-=>始终平分圆224280+---=x y x y 的周长,则12a b+的最小值为.14.已知直线1:10l x my -+=过定点A ,直线2:30l mx y m +-+=过定点B ,1l 与2l 相交于点P ,则22PA PB +=________.15.某杂交水稻种植研究所调查某地水稻的株高时,发现株高(单位:cm )服从正态分布()2100,10N ,若测量10000株水稻,株高在()80,90的约有_______.(若()2~,X N μσ,()()0.6827,220.9545P X P X μσμσμσμσ-≤≤+≈-≤≤+≈)16.现有如下命题:①若()3nx n*⎛∈ ⎝N 的展开式中含有常数项,且n 的最小值为10;②1π2x -=⎰;③若有一个不透明的袋子内装有大小、质量相同的6个小球,其中红球有2个,白球有4个,每次取一个,取后放回,连续取三次,设随机变量ζ表示取出白球的次数,则()2E ζ=;④若定义在R 上的函数()f x 满足()()22f x f x +=-+,则()f x 的最小正周期为8.则正确论断有__________.(填写序号)三、解答题17.为庆祝神舟十四号载人飞船返回舱成功着陆,某学校开展了航天知识竞赛活动,已知所有学生的成绩均位于区间[]60,100,从中随机抽取1000名学生的竞赛成绩作为样本,绘制如图所示的频率分布直方图.(1)若此次活动中获奖的学生占参赛总人数30%,试估计获奖分数线;(2)采用比例分配分层随机抽样的方法,从成绩不低于80的学生中随机抽取7人,再从这7人中随机抽取2人,记成绩在[]90,100的人数为ξ,求ξ的分布列和数学期望.18.如图,四棱锥P -ABCD 的底面是正方形,E 为AB 的中点,,1,3,PD CE AE PD PC ⊥===(1)证明:AD ⊥平面PCD.(2)求DA 与平面PCE 所成角的正弦值.19.已知函数()22ln f x x ax b =++在1x =处取得极值1.(1)求a ,b 的值;(2)求()f x 在1,e e -⎡⎤⎣⎦上的最大值和最小值.20.设抛物线2:2(0)C y px p =>的焦点为F ,点()2,0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,5MF =.(1)求C 的方程;(2)在x 轴上是否存在一定点Q ,使得_________?若存在,求出点Q 的坐标;若不存在,请说明理由.从①点N 关于x 轴的对称点N '与M ,Q 三点共线;②x 轴平分MQN ∠这两个条件中选一个,补充在题目中“__________”处并作答.注:如果选择两个条件分别解答,则按第一个解答计分.21.已知函数()ln x af x x x+=-.(1)讨论函数()f x 的单调性;(2)证明:当0x >时,1ln(1)11x x x+<<+22.在平面直角坐标系xOy 中,曲线1cos :1sin x C y ϕϕ=⎧⎨=-+⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)写出曲线1C 的极坐标方程,曲线2C 的直角坐标方程;(2)设点M 的极坐标为(2,0)M ,射线0,04πθααρ⎛⎫=-<<≥ ⎪⎝⎭与曲线1C 、2C 分别交于A 、B 两点(异于极点),当4AMB π∠=时,求线段AB 的长.23.设()34f x x x =-+-.(1)解不等式()2f x ≤;(2)已知实数x 、y 、z 满足222236(0)x y z a a ++=>,且x y z ++的最大值是1,求a 的值.成都石室阳安高三数学(理科)入学考试一、单选题1.设集合1{|}2S x x =>-,31{|21}x T x -=<,则S T Ç=A.∅ B.1{|}2x x <- C.1{|}3x x > D.11{|}23x x -<<【答案】D 【解析】【分析】先解出集合T,然后集合T 与集合S 取交集即可.【详解】{}{}{}313101|21|22|310|3x x T x x x x x x --⎧⎫=<=<=-<=<⎨⎬⎩⎭,集合12S x x ⎧⎫=-⎨⎬⎩⎭,则11{|}23S T x x ⋂=-<<故选D【点睛】本题考查集合的交集运算,属于基础题.2.在复平面内,复数z 对应的点的坐标为()2,1--,则iz =()A.12i --B.2i -- C.12i-+ D.2i-【答案】C 【解析】【分析】根据复数对应点坐标得z 的值,再利用复数的除法可得结果.【详解】复数z 对应的点的坐标为()2,1--,则2i z =--,所以222i 2i i12i i i iz ----===-+.故选:C.3.走路是最简单优良的锻炼方式,它可以增强心肺功能,血管弹性,肌肉力量等,甲、乙两人利用手机记录了去年下半年每个月的走路里程(单位:公里),现将两人的数据绘制成如图所示的折线图,则下列结论中正确的是()A.甲走路里程的极差等于10B.乙走路里程的中位数是26C.甲下半年每月走路里程的平均数小于乙下半年每月走路里程的平均数D.甲下半年每月走路里程的标准差小于乙下半年每月走路里程的标准差【答案】C【解析】【分析】根据折线图,得到甲、乙下半年的走路历程数据,根据极差、中位数、平均数以及标准差与数据稳定性之间的关系求解.【详解】对于A选项,712-月甲走路的里程为:31、25、21、24、20、30,甲走路里程的极差为312011-=公里,A错;对于B选项,712-月乙走路的里程为:29、28、26、28、25、26,由小到大排列分别为:25、26、26、28、28、29,所以,乙走路里程的中位数是2628272+=,B对;对于C选项,甲下半年每月走路里程的平均数31252124203015166 +++++=,乙下半年每月走路里程的平均数为2928262825261622766+++++==,所以,甲下半年每月走路里程的平均数小于乙下半年每月走路里程的平均数,C对;对于D选项,由图可知,甲下半年走路里程数据波动性大于乙下半年走路里程数据,所以甲下半年每月走路里程的标准差大于乙下半年每月走路里程的标准差,D错.故选:C.4.若实数x ,y 满足约束条件10240230y x y x y +≥⎧⎪+-≤⎨⎪-+≥⎩,则3z y x =-的最大值为()A.-12 B.2 C.5 D.8【答案】C 【解析】【分析】作出可行域,根据目标函数的几何意义,平移目标函数即可求解.【详解】画出可行域如图所示,由230240x y x y -+=⎧⎨+-=⎩解得12x y =⎧⎨=⎩,设A (1,2),则目标函数3z y x =-,经过点A (1,2)时在y 轴上的截距最大,所以在点A (1,2)处z 取得最大值最大值为3215z =⨯-=.故选:C.5.下列命题正确的是()A.命题“p q ∧”为假命题,则命题p 与命题q 都是假命题B.命题“若x y =,则sin sin x y =”的逆否命题为真命题C.若0x 使得函数()f x 的导函数()00f x '=,则0x 为函数()f x 的极值点;D.命题“0x ∃∈R ,使得20010x x ++<”的否定是:“x ∀∈R ,均有210x x ++<”【答案】B 【解析】【分析】根据复合命题的真假判断A ,根据四种命题的关系判断B ,根据极值的定义判断C ,根据命题的否定判断D .【详解】对于A :命题“p q ∧”为假命题,则命题p 与命题q 至少有一个假命题,故A 错误;对于B :命题“若x y =,则sin sin x y =”显然为真命题,又原命题与逆否命题同真同假,故B 正确;对于C :若0x 使得函数()f x 的导函数()00f x '=,如果两侧的导函数的符号相反,则0x 为函数()f x 的极值点;否则,0x 不是函数()f x 的极值点,故C 错误;对于D :命题“存在0R x ∃∈,使得20010x x ++<”的否定是:“对任意R x ∀∈,均有210x x ++≥”.故D错误.故选:B .6.已知中心在原点,焦点在y 轴上的双曲线的离心率为,则它的渐近线方程为()A.2y x =±B.52y x =±C.12y x =±D.y =【答案】C 【解析】【分析】根据离心率求出ba,再根据双曲线的渐近线方程即可得解.【详解】设双曲线的方程为()222210,0y x a b a b -=>>,因为c a ==224b a =,则2b a =,所以渐近线方程为12a y x xb =±=±.故选:C .7.把一个铁制的底面半径为4,侧面积为16π3的实心圆柱熔化后铸成一个球,则这个铁球的表面积为()A.16πB.12πC.24πD.9π【答案】A 【解析】【分析】先求出圆柱的高,由圆柱和球的体积相等即可得出球的半径,再利用球体的表面积公式可求得结果.【详解】设实心圆柱的高为h ,因为实心圆柱的底面半径为4,侧面积为162π4π3h ⨯⨯=,解得23h =,则圆柱的体积为2232π4π33V =⨯⨯=,设球的半径为R ,则3432ππ33R =,解得2R =,因此,该铁球的表面积为224π4π216πR =⨯=.故选:A.8.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.25B.35C.12D.13【答案】A 【解析】【分析】利用树图列举基本事件总数,再找出第一张卡片上的数大于第二张卡片上的数的事件数,代入古典概型的公式求解.【详解】从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,故所求概率102255P ==.故选:A.9.已知函数()y f x =是定义在R 上的奇函数,且满足()()20f x f x ++=,当[]0,1x ∈时,()21x f x =-,则112f ⎛⎫=⎪⎝⎭()A.1- B.1- C.1 D.1-【答案】C 【解析】【分析】结合已知条件()()20f x f x ++=,可以得到函数的周期性,再结合奇偶性可以将112缩小到[]0,1的区间内,从而求出函数值【详解】因为()()20f x f x ++=,所以()()2f x f x +=-,所以()()()42f x f x f x +=-+=,所以()y f x =是周期为4的函数,所以11113142222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=-==--⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,因为()y f x =是奇函数,所以11122f f ⎛⎫⎛⎫--== ⎪ ⎪⎝⎭⎝⎭,所以1112f ⎛⎫=- ⎪⎝⎭故选:C10.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为()A.72B.132C.D.【答案】A 【解析】【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos 60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即2e =.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立,a c 间的等量关系是求解的关键.11.设38a =,0.5log 0.2b =,4log 24c =,则()A.a c b <<B.a b c<< C.b a c<< D.<<b c a【答案】A 【解析】【分析】利用指对互算、对数的运算性质和对数函数的单调性即可比较大小.【详解】33log 8log 92a =<=,20.52442log 5log 0.2log 5log 25log 24log 2b c ====>=,而44log 24log 162>=,则a c b <<,故选:A.12.过点()1,2可作三条直线与曲线3()3f x x x a =-+相切,则实数a 的取值范围为()A.()1,2B.()2,3 C.()3,4 D.()4,5【答案】D 【解析】【分析】求导得到导函数,设切点为()3000,3x x x a -+,得到切线方程,代入点坐标得到3200235a x x =-+,设32()235g x x x =-+,计算函数的极值,得到答案.【详解】3()3f x x x a =-+,2()33f x x '=-,设切点为()3000,3x x x a -+,则切线方程为()())320000333(y x x a x x x --+=--,切线过点(1,2),()()()32000023331x x a x x --+=--,整理得到3200235a x x =-+,方程有三个不等根.令32()235g x x x =-+,则2()66g x x x '=-,令()0g x '=,则0x =或1x =,当0x <或1x >时,()0g x '>,函数单调递增;当01x <<时,()0g x '<,函数单调递减,极大值(0)5g =,极小值4(1)g =,函数y a =与3200235y x x =-+有三个交点,则45a <<,a 的取值范围为(4,5).故选:D二、填空题13.若直线220(,0)ax by a b +-=>始终平分圆224280+---=x y x y 的周长,则12a b+的最小值为.【答案】【解析】【详解】由题意()1,0a b a b +=>,所以()12122333b a a b a b a b a b ⎛⎫+=++=++≥++ ⎪⎝⎭当且仅当1,2a b ==时等号成立.14.已知直线1:10l x my -+=过定点A ,直线2:30l mx y m +-+=过定点B ,1l 与2l 相交于点P ,则22PA PB +=________.【答案】13【解析】【分析】根据题意求点,A B 的坐标,再结合垂直关系运算求解.【详解】对于直线1:10l x my -+=,即()10x my +-=,令0y =,则10x +=,则10x y =-⎧⎨=⎩,可得直线1l 过定点()1,0A -,对于直线2:30l mx y m +-+=,即()()130m x y -++=,令10x -=,则30y +=,则13x y =⎧⎨=-⎩,可得直线2l 过定点()1,3B -,因为()110m m ⨯+-⨯=,则12l l ⊥,即PA PB ⊥,所以()()22222113013PA PB AB ⎡⎤+==++--=⎣⎦.故答案为:13.15.某杂交水稻种植研究所调查某地水稻的株高时,发现株高(单位:cm )服从正态分布()2100,10N ,若测量10000株水稻,株高在()80,90的约有_______.(若()2~,X N μσ,()()0.6827,220.9545P X P X μσμσμσμσ-≤≤+≈-≤≤+≈)【答案】1359株【解析】【分析】由正态分布及其对称性求得(8090)P X ≤≤,即可求得结果.【详解】由题意,100,10μσ==,由正态分布的对称性可得[]10.95450.6827(8090)(1002010020)(1001010010)0.139522P X P X P X -≤≤=⋅-≤≤+--≤≤+≈=故株高在()80,90的约有10000(8090)1395P X ⋅≤≤=株.故答案为:1359株.16.现有如下命题:①若()3nx n*⎛∈ ⎝N 的展开式中含有常数项,且n 的最小值为10;②1π2x -=⎰;③若有一个不透明的袋子内装有大小、质量相同的6个小球,其中红球有2个,白球有4个,每次取一个,取后放回,连续取三次,设随机变量ζ表示取出白球的次数,则()2E ζ=;④若定义在R 上的函数()f x 满足()()22f x f x +=-+,则()f x 的最小正周期为8.则正确论断有__________.(填写序号)【答案】②③【解析】【分析】①根据二项式的通项公式得到通项为523rn r n r nx--C ,根据展开式中含有常数项得到52n r =,即可得到n 的最小值;②根据积分的几何意义计算即可;③根据二项分布求期望的公式计算即可;④根据()()22f x f x +=-+得到()()4f x f x +=即可得到4是()f x 的一个周期,即8不是最小正周期.【详解】①二项式3nx⎛+ ⎝的通项为()5233rr n n r r r n r n n x x---=C C ,因为展开式中含有常数项,所以502n r -=,即52n r =,所以当2r =时,n 最小,最小为5,故①错;②函数y =根据1x -⎰的几何意义可得21122x -⋅==⎰ππ,故②正确;③由题意得2~3,3B ζ⎛⎫ ⎪⎝⎭,所以()2323E ζ=⨯=,故③正确;④由()()22f x f x +=-+可得()()()()42222f x f x f x f x +=-++=-+=,所以4是()f x 的一个周期,则()f x 的最小正周期不是8,故④错.故答案为:②③.三、解答题17.为庆祝神舟十四号载人飞船返回舱成功着陆,某学校开展了航天知识竞赛活动,已知所有学生的成绩均位于区间[]60,100,从中随机抽取1000名学生的竞赛成绩作为样本,绘制如图所示的频率分布直方图.(1)若此次活动中获奖的学生占参赛总人数30%,试估计获奖分数线;(2)采用比例分配分层随机抽样的方法,从成绩不低于80的学生中随机抽取7人,再从这7人中随机抽取2人,记成绩在[]90,100的人数为ξ,求ξ的分布列和数学期望.【答案】(1)82(2)分布列见解析,47【解析】【分析】(1)根据频率分布直方图先判断出获奖的分数线所在的区间,设为x ,则成绩在[],100x 的概率为0.3,列出方程即可得解;(2)先写出随机变量的所有可能取值,求出对应概率,从而可得分布列,再根据期望的计算公式计算期望即可.【小问1详解】根据直方图可知,成绩在[]80,100的频率为()0.0250.010100.35+⨯=,大于0.3,成绩[]90,100的频率为0.1,小于0.2,因此获奖的分数线应该介于[)80,90之间,设分数线为[)80,90x ∈,使得成绩在[],100x 的概率为0.3,即()900.0250.010100.3x -⨯+⨯=,可得82x =,所以获奖分数线划定为82;【小问2详解】成绩在[)80,90的人数有0.025750.0250.010⨯=+人,成绩在[]90,100的人数为752-=人,则ξ的可能取值为0,1,2,205227C C 10(0)C 21P ξ===,115227C C 101C 21()P ξ===,025227C C 1(2)C 21P ξ===,ξ的分布列为ξ012P10211021121∴数学期望1010140122121217()E ξ=⨯+⨯+⨯=.18.如图,四棱锥P -ABCD 的底面是正方形,E 为AB 的中点,,1,3,13PD CE AE PD PC ⊥===(1)证明:AD ⊥平面PCD.(2)求DA 与平面PCE 所成角的正弦值.【答案】(1)证明见解析(2)61【解析】【分析】(1)通过证明PD AD ⊥,AD CD ⊥即可证明线面垂直;(2)建立空间直角坐标系,利用向量方法求解线面角的正弦值.【详解】(1)证明:因为E 为AB 的中点,1AE =,所以2CD AB ==,所以222CD PD PC +=,从而PD CD ⊥.又PD CE ⊥,CD CE C = ,所以PD⊥底面ABCD ,所以PD AD ⊥.因为四边形ABCD 是正方形,所以AD CD ⊥.又CD PD D = ,所以AD ⊥平面PCD.(2)解:以D 为坐标原点,建立空间直角坐标系D xyz -,如图所示,则()2,0,0A ,()0,0,3P ,()2,1,0E ,()0,2,0C ,所以()2,1,3PE =- ,()2,1,0EC =- ,()2,0,0DA =.设平面PCE 的法向量为(),,n x y z =,则0PE n EC n ⋅=⋅= ,即23020x y z x y +-=⎧⎨-+=⎩,令3x =,得()3,6,4n = .cos ,61||||n DA n DA n DA ⋅==,故DA 与平面PCE【点睛】此题考查证明线面垂直,求直线与平面所成角的正弦值,关键在于熟练掌握线面垂直的判定定理,熟记向量法求线面角的方法.19.已知函数()22ln f x x ax b =++在1x =处取得极值1.(1)求a ,b 的值;(2)求()f x 在1,e e -⎡⎤⎣⎦上的最大值和最小值.【答案】(1)1a =-,2b =;(2)最大值为1,最小值为24e -【解析】【分析】(1)求导后,根据()10f '=,()11f =,可得1a =-,2b =,再检验所求值即可;(2)根据当x 在1,e e -⎡⎤⎣⎦上变化时,()f x ,()f x '的变化情况表可得结果.【详解】(1)因为()22ln f x x ax b =++,所以()22f x ax x'=+.依题意得()10f '=,()11f =,即2201a a b +=⎧⎨+=⎩.解得1a =-,2b =,经检验,1a =-,2b =符合题意.所以1a =-,2b =(2)由(1)可知()22ln 2f x x x =-+,所以()()()21122x x f x x x x+-'=-=.令()0f x '=,得=1x -,1x =.当x 在1,e e -⎡⎤⎣⎦上变化时,()f x ,()f x '的变化情况如下表:x1e -()1,1e -1()1,e e()f x '+0-()f x 2e --单调递增极大值1单调递减24e -又224e e --<-,所以()f x 在1,e e -⎡⎤⎣⎦上的最大值为1,最小值为24e -.【点睛】本题考查了根据函数的极值求参数,要注意检验所求参数是否符合题意,考查了利用导数求函数的最大、最小值,属于基础题.20.设抛物线2:2(0)C y px p =>的焦点为F ,点()2,0D p ,过F 的直线交C 于M ,N 两点.当直线MD垂直于x 轴时,5MF =.(1)求C 的方程;(2)在x 轴上是否存在一定点Q ,使得_________?若存在,求出点Q 的坐标;若不存在,请说明理由.从①点N 关于x 轴的对称点N '与M ,Q 三点共线;②x 轴平分MQN ∠这两个条件中选一个,补充在题目中“__________”处并作答.注:如果选择两个条件分别解答,则按第一个解答计分.【答案】(1)24y x =(2)答案见解析【解析】【分析】(1)当直线MD 垂直于x 轴时,点M 的横坐标为2p ,根据抛物线的定义,252pMF p =+=,则C 的方程可求;(2)若选①,设直线MN 的方程为:1x my =+,与抛物线方程联立,结合韦达定理求得直线MN '的斜率,得直线MN '的方程即可判断;若选②,设直线MN 的方程为:1x my =+,与抛物线方程联立,设(),0Q t ,由题意0MQ NQ k k +=,结合韦达定理得()410m t +=对任意的R m ∈恒成立,则1t =-,得出答案.【小问1详解】当直线MD 垂直于x 轴时,点M 的横坐标为2p 根据抛物线的定义,252pMF p =+=,2p ∴=则抛物线方程为:24y x =.【小问2详解】若选①,若直线MN y ⊥轴,则该直线与曲线C 只有一个交点,不合题意,()1,0F ,设直线MN 的方程为:1x my =+,设()11,M x y ,()22,N x y ,()22,N x y '-联立214x my y x=+⎧⎨=⎩,得2440y my --=,2Δ16160m =+>恒成立得124y y m +=,124y y =-直线MN '的斜率()1212121212111444444MN y y y m m k x x x x m y y y y y '+=====---++∴直线MN '的方程为()1112144y y y x x y -=-+由2114y x =,化简得()121414y y x y =++∴直线MN '过定点()1,0-,∴存在()1,0Q -若选②,若直线MN y ⊥轴,则该直线与曲线C 只有一个交点,不合题意,()1,0F ,设直线MN 的方程为:1x my =+设()11,M x y ,()22,N x y ,设(),0Q t 联立214x my y x=+⎧⎨=⎩,得2440y my --=,2Δ16160m =+>恒成立得124y y m +=,124y y =-x 轴平分MQN∠1212121211MQ NQ y y y y k k x t x t my t my t∴+=+=+--+-+-()()()()()()()122112*********(1)1111y my t y my t my y t y y my t my t my t my t +-++-+-+==+-+-+-+-()()1284(1)11m m t my t my t -+-==+-+-84(1)0m m t ∴-+-=,即()410m t +=对任意的R m ∈恒成立,则1t =-.∴存在()1,0Q -.21.已知函数()ln x af x x x+=-.(1)讨论函数()f x 的单调性;(2)证明:当0x >时,1ln(1)11x x x+<<+【答案】(1)当0a ≥时,函数()f x 在()0,∞+上单调递增;当a<0时,函数()f x 在()0,a -上单调递减,在(),a -+∞上单调递增.(2)证明见解析【解析】【分析】(1)求导后,分类讨论a ,根据导数的符号可得结果;(2)将所证不等式等价变形后,利用(1)中的单调性可证1ln(1)1x x x+<+成立;作差构造函数,利用导数可证ln(1)1x x+<成立.【小问1详解】函数()f x 的定义域为()0,∞+,因为221()()x x a x af x x x x-++'=-=,当0a ≥时,()0f x '>,所以函数()f x 在()0,∞+上单调递增;当a<0时,由()0f x '<得0x a <<-,由()0f x '>得x a >-,所以函数()f x 在()0,a -上单调递减,在(),a -+∞上单调递增.【小问2详解】①因为0x >,不等式1ln(1)1x x x +<+等价于ln(1)1x x x +>+,令1t x =+,则1x t =-,由0x >,得1t >,所以不等式ln(1)1x x x +>+(0x >)等价于:1ln t t t->,即:1ln 0t t t -->(1t >),由(1)得:函数1()ln t g t t t-=-在()1,+∞上单调递增,所以()(1)0g t g >=,即:ln(1)1xx x +>+.②因为0x >,不等式ln(1)1x x+<等价于ln(1)x x +<,令()ln(1)h x x x =+-,则1()111x h x x x -=-=++',所以()0h x '<,所以函数()ln(1)h x x x =+-在()0,∞+上为减函数,所以()(0)0h x h <=,即ln(1)x x +<.由①②得:0x >时,1ln(1)11x x x+<<+.【点睛】关键点睛:第(2)问将所证不等式进行等价变形,再作差构造函数,利用导数证明是本题解题关键.22.在平面直角坐标系xOy 中,曲线1cos :1sin x C y ϕϕ=⎧⎨=-+⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)写出曲线1C 的极坐标方程,曲线2C 的直角坐标方程;(2)设点M 的极坐标为(2,0)M ,射线0,04πθααρ⎛⎫=-<<≥ ⎪⎝⎭与曲线1C 、2C 分别交于A 、B 两点(异于极点),当4AMB π∠=时,求线段AB 的长.【答案】(1)2sin ρθ=-,22(1)1x y -+=(2)5【解析】【分析】(1)消去参数得1C 直角坐标方程,由公式法求解(2)联立方程得,A B 的极坐标,由极坐标的概念与几何关系求解【小问1详解】221:(1)1C x y ++=,将cos sin x y ρθρθ=⎧⎨=⎩代入得:1C 的极坐标方程为2sin ρθ=-曲线2C :由2cos ρθ=得22cos ρρθ=∴222x y x+=∴曲线2C 的直角坐标方程为22(1)1x y -+=【小问2详解】将θα=代入曲线1C 、曲线2C 的极坐标方程可得||2sin ,||2cos A B OA OB ραρα==-==∵04πα-<<∴由题意得||||||B A AB OB OA ρρ=-=-2cos 2sin αα=+∵OM 为曲线2C 的直径∴2OBM π∠=,又4AMB π∠=,∴4BAM AMB π∠=∠=∴||||2sin 2sin()2sin AB MB BOM αα==∠=-=-∴2cos 2sin 2sin ααα+=-,即1tan 2α=-∵04πα-<<∴sin α=∴25||||2sin 5AB MB α==-=23.设()34f x x x =-+-.(1)解不等式()2f x ≤;(2)已知实数x 、y 、z 满足222236(0)x y z a a ++=>,且x y z ++的最大值是1,求a 的值.【答案】(1){|2.5 4.5}x x ≤≤(2)1【解析】【分析】(1)分类讨论,脱掉绝对值符号,解不等式可得答案;(2)利用柯西不等式即可求得答案.【小问1详解】当3x <时,不等式即342x x -+-+≤,解得 2.5 2.53,x x ≥∴≤<;当34x ≤≤时,不等式即342x x --+≤恒成立,则34x ≤≤;当>4x 时,不等式即342x x -+-≤,解得.54 4.54,x x ∴<≤≤;综合上述,不等式的解集为{|2.5 4.5}x x ≤≤.【小问2详解】由柯西不等式可得:)))()2222222x y z ⎛⎡⎤++++⎡⎤⎢⎥⎢⎥⎣⎦≥++ ⎢⎥⎣⎦⎝,因为()2222360x y z a a ++=>,故()2a x y z ≥++,而x y z ++的最大值是1,故1a =,当且仅当2361x y z ===时等号成立,故1a =.。
一、单选题1. 已知,则( )A.B.C.D.2.已知均为的子集,且,则( )A.B.C.D.3.已知平面向量满足,且与的夹角为,则“”是“”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件4.已知数列的前项和为,点在函数的图象上,等比数列满足,其前项和为,则下列结论正确的是( )A.B.C.D.5. 命题“,”是真命题的充要条件是( )A.B.C.D.6.已知全集,集合,,则A.B.C.D.7. 已知建筑地基沉降预测对于保证施工安全,实现信息化监控有着重要意义.某工程师建立了四个函数模型来模拟建筑地基沉降随时间的变化趋势,并用相关指数、误差平方和、均方根值三个指标来衡量拟合效果.相关指数越接近1表明模型的拟合效果越好,误差平方和越小表明误差越小,均方根值越小越好.依此判断下面指标对应的模型拟合效果最好的是( ).A .相关指数误差平方和均方根值0.949 5.4910.499B .相关指数误差平方和均方根值0.933 4.1790.436C .相关指数误差平方和均方根值0.997 1.7010.141D .相关指数误差平方和均方根值0.9972.8990.3268.已知集合,,则( )A.B.C.D.9. 已知双曲线:的左,右焦点分别为,,过的直线与双曲线的左支交于,两点.若,则( )A .4B .6C .8D .1210. 已知集合,,则( )A.B.C.D.四川省成都市石室中学2023届高三高考模拟测试数学(理科)试题二、多选题三、填空题四、填空题11. 已知函数分别与直线交于点A ,B ,则下列说法正确的( )A.的最小值为B.,使得曲线在点A 处的切线与曲线在点B 处的切线平行C .函数的最小值小于2D .若,则12.已知函数将的图像向右平移个单位长度,再把得到的曲线上各点的横坐标伸长为原来的2倍,得到函数的图像,则下列命题正确的是( )A .是偶函数B.函数的单调递减区间为C.直线是函数的图象的对称轴D .函数在上的最小值为13. 已知的顶点在圆上,顶点在圆上.若,则( )A.的面积的最大值为B.直线被圆截得的弦长的最小值为C .有且仅有一个点,使得为等边三角形D.有且仅有一个点,使得直线,都是圆的切线14. 已知实数、满足方程,则下列说法正确的是( )A .的最大值为B .的最小值为C.的最大值为D .的最大值为15. 伴随着国内经济的持续增长,人民的生活水平也相应有所提升,其中旅游业带来的消费是居民消费领域增长最快的,因此挖掘特色景区,营造文化氛围尤为重要.某景区的部分道路如图所示,,,,,要建设一条从点到点的空中长廊,则______.16. 若圆柱的高、底面半径均为1,则其表面积为___________.17.设函数,则______.18. 法国数学家加斯帕・蒙日被称为“画法几何创始人”“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆被称为该椭圆的蒙日圆.已知椭圆:,则的蒙日圆的方程为______;若过圆上的动点作的两条切线,分别与圆交于,两点,则面积的最大值为______.19. 某校进行了物理学业质量监测考试,将考试成绩进行统计并制成如下频率分布直方图,a 的值为______;考试成绩的中位数为______.五、解答题六、解答题20. 求值.(1);(2).21. (1)已知角终边上一点,求的值;(2)化简求值:22. 在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表一:男生等级优秀合格尚待改进频数15x 5表二:女生等级优秀合格尚待改进频数153(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;(2)由表中统计数据填写下边列联表,试采用独立性检验进行分析,能否在犯错误的概率不超过0.1的前提下认为“测评结果优秀与性别有关”.男生女生总计优秀非优秀总计0.100.050.012.7063.8416.635参考数据与公式:,其中.23. 一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据如下表所示:温度21232527293235七、解答题八、解答题产卵个数个711212466115325(1)画出散点图,根据散点图判断与哪一个适宜作为产卵数y关于温度x的回归方程类型(给出判断即可、不必说明理由);(2)根据(1)的判断结果及表中数据.建立关于的回归方程.(附:可能用到的公式,可能用到的数据如下表所示:27.43081.290 3.612147.7002763.764705.59240.180(对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.)24. 已知,.(1)记,讨论的单调区间;(2)记,若有两个零点a,b ,且.请在①②中选择一个完成.①求证:;②求证:25. 我市近日开展供热领域民生问题“大调研、大起底、大整治、大提升”工作,在调查阶段,从两小区一年供热期的数据中随机抽取了相同20天的观测数据,得到两小区的同日室温平均值如下图所示:根据室内温度(单位:),将供热状况分为以下三个等级:室内温度供热等级不达标达标舒适(1)试估计小区当年(供热期172天)的供热状况为“舒适”的天数;(2)若两小区供热状况相互独立,记事件“一天中小区供热等级优于小区供热等级”. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件的概率;(3)若从供热状况角度选择生活地区居住,你建议选择中的哪个小区,并简述判断依据.九、解答题26. 已知函数.(1)当时,若在上恒成立,求实数的取值范围;(2)设为的两个不同零点,证明:.。
成都石室中学高2012届一诊模拟数 学 试 题 (理科)一.选择题(本题共有12小题, 每题5分,共60分,每题恰有一个答案) 1. 已知1z i =+,则21z1z ++等于 ( ) A . 4355i + B . 4355i - C .i D .i -2. 下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )A.sin()2y x π=+B.cos(2)2y x π=+C.sin(2)2y x π=+D.cos()2y x π=+3.(81展开式中不含4x 项的系数的和为 ( )A.-1B.0C.1D.24.若函数()log a f x x =(其中0,1)a a >≠满足(5)2f =,则15(2log 2)f -的值为 ( )A .5log 2 B. 2log 5 C.4 D.25.将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A 班,那么不同的分配方案有 ( )A. 18种B. 24种C. 54种D. 60种6.设{}n a 、{}n b 分别为等差数列与等比数列,且114a b ==,441a b ==,则以下结论一定成立的是()A .22a b >B .33a b <C .55a b >D .66a b >7.已知函数()cos(),f x x R θθ=+∈.若0()()lim1x f x f xππ→+-=,则函数f(x)的解析式为 ( )A.()sin f x x =-B. ()cos f x x =-C. ()sin f x x =D. ()cos f x x =8. 设随机变量ξ服从标准正态分布()0 1N ,,在某项测量中,已知()196P .ξ<=0.950,则ξ在()1.-∞-,96内取值的概率为 ( )A .0.025B .0.050C .0.950D .0.9759.设,,a b c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,a c ⊥,||||a c =,则||b c ⋅的值一定等于 ( )A .以,a b 为邻边的平行四边形的面积 B. 以,b c 为两边的三角形面积C .,a b 为两边的三角形面积 D. 以,b c 为邻边的平行四边形的面积10.已知p 是r 的充分条件而非必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题: ①s 是q 的充要条件; ②p 是q 的充分非必要条件;③r 是q 的必要非充分条件; ④p s ⌝⌝是的必要非充分条件; ⑤r 是s 的充分条件而不是必要条件,则正确命题序号是 ( )A.①④⑤B.①②④C.②③⑤D. ②④⑤11.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大.于.6 .时再增选一名代表. 那么各班可推选代表人数y 与该班人数 x 之间的函数关系用取整函数y =[x]([x]表示不大于x 的最大整数)可以表示为 ( )A.y =[10x ]B.y =[310x +]C.y =[410x +]D.y =[510x +]12. 如图,在长方形ABCD 中,,BC=1,E 为线段DC 上一动点,现将∆AED 沿AE 折起,使点D在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为 ( ) AC .2πD . 3πBA二.填空题(每题4分,共16分)13.设()y f x =存在反函数1()y f x -=,且函数()y x f x =-的图象过点(1,2),则函数1()y f x x -=-的图象一定过点 .14.已知函数()f x 的导函数为()f x ',且满足2()32(2)f x x xf '=+,则(5)f '=15.将边长为1的正方形ABCD 沿对角线AC 对折成120的二面角,则B,D 在四面体A-BCD 的外接球球面上的距离为16.已知定义域为 0+∞(,) 的函数f(x)满足: 对任意x 0∈+∞(,),恒有 f(2x)=2f(x)成立;当x ]∈(1,2时,f(x)=2-x 。
一、选择题1. 【答案】C解析:观察选项,A、B、D均不符合指数函数的性质,只有C选项满足指数函数的定义。
2. 【答案】B解析:利用二次函数的性质,当a>0时,函数开口向上,且对称轴为x=-b/2a。
根据选项,只有B选项符合。
3. 【答案】A解析:根据三角函数的性质,正弦函数在第二象限和第三象限为负,故选A。
4. 【答案】D解析:根据复数的乘法运算,将复数分别乘以i,得到i^2=-1,i^3=-i,i^4=1。
故选D。
5. 【答案】C解析:根据排列组合公式,A选项的排列数为A5^5,B选项的排列数为A5^3,C 选项的排列数为A5^2,D选项的排列数为A5^4。
故选C。
二、填空题6. 【答案】x^2-2x+1解析:利用完全平方公式,将x^2-2x+1分解为(x-1)^2。
7. 【答案】π/6解析:根据正弦函数的定义,sin(π/6)=1/2。
8. 【答案】3解析:利用数列的通项公式,an=2n-1,代入n=5,得到a5=25-1=9。
9. 【答案】i解析:根据复数的乘法运算,(1+i)^2=1^2+2i+1i^2=1+2i-1=2i。
10. 【答案】4解析:利用排列组合公式,C(5,2)=54/2=10,故选4。
三、解答题11. 【答案】解:设函数f(x)=ax^2+bx+c,其中a、b、c为常数。
(1)根据题目条件,当x=1时,f(x)=1,代入函数表达式得到a+b+c=1。
(2)当x=2时,f(x)=4,代入函数表达式得到4a+2b+c=4。
(3)当x=3时,f(x)=9,代入函数表达式得到9a+3b+c=9。
解以上方程组,得到a=1,b=-2,c=2。
故函数f(x)=x^2-2x+2。
12. 【答案】解:设直线l的方程为y=kx+b,其中k为斜率,b为截距。
(1)根据题目条件,直线l过点A(2,1),代入方程得到1=2k+b。
(2)直线l与圆x^2+y^2=1相切,根据切线与圆的性质,切线与半径垂直,即斜率的乘积为-1。
四川省成都市石室中学2023届高三高考模拟测试数学
(理科)试题
学校:___________姓名:___________班级:___________考号:___________
.甲的成绩的极差小于乙的成绩的极差
.甲的成绩的方差小于乙的成绩的方差
.甲的成绩的平均数等于乙的成绩的平均数
.甲的成绩的中位数小于乙的成绩的中位数
.设zÎC,则在复平面内35
££所表示的区域的面积是()
z
.B.C.D.
.
13
B .
23
C .
43
二、填空题
13.“五一”假期期间,小明和小红两位同学计划去卷上的圆锥曲线大题.如图,小红在街道E 处,小明14.已知点C 的坐标为()2,0,点,A B 是圆0AC BC ×=uuu r uuu r
,设P 为线段AB 的中点,则15.已知函数()()2e R x f x ax a =-Î有两个极值点围为___________.
三、双空题
信基站核心部件,下表统计了该科技集团近几年来在A部件上的研发投入x(亿元)与收益y(亿元)的数据,结果如下:。
一、单选题二、多选题1. 已知函数,若存在,使得成立,则实数的取值范围是( )A.B.C.D.2. 柯西分布(Cauchy distribution)是一个数学期望不存在的连续型概率分布.记随机变量服从柯西分布为,其中当,时的特例称为标准柯西分布,其概率密度函数为.已知,,,则( )A.B.C.D.3.已知函数,若集合含有4个元素,则实数的取值范围是( )A.B.C.D.4. 已知复数满足(为虚数单位),则的最小值为( )A .7B .6C .5D .45.是等差数列的前项和,,,则( )A .9B .16C .20D .276. 已知命题,,则命题P 的否定为( )A.B.C.D.7.已知等差数列的前项和为,,,则( )A.B.C.D.8. 锐角中,角,,的对边分别为,,,若,则的取值范围是( )A.B.C.D.9. 已知函数是定义在上的奇函数,且为偶函数,当时,,则下列说法正确的是( )A.B.的值域为C .在单调递减D .关于中心对称10. 已知棱长为的正方体中,是的中点,点在正方体的表面上运动,且总满足,则下列结论中正确的是( )A .点的轨迹中包含的中点B.点的轨迹与侧面的交线长为C.的最大值为D .直线与直线所成角的余弦值的最大值为11. 已知函数的最小正周期为,且满足,,若在上有三个不同的零点,则的取值可以是( )四川省成都石室中学2022-2023学年高三上学期一诊模拟考试数学(理科)试题 (2)四川省成都石室中学2022-2023学年高三上学期一诊模拟考试数学(理科)试题 (2)三、填空题四、解答题A.B.C.D .312.如图,扇形是某社区的一块空地平面图,点在弧上(异于两点),,垂足分别为,米.该社区物业公司计划将四边形区域作为儿童娱乐设施建筑用地,其余的地方种植花卉,则下列结论正确的是()A .当时,儿童娱乐设施建筑用地的面积为平方米B.当时,种植花卉区域的面积为平方米C .儿童娱乐设施建筑用地面积的最大值为平方米D .种植花卉区域的面积可能是平方米13. 已知两个单位向量与的夹角为,则__________.14. 已知圆心为的圆C与倾斜角为的直线相切于点,则圆C 的方程为___________15. 设A 是非空数集,若对任意,都有,则称A 具有性质P .给出以下命题:①若A 具有性质P ,则A 可以是有限集;②若具有性质P,且,则具有性质P ;③若具有性质P,则具有性质P ;④若A 具有性质P,且,则不具有性质P .其中所有真命题的序号是___________.16. 如图,在四棱锥中,平面,正方形边长为,,是的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角.17.已知等差数列的前项和为,,正项等比数列满足,,.(1)求数列,的通项公式.(2)记,求数列的前项和.18. 已知动点与,两点连线的斜率之积为,点的轨迹为曲线,过点的直线交曲线于,两点.(1)求曲线的方程;(2)若直线,的斜率分别为,,试判断是否为定值?若是,求出这个值;若不是,请说明理由.19. 如图,在四棱锥中,底面,,是的中点.(Ⅰ)证明;(Ⅱ)证明平面;(Ⅲ)求二面角的大小.20.已知抛物线E:的焦点为F,为抛物线E上一点,且(O为坐标原点)的面积为.(1)求抛物线E的方程;(2)已知A,B,C,D是抛物线E上的动点,且,直线AB恒过点Q,点P关于点Q的对称点为M,直线CD过点M,证明:以CD为直径的圆过点P.21. 已知数列满足.(1)证明:;(2)设,证明:.。
成都石室中学高2008级一诊模拟考试数学试卷(理)第Ⅰ卷(选择题,共60分)一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数1sin cos 22x x y =-的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于2x π=对称2.函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )3.已知:|23|1,:(3)0p x q x x -<-<,则p 是q 的()A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 4.设α是第四象限角,3sin 5α=-)4πα+=( )A .75 B .15 C .75- D .15- 5.已知,m n 是不重合的两条直线,,αβ是不重合的两个平面,则下列命题①,//m n αα⊂,则//m n ②//,//m m αβ,则//αβ③若,//n m n αβ=,则//,//m m αβ; ④,m m αβ⊥⊥,则//αβ其中真命题个数为( ) A .0个B .1个C .2个D .3个6.在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为 ( ) A . 14B . 15C . 16D . 177.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.AH 垂直平面11CB DC.直线AH 和1BB 所成角为45 D.AH 的延长线经过点1C 8.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,A .24种B .18种C .12种D .6种9.定义域为R 的函数lg |2|2()12x x f x x -≠⎧=⎨=⎩,若关于x 的方程2()()0f x bf x c ++=恰有5个不同的实数解12345,,,,x x x x x ,则12345()f x x x x x ++++等于 ( )A .312gB .212gC .1D .010.已知{}n a 是等差数列,若11101a a <-且它的前n 项和n S 有最大值,则当n S 取得最小正值时,n 为( ) A .11B .20C .19D .2111.设等比数列{}n a 的前n 项和为n S ,则222n n x S S =+,23()n n n y S S S =+的大小关系是( ) A . x y ≥ B . x y ≤ C . x y = D . 不确定12.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )(A) 2个 (B)1个 (C) 0个 (D)无数多个Ⅱ卷(非选择题,共90分)二.填空题(本大题共4小题,每小题4分,共16分.)13.若2)n x的展开式中第三项是常数项,则n = ,且这个展开式中各项的系数和为____14.在四面体OABC 中,,,OA OB OC 两两垂直,且3,3,OA OB OC ===,则四面体OABC 的 外接球的体积为_______15.已知O 是△ABC 内一点,AOC AOB ∆∆-=+与则,3的面积的比值为 16.已知定义在R 上的函数()f x 的图象关于点3(,0)4-,对称且满足3()()2f x f x =-+,(1)1f -=,(0)2f =-,则(1)(2)(3)(2008)f f f f ++++=第Ⅱ卷(选择题,共90分)二.填空题:13. , ; 14. ; 15. ; 16. 三.解答题:17.(本小题12分)已知函数3()2cos()sin()sin 1,2f x x x x x R ππ⎡⎤⎛⎫=--+++∈ ⎪⎢⎥⎝⎭⎣⎦.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间3,84ππ⎡⎤⎢⎥⎣⎦上的最小值和最大值.18.(本小题12分)如图(1)在直角梯形ABCP 中,//BC AP ,,AB BC CD AP ⊥⊥2AD DC PD ===,E 、F 、G 分别是PC 、PD 、BC 的中点,现将PDC ∆沿CD 折起,使平面PDC ⊥平面ABCD (如 图2)(Ⅰ)求二面角G EF D --的大小;(Ⅱ)在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明过程.19.(本小题12分)2008年奥运会即将在北京举行,为了迎接这次奥运盛会某中学从学生中选出100名优秀学生代表,在举行奥运之前每人至少参加一次社会公益活动,他们参加活动的次数统计如图所示从100名优秀代表中任选两名, (Ⅰ)求他们参加活动次数恰好相等的概率, (Ⅱ)用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望。
成都石室中学2022—2023学年度上期高2023届一诊模拟考试数学试题(理科)(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共计60分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,复数212i z i=+,则复数z 的虚部为( )A. 25iB. 25C. 15i −D. 15−2.已知集合{}{}ln ,e 1x A xy x B y y ====−∣∣,则A B ⋃=( ) A.R B.[)0,∞+ C.()1,∞−+ D.∅3.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A.10B. 20C.40D. 804.已知(0,0)O ,(3,0)A ,动点(,)P x y 满足2PAPO=,则动点P 的轨迹与圆()2221x y −+=的位置关系是( ) A. 相交 B. 相离C. 内切D. 外切5.若tan 3α=,则sin2cos2αα−=( ) A.15−B.14C.12D.756.如图,在正方体1111ABCD A B C D −中,点,E F 分别是棱111,B B B C 的中点,点G 是棱1C C 的中点,则过线段AG 且平行于平面1A EF 的截面图形为( )A. 等腰梯形B. 三角形C. 正方形D. 矩形7.函数(ln ()x xx f x e e −+=+的图象大致是( )A .B .C .D .8.某化工企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg /L )与时间t (单位:h )之间的关系为:0e kt M M −=(其中0M ,k 是正常数).已知经过1h ,设备可以过滤掉20%的污染物,则过滤60%的污染物需要的时间最接近( )(参考数据:lg 20.3010=) A.3h B.4h C.5h D.6h9.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( )A. 79B. 2332C. 932D. 2910.某校安排一至五班的同学去,,,A B C D 四个劳动实践基地学习,每班去一个基地,每个基地至少安排一个班,则一班被安排到A 基地的排法总数为( ) A. 24 B. 36 C.60 D.24011.已知双曲线C :22221x y a b−=,过右焦点F 作C 的一条渐近线的垂线l ,垂足为点A ,l 与C 的另一条渐近线交于点B ,若3AB AF =,则C 的离心率为( )A.2B.2C. 3D.312.已知0.21,ln1.2,tan 0.2e a b c =−==,其中e 2.71828=为自然对数的底数,则( ) A.c a b >> B. a c b >> C. b a c >> D.a b c >>二、填空题:本大题共4小题,每小题5分,共计20分.13.若sin 2x x =,则cos 2x =__________. 14.若直线y kx b =+是曲线e 1x y =−和1ex y −=的公切线,则实数k 的值是___________.15. 已知抛物线C :22x y =上有两动点,P Q ,线段PQ 的中点E 到x 轴距离的是2,则线段PQ 长度的最大值为___________.16.中国古代数学名著《九章算术》中将底面为矩形且有一条侧棱垂直于底面的四棱锥称为“阳马”.现有一“阳马”的底面是边长为3的正方形,垂直于底面的侧棱长为4,则该“阳马”的内切球表面积为 ,内切球的球心和外接球的球心之间的距离为 .三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.某校为了解本校学生课间进行体育活动的情况,随机抽取了60名男生和60名女生,通过调查得到如下数据:60名女生中有10人课间经常进行体育活动,60名男生中有20人课间经常进行体育活动. (Ⅰ)请补全22⨯X ,求X 的分布列、数学期望和方差. 附表:)20k2附:)()()()()22n ad bc K a b c d a c b d −++++=,其中n a b c d =+++.18.(本小题满分12分)已知n S 是数列{}n a 的前n 项和,已知11a =且()12n n nS n S +=+,*n ∈N . (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设()()*24141nn n a b n N n =−∈−,求数列{}n b 的前n 项和n T .19.(本小题满分12分)如图,在四棱锥P ABCD −中,AB BD BP ===PA PD ==90APD ∠=︒,E 是棱PA 的中点,且BE ∥平面PCD . (Ⅰ)证明:CD ⊥平面PAD ;(Ⅱ)若1CD =,求二面角A PB C −−的正弦值.已知椭圆C :)0,0(12222>>=+b a by a x 的离心率为23,)0,(1a A −,)0,(2a A ,),0(b B ,12A BA △的面积为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设M 是椭圆C 上一点,且不与顶点重合,若直线B A 1与直线M A 2交于点P ,直线M A 1与直线B A 2交于点Q .求证:BPQ △为等腰三角形.21.(本小题满分12分)已知函数()()xf x x p e =−的极值为1−.(Ⅰ)求p 的值,并求()f x 的单调区间;(Ⅱ)若()()()f a f b a b =≠,证明:2aba b e e +++<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.选修4-4:极坐标与参数方程在直角坐标系xOy 中,已知曲线C 的参数方程为1cos tan x y αα⎧=⎪⎨⎪=⎩(α为参数). (Ⅰ)写出曲线C 的普通方程;(Ⅱ)设P 为曲线C 上的一点,将OP 绕原点O 逆时针旋转4π得到OQ .当P 运动时,求Q 的轨迹方程.23.选修4-5:不等式选讲已知函数()124lg 3x x af x ++=(a R ).(Ⅰ)若2a =−,求()f x 的定义域;(Ⅱ)若01a <<,求证:()()22f x f x >.。
成都石室中学2023-2024年度上期高2024届一诊模拟数学试题(理)(总分:150分,时间:120分钟)第Ⅰ卷(共60分)一、选择题(本题共12道小题,每小题5分,共60分)第Ⅱ卷(共90分)三、解答题(本题共6道小题,共70分)E选考题:共10分。
请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.成都石室中学2023-2024年度上期高2024届一诊模拟理科数学(A 卷)参考答案1.B 【解析】{}{}2,01xA y y x y y ==≥=≥,{}{}N 2311,2B x x =∈-≤=,故{}1,2A B = .故选:B.2.A 【解析】令i(b 0)z b =≠,则i 34i 5z b ==+=,故5b =±,i 5z =±.故选:A.3.D 【解析】由表中数据可得()12345645x =++++=,()115.116.31717.218.416.85y =++++=,因为回归直线过样本点的中心,所以 16.80.754a=⨯+,解得 13.8a =,所以回归直线方程为ˆ0.7513.8yx =+,则该公司7月份这种型号产品的销售额为0.75713.819.05y =⨯+=万元.故选:D.4.B 【解析】由三视图可知多面体是如图所示的三棱锥1ABC D -,由图可知2,3,AB BC AC ====,11AD CD =1BD.故选:B.5.C 【解析】对于A 选项,若a c b c ⋅=⋅ ,则()0c a b ⋅-=r r r ,所以()c a b ⊥- ,不能推出a b =,故A 错误;对于B 选项,2,2x y ≥≥成立时,必有224x y +≥成立,反之,取3,0x y ==,则224x y +≥成立,但2,2x y ≥≥不成立,因此“224x y +≥”是“2,2x y ≥≥”的必要不充分条件,B 错误;对于选项C ,因为()54322341f x x x x x x =+-+-+,所以可以把多项式写成如下形式:()((((2)3)4)1)1f x x x x x x =+-+-+,按照从内而外的顺序,依次计算一次多项式当2x =的值:02v =,1224v =+=,24235v =⨯-=,352414v =⨯+=,故C 正确;对于选项D ,()(4)(2)120.38P X P X P X ≥=≤=->=,所以()340.5(4)0.12P X P X <<=-≥=,故D 错误.故选:C.6.D 【解析】因为2sin sin αβ-=2cos cos 1αβ-=,所以平方得,()22sin sin 3αβ-=,()22cos cos 1αβ-=,即224sin 4sin sin sin 3ααββ-+=,224cos 4cos cos cos 1ααββ-+=,两式相加可得44sin sin 4cos cos 14αβαβ--+=,即1cos cos sin sin 4αβαβ+=,故()1cos 4αβ-=,()()217cos 222cos 121168αβαβ-=--=⨯-=-.故选:D.7.A 【解析】因为直线1y a x m =+与圆()2221x y -+=的两个交点关于直线2x dy -=-对称,所以直线2x d y -=-经过圆心,且直线1y a x m =+与直线2x dy -=-垂直,所以20d -=,即2d =,且12a =,则()()12212n n n S n n n -=+⨯=+,()111111n S n n n n ==-++,以数列1n S ⎧⎫⎨⎩⎭的前100项和为11111110011223100101101101-+-++-=-= .故选:A.8.B 【解析】令32()g x ax bx c =++,则2()32g x ax bx '=+,由2()320g x ax bx '=+=得1220,3bx x a==-,结合图象知函数在(,0)-∞上递增,在(0,2)递减,所以223ba-=且0a >,所以0b <,又()()322,,axbx cb f x ac ++=∈R 过点(2,1)-,所以840a b c -++=,即20c a =,所以b a c <<故选:B.9.A 【解析】正方体1111ABCD A B C D -中,1111//,AB D C AB D C =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,又1AD ⊄平面1BDC ,1BC ⊂平面1BDC ,所以1//AD 平面1BDC ,即当点P 在线段1AD 上运动时P d 恒为定值,又11113D BPC P BD P C BDC V V S d --==⨯ ,1BDC S 也为定值,所以三棱锥1D BPC -的体积为定值,①正确;在正方体1111ABCD A B C D -中,AB ⊥平面11BCC B ,1CB ⊂平面11BCC B ,所以1⊥CB AB ,在正方形11BCC B 中:11CB BC ⊥,又1AB BC B =I ,,AB BC ⊂平面11ABC D ,所以1CB ⊥平面11ABC D ,又1C P ⊂平面11ABC D ,所以11C P CB ⊥,②正确;因为点P 在线段1AD 上运动,若P ABCD ∈平面,则点P 与点A 重合,则三棱锥1C P D B -的外接球即为三棱锥1C A D B -,③正确;如图所示:将三角形1ADD 沿1AD 翻折90︒得到该图形,连接1DC 与1AD相交于点P ,此时1C P DP +取得最小值1DC ,延长11C D ,过D 作11DE C E ⊥于点E ,在1Rt DEC ∆中,1DC ==故1C P DP +.故选:A.10.B 【解析】该程序框图相当于在[0,3]上任取10000对数对(,)x y ,其中满足1xy ≤的数对有N 对.显然该问题是几何概型.不等式组0303x y ≤≤⎧⎨≤≤⎩所表示的区域面积为9,03031x y xy ≤≤⎧⎪≤≤⎨⎪≤⎩所表示的区域面积为3131112ln 3dx x +=+ò,故412ln 3910N +»,因此410(12ln 3)9N +».故选:B.11.D 【解析】令()0f x =,得22(ln )l 2e 0n a ax x x x -+=,整理得2ln ln ()2e0x a x a x x +=-.令ln (0)xt x x =>,0x >,原方程化为2e 02a a t t +=-.设ln ()(0)xg x x x=>,则21ln ()x g x x '-=,令()0g x '=,解得e x =,且ln 1()e g e e e==,当(0,)x e ∈时,()0g x '>,则()g x 单调递增,当(e,)x ∈+∞时,()0g x '<,则()g x 单调递减,则()g x 在x e =时,有最大值为1()g e e=,画出简图,如右图所示,因为原方程为220a at t e+=-.由题可知有三个零点,因此方程有两个不等实根12t t ,.结合ln ()(0)xg x x x =>图象可得:121t t e<0,0<<,设2(2)a a t h t e t -+=,则(0)01()0h h e⎧⎪⎨⎪⎩<>,得到2a e -<<0,因为12312123ln ln ln x x x t t x x x ===,,所以31212123ln 2ln ln 222,0x x x t t a x x x e ⎛⎫++=+=∈- ⎪⎝⎭.故选:D .12.A 【解析】由题可知,点Q 在以MN 为直径的圆上,故90NQP ∠= ,连接FP 、NP ,如图所示,可得cos PM PQ PM PN MPN PM PN ⋅=-∠=-,其中()()()()()2222281,PM PN PF FM PF FN PF FM PF FM PF FM FM PF PF -=-++=-+-=--=-=- 由图可知,当点P 运动到双曲线右顶点时,即当1PF =时,PM PQ ⋅取最大值为80.故选:A.13.()0,1【解析】抛物线214y x =的标准方程为24x y =,焦点在y 轴正半轴上,焦点坐标为()0,1.14.29【解析】由题意可知,4人去4个不同的景点,总事件数为44256=,事件B 的总数为3327=,所以27()256P B =,事件A 和事件B 同时发生,即“只有甲去了锦水文风,另外3人去了另外3个不同的景点”,则事件AB 的总数为336A =,所以6()256P AB =,所以()()62()279P AB P A B P B ===,故答案为:29.15.⎡⎣【解析】以M 为圆心,以,MA MC 为,x y 轴,建立如图所示的平面直角坐标系,由于2,AB AC ==所以BC BM CM ===由于点Q 在 AC,不妨设)Qθθ,π0,2θ⎡⎤∈⎢⎥⎣⎦,((),,0A P a,其中a ≤,()(),,a a AP MQ θθθθ=+=+,所以AP MQ +=AC上的点)Qθθ到点(R a -的距离,由于点(R a -在线段y x =≤上运动,故当点(R a -运动到点(E时,此时距离最大,为CE ===当点(R a -运动到点(A 时,此时距离最小为0,综上可知:AP MQ ⎡⎣+∈.16.1【解析】因为()()e e 2sin()e e 2sin ()x x x x f x x x f x -----=---=-+=-,所以()f x 为R 上的奇函数.又()e e 2cos 2cos 22cos 0x x f x x x x -'=+-≥=-≥,所以()f x 在(,)-∞+∞上单调递增.不等式2(e )(2ln )0x f a x f x x -++≤对任意的,()0x ∈+∞恒成立,即2(2ln )(e )x f x x f x a +≤-对任意的,()0x ∈+∞恒成立,所以22ln e x x x x a +≤-对任意的,()0x ∈+∞恒成立,即2e x a x ≤-2ln 2ln (2ln )e e (2ln )e (2ln )x x x x x x x x x x ++=⋅-+=-+对任意的,()0x ∈+∞恒成立.令()e x h x =x -,所以()e 1x h x '=-,所以当0x >时,()0h x '>,()h x 在(0,)+∞上为增函数;当x 0<时,()0h x '<,()h x 在(,0)-∞上为减函数.所以0min ()(0)e 01h x h ==-=,设()2ln g x x x =+,显然()g x 为(0,)+∞上的增函数,因为1111()2ln 20e e e eg =+=-+<,(1)10g =>,所以存在01(1)e ,x ∈,使得000()2ln 0g x x x =+=,所以2ln min [e (2ln )]1x x x x +-+=,此时2ln 0x x +=,所以1a ≤,即a 的最大值为1.故答案为:1.17.解:(1)//a b,2sin x x =-,则tan 2x =-;----------------------------------------------------2分22222222221cos sin 1tan 1cos2cos sin sin cos tan 1712x x x x x x x x x ⎛- --⎝⎭=-====++⎛⎫+ ⎪⎝⎭.------------------------------------------------5分(2)()()()()2sin sin 121sin cos 1f x a b a x x x x x x =+⋅=+-⨯=+-11π1sin 2cos 2sin 222262x x x ⎛⎫=--=-- ⎪⎝⎭,----------------------------------------------------------------------------7分又()12f A =,所以πsin 216A ⎛⎫-= ⎪⎝⎭,π0,2A ⎛⎫∈ ⎪⎝⎭,得ππ262A -=,即π3A =,------------------------------------8分因为2a =,且由余弦定理2222cos a b c bc A =+-可知,2242cos3b c bc π=+-,所以224b c bc +=+,由基本不等式可得2242b c bc bc +=+≥,所以4bc ≤,(当且仅当2b c ==时取等)----------------------------------------------------------------------------11分故()max 11sin 4222ABC S bc A ∆==创=,即ABC ∆面积最大值为.-----------------------------------------------------------------------------------------------12分(注:若求角的函数值域问题,按步骤对应给分)18.(1)证明:取AD 中点为F ,连接AC ,CF ,由2AD BC =得AF BC ∥且AF BC =.∴四边形ABCF 为平行四边形,∴CF AF DF ==,∴AC CD ⊥,--------------------------------------2分又因为二面角P CD B --为直二面角,且平面PCD 平面ABCD CD =,∴AC ⊥平面PCD ,因为PD ⊂平面PCD ,所以AC PD ⊥.-------------------------------------5分(2)解:如图,延长AB 和DC 交于点G ,连接GP ,则GP 为平面PCD 与平面PAB 的交线l ,取CD 中点为O ,连接OF ,OP ,∵OP ⊥AC ,OF AC ∥,∴OP ⊥OF ,OF ⊥CD ,OP ⊥CD .------------------------------------------------------------------------------------------7分如图,以O 为坐标原点,OF ,OD ,OP 分别为x 轴、y 轴、z 轴建立空间直角坐标系,P ⎛ ⎝⎭,2A ⎫-⎪⎪⎭,0,2G ⎛⎫- ⎪ ⎪⎝⎭,0,2D ⎛⎫ ⎪ ⎪⎝⎭,PD →⎛= ⎝⎭,()AD →=,0,PG →⎛= ⎝⎭,设平面PAD 的法向量为(),,m a b c →=,PD m b cAD m⎧⋅=⎪⎨⎪⋅==⎩,令1c=,解得)m→=-------------------------------------------------------------------------------------------------9分设l与平面PAD的所成角为θ,则sin7m PGm PGθ→→→→⋅===⋅,-------------------------------------------11分因为πθ⎛⎤∈ ⎥⎝⎦0,2,即l与平面PAD所成角的正弦值为7.-----------------------------------------------------------------------------12分19.解:(1)若甲第二次答题选方案一,记两次答题累计得分为ξ,则ξ的可能取值为70,60,20,10.339236(70),(60)55255525P Pξξ==⨯===⨯=326224(20),(10)55255525P Pξξ==⨯===⨯=-------------------1分则累计得分的期望9664()706020104625252525Eξ=⨯+⨯+⨯+⨯=.-----------------------------------------------2分若甲第二次答题选方案二,记两次答题累计得分为η,则η的可能取值为60,30,20.339322312224(60),(30),(20)55255555255525P P Pηηη==⨯===⨯+⨯===⨯=,----------------------------------3分则累计得分的期望9124()60302039.2252525Eη=⨯+⨯+⨯=.--------------------------------------------------------4分因为()()E Eξη>,所以应选择方案一.----------------------------------------------------------------------------------5分(2)①依题意得()()1645i iE X E X+=+.--------------------------------------------------------------------------------6分1X的可能取值为20,10,其分布列为1X2010P3525所以()12201053165E X=⨯+⨯=.由()()1645i iE X E X+=+,得()()1620205i iE X E X++=+⎡⎤⎣⎦,所以(){}20nE X+为等比数列,其中首项为36,公比为65,所以()1620365n n E X -⎛⎫+=⨯ ⎪⎝⎭,---------------------------------------------------------------------------------------------7分故()1636205n n E X -⎛⎫=⨯- ⎪⎝⎭.------------------------------------------------------------------------------------------------8分②由①知,()1636205n n E X -⎛⎫=⨯- ⎪⎝⎭,故累计得分为63615620180201806515n n n n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎛⎫⎣⎦-=⨯-- ⎪⎝⎭-,------------------------------------------------9分设6()18020180(0)5x f x x x ⎛⎫=⨯-- ⎪⎝⎭>,'66()180ln 20(0)55xf x x ⎛⎫=⨯⨯- ⎪⎝⎭>当0x >时,'66()180ln 20055x f x ⎛⎫=⨯⨯- ⎪⎝⎭>所以当0x >时,()f x 单调递增,---------------------------------------------------------------------------------------10分由题可知,至少需答题次数n 满足:*61802018021665N 2n n n n ⎧⎛⎫⨯--⎪ ⎪⎝⎭⎨⎪∈≥⎩>且,结合单调性与零点存在性定理,得到1415*618020141801851.22166561802015180231221665N 2n n ⎧⎛⎫⨯-⨯-≈⎪ ⎪⎝⎭⎪⎪⎪⎛⎫⨯-⨯-≈⎨ ⎪⎝⎭⎪⎪∈≥⎪⎪⎩<>且,故15n ≥,所以至少需答题15次.-------------------------------------------------------------------------------------------------------12分20.解:(1)函数()2cos sin 1f x x x x x =-+-,因为()01f =-,所以切点为()0,1-,------------------1分由()()2cos sin cos 2sin f x x x x x x x x x =--+=-∈'R ,,得()00f '=,所以曲线在点()()0,0f 处的切线斜率为0,-----------------------------------------------------------------------------2分所以曲线()y f x =在点()()0,0f 处的切线方程为1y =-.-----------------------------------------------------------3分(2)由(1)可知()()2cos sin cos 2sin f x x x x x x x x x =--+=-∈'R ,,因为[]sin 1,1x ∈-,所以2sin 0x ->,令()0f x '=,则0x =.--------------------------------------------------4分当()0x ∈-∞,时,()0f x '<,()f x 单调递减;当()0x ∈+∞,时,()0f x ¢>,()f x 单调递增;又因为()010f =-<,22πππ0,202424f f π⎛⎫⎛⎫=>-=-> ⎪ ⎪⎝⎭⎝⎭,-------------------------------------------------6分所以,由零点存在定理可知,存在唯一的1π,02x ⎛⎫∈- ⎪⎝⎭使得()10f x =,存在唯一的2π0,2x ⎛⎫∈ ⎪⎝⎭使得()20f x =.故函数()f x 有且仅有两个零点.---------------------------------------------------------------------------7分(3)因为π0,2x ⎡⎤∈⎢⎥⎣⎦,当0x =时,由(0)112f a =-≥-得1a ≥---------------------------------------------------9分下面证明:当1a ≥时,对于任意π0,2x ⎡⎤∈⎢⎥⎣⎦,()12f x a ≥-恒成立,即证2cos sin 112ax x x x a -+-≥-,即证()2cos sin 220x a x x x -+-≥+;而当1a ≥时,()222cos sin 2cos sin 2cos s n 2i 2x a x x x x x x x x x x x -+-≥-+-=-+++,-----------10分由(2)知,2cos sin 0x x x x -+≥;所以1a ≥时,()2cos sin 220x a x x x -+-≥+恒成立;综上所述,[)1a ∈+∞,.--------------------------------------------------------------------------------------------------12分21.解:(1)因为P 为ABC 的重心,且边,AC AB 上的两条中线长度之和为6,所以23PB PC BC +=⨯=>,-------------------------------------------------------------------------------1分故由椭圆的定义可知P 的轨迹Γ是以()()2,0,2,0B C -为焦点的椭圆(不包括长轴的端点),且2a c ==,所以b =,-----------------------------------------------------------------------------------------2分所以P 的轨迹Γ的方程为(22162x y x +=≠.------------------------------------------------4分,注:未挖点扣1分(2)①依题意,设直线DE 方程为()20x my m =+≠.联立222162x my x y =+⎧⎪⎨+=⎪⎩,得()223420m y my ++-=,易知()()22216832410m m m ∆=++=+>设()11,D x y ,()22,E x y ,则12243m y y m +=-+,12223y y m ⋅=-+.-----------------------------------------------5分因为DM x ⊥轴,EN x ⊥轴,所以()1,0M x ,()2,0N x .所以直线DN :()1212y y x x x x =--,直线EM :()2121y y x x x x =--,联立解得()()122112211212121222223Q my y my y x y x y my y x y y y y y y ++++===+=+++.----------------------------------7分从而点Q 在定直线3x =上.--------------------------------------------------------------------------------------------------8分②因为1212121113222DEQ Q S EN x x y x y my y ∆=⋅-=⋅-=-,----------------------------------------------9分又121212my y y y =+,则1211221122423DEQ y y S y y y m +=-=-=+ ,------------------------------------------------------------------------------------------------------------------------------------10分1t =>,则2122224DEQ t S t t t=⋅=⋅≤++ ,当且仅当2t t=,即1m =±时,等号成立,故DEQ ∆分22.解:(1)令0x =,则2230t t --=,解得3t =,或1t =-(舍),则23324y =--=,即()0,4B ,--------------------------------------------------------------------------------------2分令0y =,则220t t --=,解得2t =,或1t =-(舍),则233222x -⨯-=-=,即()3,0A -,-------------------------------------------------------------------------------4分∴5AB =.----------------------------------------------------------------------------------------5分(2)曲线2C 的极坐标方程为221613cos ρθ=+,即()()22sin 4cos 16ρθρθ+=,由cos x ρθ=,sin y ρθ=得2C 的普通方程为221416x y +=,-------------------------------------------------------6分设2C 上点的坐标为()2cos ,4sin θθ,-----------------------------------------------------------------------------------7分由(1)知直线AB 的方程为43120x y -+=,令2C 上的点P 到直线AB 的距离为d ,则8cos 12sin 125d θθ-+==---------------------------------------------------------9分所以2C 上的点P 到直线AB 的距离为413120,5⎡⎤+⎢⎥⎣⎦.--------------------------------------------------------------10分23.解:(1)当12a =时,不等式()8f x ≤可化为238x x ++-≤,∴2128x x ≤-⎧⎨-≤⎩,或2358x -⎧⎨≤⎩<<,或3218x x ≥⎧⎨-≤⎩,---------------------------------------------------------------------2分解得722x -≤≤-或23x -<<或932x ≤≤,----------------------------------------------------------------------4分求并集得:7922x -≤≤,所以原不等式的解集为79,22⎡⎤-⎢⎥⎣⎦.----------------------------------------------------------------------------------------5分(2)因为()999444414141f x x a x x a x a a a a =++-≥+-+=++++,当且仅当()94041x a x a ⎛⎫+⋅-≤ ⎪+⎝⎭时,即9441a x a -≤≤+时取到最小值,--------------------------------6分又因为0a >,所以()min 9441f x a a =++,所以9441m a a =++,------------------------------------------7分所以()()2222229941241184111681841611m a a a a a a a a ⎛⎫++++=+⎛⎫++=+++ ⎪++⎝⎭++ ⎪⎝⎭,因为()2292411818181841a a ⎛⎫+++≥= ⎪+⎝⎭,---------------------------9分当且仅当()22924141a a ⎛⎫+= ⎪+⎝⎭时,即14a =-时,()2211681m a a ++++的最小值为18+.---------------------------------------------------------------------10分。
1 石室中学高2021届一诊模拟考试数学试卷详解(理科)一、选择题:1. 【解析】由()12i z i +=,则()()()2121111i i i z i i i i ⋅-===+++-,所以z = 选C 2. 【解析】由240x -≥得22x -≤≤,所以[2,2]A =-,由10x ->得1x <,所以(,1)B =-∞, 所以[2,1)A B =-. 选D3. 【解析】方法一:建立平面直角坐标系如图所示,设正方形的边长为2,则A (0,0),B (2,0),C (2,2),M (2,1),D (0,2),所以AC →=(2,2),AM →=(2,1),BD →=(-2,2).由AC →=λAM →+μBD →,得(2,2)=λ(2,1)+μ(-2,2),即(2,2)=(2λ-2μ,λ+2μ),所以⎩⎪⎨⎪⎧ 2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧ λ=43,μ=13,所以λ+μ=53. 方法二:因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ(AB →+12AD →)+μ(-AB →+AD →)=(λ-μ)AB →+(12λ+μ)AD →,所以⎩⎪⎨⎪⎧ λ-μ=1,12λ+μ=1,得⎩⎨⎧ λ=43,μ=13,所以λ+μ=53. 故选B .4. 【解析】由题意,可得2852a a a +=,所以255280a a --=,解得52a =-或54a =,因为0n a >,所以52a =-舍去,只有54a =符合题意, 所以()91959994362S a a a =+==⨯= 选B 5. 【解析】据图求可以看出,P 产品的销售额的波动较大,Q 产品的销售额的波动较小,并且Q 产品的销售额只有两个月的销售额比25万元稍小,其余都在25万元至30万元之间,所以P 产品的销售 额的极差较大,中位数较小,Q 产品的销售的平均值较大,销售的波动较小, 选B6. 【解析】侧视图中能够看到线段1AD ,应画为实线,而看不到1B C ,应画为虚线.由于1AD 与1B C不平行,投影为相交线, 选B7. 【解析】函数()()sin 202f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移6π个单位长度后得函数解析式为()sin 2sin 263g x x x ππϕϕ⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,它的图象关于y 轴对称,则32k ππϕπ+=+,k Z ∈,又02πϕ<<,所以6π=ϕ, ∴()sin 26f x x π⎛⎫=+ ⎪⎝⎭,周期为22m ππ==,极大值点为2262x k πππ+=+,,6=+∈x k k Z ππ,与π最接近的极大值点是76π, ∴m n -的最小值是6π. 选A 8. 【解析】231()=1102+0012=11⨯⨯ 10=()()n x a x a ∴++,从而731015C a =,解得a 1=2选A。
数学(理科)试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合}1,0,1{-=M,},{2aaN=则使M∩N=N成立的a的值是()A.1 B.0 C.-1 D.1或-12.复数ii(113-为虚数单位)的共轭复数在复平面上对应的点的坐标是 ( )A.(1,1) B.(1,1)- C.(1,1)- D.(1,1)--3.已知函数,,)21(,)(21⎪⎩⎪⎨⎧≤>=xxxxfx则=-)]4([ff()A.4- B.41- C.4 D.64.函数ln||||x xyx=的图像可能是()5.实数yx,满足条件⎪⎩⎪⎨⎧≥≥≥+-≤-+,0224yxyxyx,则yx-2的最小值为()A.16B.4C.1 D.126.下列说法中正确的是()A.“5x>”是“3x>”必要条件B.命题“x R∀∈,210x+>”的否定是“x R∃∈,210x+≤”C.Rm∈∃,使函数)()(2Rxmxxxf∈+=是奇函数D.设p,q是简单命题,若p q∨是真命题,则p q∧也是真命题7.阅读程序框图,若输入4m=,6n=,则输出ia,分别是()A.12,3a i== B.12,4a i== C.8,3a i== D.8,4a i==8.设函数)22,0)(sin(3)(πφπωφω<<->+=xxf的图像关于直线32π=x对称,它的周期是π,则()A .)(x f 的图象过点)21,0( B .)(x f 的一个对称中心是)0,125(πC .)(x f 在]32,12[ππ上是减函数 D .将)(x f 的图象向右平移||φ个单位得到函数x y ωsin 3=的图象9. 设三位数10010n a b c =++,若以,,{1,2,3,4}a b c ∈为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .12种B .24种C .28种D .36种10. 定义在R 上的函数1ln )(2++=x ex f x,且)()(x f t x f >+在()∞+-∈,1x 上恒成立,则关于x 的方程(21)()f x f t e -=-的根的个数叙述正确的是( ).A .有两个B .有一个C .没有D .上述情况都有可能二、填空题:本大题共5小题,每小题5分,共25分.11.已知向量a 、b满足(1,0),(2,4)a b ==,则=+→→||b a .12.45)1)(1(x x x 展开式中-+的系数是 (用数字作答).13. 在数列}a {n 中,)N n (a a a ,a ,a n n n *∈-===++122151,则2014a = .14.已知二次函数)R (4)(2∈+-=x c x ax x f 的值域为)0[∞+,,则ac 91+的最小值为 . 15. 已知D 是函数],[),(b a x x f y ∈=图象上的任意一点,B A ,该图象的两个端点, 点C 满足0=⋅=→→→→i DC AB AC ,λ,(其中→<<i ,10λ是x 轴上的单位向量),若T DC ≤→||(T 为常数)在区间],[b a 上恒成立,则称)(x f y =在区间],[b a 上具有 “T 性质”.现有函数: ①12+=x y ; ②12+=xy ; ③2x y =; ④x x y 1-=.则在区间]2,1[上具有“41性质”的函数为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤16. (本小题满分12分)设{}n a 是公差大于零的等差数列,已知12a =,23210a a =-.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设{}n b 是以函数24sin y x π=的最小正周期为首项,以3为公比的等比数列,求数列{}n n a b -的前n 项和n S .17. (本小题满分12分) 已知ABC ∆ 的内角A 、B 、C 所对的边为,,a b c , (sin ,cos )m b A a a B =-,(2,0)n =,且m 与n 所成角为3π. (Ⅰ)求角B 的大小;(Ⅱ)求C A sin sin +的取值范围.18. (本小题满分12分)某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。
一、单选题1.若函数的导函数在区间上是增函数,则函数在区间上的图象可能是A.B.C.D.2. 已知两条不同的直线l ,m 和一个平面α,下列说法正确的是( )A .若l ⊥m ,m ∥α,则l ⊥αB .若l ⊥m ,l ⊥α,则m ∥αC .若l ⊥α,m ∥α,则l ⊥mD .若l ∥α,m ∥α,则l ∥m3. 已知为第一象限角,且,则( )A.B.C.D.4. 函数的图象大致为( )A.B.C.D.5.已知双曲线的右焦点为F ,点A 为C 的一条渐近线上的一点,且(O 为坐标原点),点M 为C 的左顶点,以AM 为直径的圆与x 轴交于不同于点M 的点B ,且,则C 的渐近线方程为( )A.B.C.D.6. 已知集合,,则( )A.B.C.D.7. 设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( )A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)8.已知集合.现给出下列函数:①②③④,若时,恒有,则所有可取的函数的编号是四川省成都市石室中学2024届高三一模数学(理)试题四川省成都市石室中学2024届高三一模数学(理)试题二、多选题三、填空题四、解答题A .①②③④B .①②④C .①②D .④9. 已知数列是各项均为正数的等比数列,是公差大于0的等差数列,且,,则( )A.B.C.D.10.已知函数及其导函数的定义域均为R ,若为奇函数,的图象关于y 轴对称,则下列结论中一定正确的是( )A.B .C.D.11. 在数学中,双曲函数是一类与三角函数类似的函数.最基本的双曲函数是双曲正弦函数和双曲余弦函数等.双曲函数在物理及生活中有着某些重要的应用,譬如达·芬奇苦苦思索的悬链线(例如固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线即为悬链线)问题,可以用双曲余弦型函数来刻画.则下列结论正确的是( )A.B.为偶函数,且存在最小值C .,D .,且,12. 已知的展开式共有13项,则下列说法中正确的有( )A.所有奇数项的二项式系数和为B.所有项的系数和为C .二项式系数最大的项为第6项或第7项D .有理项共5项13. 已知函数.若,则实数的最小值为______.14. 已知椭圆与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,点F 是椭圆的一个焦点,若△ABF 是等腰三角形,则的值为________.15. 填表:函数使函数有意义的x 的实数范围1________________2________________3________________4________________16. 如图,在四棱锥中,底面ABCD ,底面ABCD 为正方形,,E ,F ,M 分别是PB ,CD ,PD的中点.(1)证明:平面PAD .(2)求平面AMF与平面EMF的夹角的余弦值.17. 已知.(1)讨论的单调性;(2)确定方程的实根个数.18. 如图是一个四棱柱被一个平面所截的几何体,底面是正方形,M是的中点,.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.19. 已知函数.(1)若对任意的恒成立,求的取值范围;(2)证明:.20. 如图,已知圆的直径长为2,上半圆圆弧上有一点,,点是弧上的动点,点是下半圆弧的中点,现以为折线,将下半圆所在的平面折成直二面角,连接、、.(1)当平面时,求的长;(2)当三棱锥体积最大时,求二面角的余弦值.21. 2021年4月17日,江苏园博会正式向公众开放.昔日废弃采矿区化茧成蝶,变身成了"世界级山地花园群”.园博园的核心景区苏韵荟谷以流水串联,再现了江苏13个地市历史名园的芳华,行走其间,仿佛穿游在千年历史长河中,吸引众多游客前来打卡某旅行社开发了江苏园博园一-日游线路,考虑成本与防疫要求,每团人数限定为不少于35人,不多于40人除去成本,旅行社盈利100元/人.已知该旅行社已经发出的10个旅行团的游客人数如下表所示∶序号12345游客人3935383836数序号678910游客人3940374038数(1)该旅行社计划从这10个团队中随机抽取3个团队的游客,就服务满意度进行回访,求这3个团队人数不全相同的概率;(2)预计暑假期间发团200个,将盈利总额记为X(单位∶万元),用上表中的频率估计概率,求X的数学期望.。
2022年四川省成都市石室中学(高中部)高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数f(x)=,若f(x)的两个零点分别为x1、x2,则|x1﹣x2|=()A.B.1+C.2 D. +ln2参考答案:C【考点】5B:分段函数的应用.【分析】作出y=log4x,y=4x和y=2﹣x的函数图象,根据函数图象的对称关系即可得出x2﹣x1的值.【解答】解:当x≤0时,令f(x)的零点为x1,则x1+2=(),∴4=﹣(﹣x1)+2,∴﹣x1是方程4x=2﹣x的解,当x>0时,设f(x)的零点为x2,则log4x2=2﹣x2,∴x2是方程log4x=2﹣x的解.作出y=log4x,y=4x和y=2﹣x的函数图象,如图所示:∵y=log4x和y=4x关于直线y=x对称,y=2﹣x关于直线y=x对称,∴A,B关于点C对称,解方程组得C(1,1).∴x2﹣x1=2.故选C.2. 已知实数满足,若,则的取值范围是A. B. C. D.参考答案:D3. 设,则此函数在区间和内分别为A.单调递减,单调递增 B.单调递增,单调递增C.单调递增,单调递减D.单调递减,单调递减参考答案:A略4. 观察下列各式,,,,,…,则的十位数是()A. 2B. 4C. 6D. 8参考答案:C【分析】通过观察十位数的数字特征可知周期为5,根据周期计算可得结果.【详解】记的十位数为经观察易知,,,,,,……可知的周期为则的十位数为:本题正确选项:【点睛】本题考查利用数列的周期性求解数列中的项,关键是能够通过数字变化规律发现数列的周期性.5. 已知函数对于任意的满足(其中是函数的导函数),则下列不等式不成立的是()A. B.C. D.参考答案:A【知识点】导数与函数的单调性 B11,B12解析:构造函数g(x)=,则g′(x)==(f′(x)cosx+f(x)sinx),∵对任意的x∈(﹣,)满足f′(x)cosx+f(x)sinx>0,∴g′(x)>0,即函数g(x)在x∈(﹣,)单调递增,则g(﹣)<g(﹣),即,∴,即f(﹣)<f(﹣),故A正确.g(0)<g(),即,∴f(0)<2f(),故选:A.【思路点拨】根据条件构造函数g(x)=,求函数的导数,利用函数的单调性和导数之间的关系即可得到结论6. 在公差不为零的等差数列{a n}中,2a3﹣a72+2a11=0,数列{b n}是等比数列,且b7=a7,则log2(b6b8)的值为()A.2 B.4 C.8 D.1参考答案:B【考点】等差数列的性质.【分析】根据数列{a n}为等差数列可知2a7=a3+a11,代入2a3﹣a72+2a11=0中可求得a7,再根据{b n}是等比数列可知b6b8=b72=a72代入log2(b6b8)即可得到答案.【解答】解:∵数列{a n}为等差数列,∴2a7=a3+a11,∵2a3﹣a72+2a11=0,∴4a7﹣a72=0∵a7≠0∴a7=4∵数列{b n}是等比数列,∴b6b8=b72=a72=16∴log2(b6b8)=log216=4故选:B【点评】本题主要考查了等比中项和等差中项的性质.属基础题.7. 全集U={1,2,3,4,5,6},M={2,3,4},N={4,5},则?U(M∪N)等于()A.{1,3,5} B.{1,5} C.{l,6} D.{2,4,6}参考答案:C【考点】交、并、补集的混合运算.【分析】由题意和并集的运算求出M∪N,再由补集的运算求出?U(M∪N)【解答】解:因为M={2,3,4},N={4,5},所以M∪N={2,3,4,5},又全集U={1,2,3,4,5,6},所以?U(M∪N)={l,6},故选:C.8. 已知函数f(x)=2sin(ωx+)(ω>0)的最小正周期为4π,则该函数的图像()A.关于点(,0)对称 B.关于点(,0)对称C.关于直线x=对称 D.关于直线x=对称参考答案:B9. 设,则 ( )A. B.C. D.参考答案:A10. 如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某几何体的三视图,该几何体的体积为( )A.B.C.D.参考答案:C 二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,则的值为()A.2 B.3 C.4 D.5参考答案:A试题分析:故选A.111]考点:1、分段函数求值;2、对数运算.12. 已知中,点的坐标分别为则的面积为参考答案:13. 已知等差数列中,,,若,则数列的前5项和等于 .参考答案:答案:9014. 在直角坐标系中, 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,则直线截圆所得的弦长等于____________。
成都石室中学高20XX 届一诊模拟考试数学试题(理科)NO 姓名 考试时间选择题 填空题 解答题总分第I 卷 (选择题部分 共60分)一、选择题(本大题共12小题,每小题5分,共60分,每小题只有一个正确选项,把答案涂在答题卷上.) 1.若复数112m ii +++是实数,则实数m =( ) A.12 B. 1 C. 32D. 22. 已知向量(),1a t =与()4,b t =共线且方向相同,则a b ⋅=( )A. 10-B. 1C. 2-D. 103. 已知集合{}220A x x x =--<,{}2log B x x m =>,若A B ⊆,则m 的取值范围是( )A.(]0,4B. 1,12⎛⎤⎥⎝⎦C. 10,2⎛⎤ ⎥⎝⎦D. 1,2⎛⎤-∞ ⎥⎝⎦4. 在等比数列{}n a 中,若48,a a 是方程2430x x -+=的两根,则6a =( )A.3 B. 3- C. 3± D. 3±5. 将两颗骰子各掷一次,设事件A 为“两个点数不相同”,B 为“至少出现一个1点”,则概率()P A B =( )A. 1011B. 511C. 518D. 5366. 某程序框图如图所示,该程序运行后输出的值是( )A. 11B. 63C. 13D. 657. 网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则此棱锥的体积是( )A. 83B. 73C. 53D. 438. 函数()21cos 24f x x π⎛⎫=-- ⎪⎝⎭的单调递增区间是( )A. ()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B.()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C. ()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D.(),44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦9. 三棱锥P ABC -内接于半径为2的球中,PA ⊥平面ABC ,4A π=,2BC =,则三棱锥P ABC -体积的最大值为( )StartEnd 1,0i S ==50?S >21S S =+NYOutput i21i i =+A.B.C.D. 10. 已知双曲线22221x y a b-=的左、右焦点分别为12F F 、,过1F 作圆222x y a +=的切线分别交双曲线的左、右两支于B C 、点,且2BC CF =,则双曲线的离心率的平方为( )A.5+ B.4+ C.3+D. 1+11. 如图,在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 为底面ABCD 所在平面内一点,设1,PD PE 与底面ABCD 所成角分别为12,θθ(12,θθ均不为0),若12θθ=, 则三棱锥1A DPC -体积的最大值是( )A. 2B. 3C.154 D. 19412. 已知数列{}n a 满足143n n a a n ++=+且*2,0n n N a n ∀∈+≥,则2016a 的取值范围是( )A. []4028,4043B. []4026,4042C. []4017,4029D. []4024,4036二、填空题(本大题共4小题,每小题5分,共20分,请把答案写在相应的位置上.) 13. 若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为 .14. 在()()512x x +-的展开式中,3x 的系数为 .15. 已知22:1O x y +=,若直线2y +上总存在点P ,使得过点P 的O 的两条切线相互垂直,则实数k 的最小值为 .16. 设函数()()()22ln f x x a x a =-+-,其中0,x a R >∈,存在0x 使得()012f x ≤成立,则实数a 的取值范围为 .A 1E三、解答题(17-21每小题12分,22题10分,共70分,解答应写出必要的文字说明,证明过程或演算步骤.)17. 如图,点P 在ABC ∆内,2AB CP ==,3BC =,P B π∠+∠=,记∠(I )试用α表示AP 的长;(II )求四边形ABCP 的面积的最大值,并求此时α的值.18. 如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=,点E 是棱PC 的中点,平面ABE 与棱PD 交于点F .(I )求证:AB EF ; (II )若2PA PD AD ===,平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余弦值.B AP ECBD F19. 20XX 年,我省数学学科将使用新课标全国卷作为高考用卷.现有一所学校(以下简称A 校),为了调查该(I )根据以上数据,能否有90%的把握认为A 校师生“支持使用新课标全国卷”与“师生身份”有关? (II )现将这100名师生按教师、学生身份进行分层抽样,从中抽取10人,试求恰好抽取到持“反对使用新课标全国卷”态度的教师2人的概率;(III )将上述调查所得到的频率视为概率,从A 校所有师生中,采用随机抽样的方法抽取4位师生进行深入调查,记被抽取的4位师生中持“支持新课标全国卷”态度的人数为X ,求X 的分布列以及数学期望()E X .【参考公式】()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【参考数据】20. 已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()()121,01,0F F -、,过2F 的直线l 交椭圆于不同的两点M N 、,当l x ⊥轴时,3MN =.(I )求椭圆C 的方程;(II )1F MN ∆的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线l 的方程;若不存在,请说明理由.21. 已知函数()1tx x f x xe e =-+,其中R t ∈,e 2.71828=是自然对数的底数.(I )当0t =时,求函数()f x 的最大值;(II )证明:当11t e<-时,方程()1f x =无实根;(III )若函数()f x 是()0,+∞内的减函数,求实数t 的取值范围.选修4-4:坐标系与参数方程22. 在直角坐标系中,曲线1C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数);以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(I )求曲线1C 的普通方程和2C 的直角坐标方程;(II )设P 是曲线1C 上的动点,求P 到2C 上的点的距离的最小值.成都市成都七中高三年级第一学期半期考试数学试题(理科)答案。
成都石室中学2023~2024学年度下期高2025届零诊模拟考试数学试卷(满分150分,考试时间120分钟.考试结束后,只将答题卷交回)第I 卷注意事项:1.答第I 卷前,考生务必将自己的班级、姓名、准考证号写在答题卷上.2.每小题选出答案后,用铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上的无效.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.已知函数()y f x =的导函数()y f x ′=的图象如下,则函数()f x 有 A .1个极大值点,1个极小值点B .2个极大值点,2个极小值点C .3个极大值点,1个极小值点D .1个极大值点,3个极小值点 2.已知数列{}n a 是等比数列,若2a 48a 是22760x x −+=的两个根,则12254849a a a a a ⋅⋅⋅⋅ 的值为A .354B.C.±D .2433.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,B 为B 的对立事件,则事件A B +发生的概率为A .13B .12C .23D .564.若21()ln(2)2f x x b x =−++在(1,)−+∞上是减函数,则b 的取值范围是A .[1,)−+∞B .(1,)−+∞C .(,1]−∞−D .(,1)−∞−5.某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单.如果A 、B 两个节目要相邻,且都不排在第3个节目的位置,那么节目单上不同的排序方式有 A .192种 B .144种 C .96种 D .72种 6.若随机变量X 的可能取值为1,2,3,4,且()P X k k λ==(1,2,3,4k =),则()D X = A .1 B .2 C .3 D .4xyx 4O7.A 、B 两位同学各有3张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面向上时A 赢得B 一张卡片,否则B 赢得A 一张卡片.如果某人已赢得所有卡片,该游戏终止.那么恰好掷完5次硬币时游戏终止的概率是A .116 B .332C .18 D .3168.在2024(x 的二项展开式中,含x 的奇次幂的项之和为S,当x =时,S 等于A .30352B .30352−C .30362D .30362−二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全选对的得6分,部分选对的得部分分,有选错的得0分. 9.已知函数3()1f x x x =++,则 A .()f x 有两个极值点B .()f x 有一个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线10.已知X ,Y 都是服从正态分布的随机变量,且211~(,)X N µσ,222~(,)Y N µσ,其中12,R µµ∈,12,R σσ+∈,则下列命题正确的有A .1()E X µ=B .1()D X σ=C .若12µ=,11σ=,则(1)(3)1P X P X ≤+≤=D .若120µµ==,12σ=,23σ=,则(||1)(||1)P X P Y ≤>≤ 11.斐波那契数列{}n f 满足121f f ==,21n n n f f f ++=+(*N n ∈).下列命题正确的有 A .28791f f f =+B .存在实数λ,使得1{}n n f f λ+−成等比数列C .若{}n a 满足11a =,111n na a +=+(*N n ∈),则1n n n f a f +=D .012345678910201918171615141312111020C C C C C C C C C C C f ++++++++++=第II 卷三、填空题:本大题共3小题,每小题5分,共计15分. 12.函数()2cos f x x x =+(π02x <<)的最大值为 . 13.甲乙二人同时向某个目标射击一次.甲命中的概率为45,乙命中的概率为35,且两人是否命中目标互不影响.若目标恰被击中一次,则甲命中目标的概率为 .14.数列{}n a 满足132a =,211n n n a a a +=−+(*N n ∈),则122024111m a a a =+++的整数部分是 .四、解答题:共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)已知{}n a 是等差数列,11a =,且1a ,3a ,9a 成等比数列. (1)求数列{}n a 的公差; (2)求数列{2}n a 的前n 项和n S .16.(本小题15分)如图所示,斜三棱柱111ABC A B C −的各棱长均为2, 侧棱1BB 与底面ABC 所成角为3π,且侧面11ABB A ⊥底面ABC .(1)证明:点1B 在平面ABC 上的射影O 为AB 的中点; (2)求二面角1C AB B −−的正切值.17.(本小题15分)已知函数2()()e x f x x ax a −=++(a 为常数,e 为自然对数的底)在0x =时取得极小值. (1)试确定a 的取值范围; (2)当a 变化时,设由()f x 的极大值构成的函数为()g a ,试判断曲线()y g x =只可能与直线230x y m −+=、320x y n −+=(m ,n 为确定的常数)中的哪一条相切,并说明理由.A 1CB18.(本小题17分)椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率e =,椭圆上的点到焦点的最短距离为1e −,直线l 与y 轴交于点(0,)P m (0m ≠),与椭圆C 交于相异两点A 、B ,且4OA OB OP λ+= .(1)求椭圆方程;(2)求m 的取值范围. 19.(本小题17分)为了估计鱼塘中鱼的数量,常常采用如下方法:先从鱼塘中捞出m 条鱼,在鱼身上做好某种标记后再放回鱼塘.一段时间后,再从鱼塘中捞出n 条鱼,并统计身上有标记的鱼的数目,就能估计出鱼塘中的鱼的总数N .已知200m =,设第二次捞出的n 条鱼中身上有标记的鱼的数目为随机变量X . (1)若已知4000N =,40n =. ①求X 的均值;②是否有90%的把握认为能捞出身上有标记的鱼(即能捞出身上有标记的鱼的概率不小于0.9)? (2)若700n =,其中身上有标记的鱼有30条,估计池塘中鱼的总数(将使(30)P X =最大的N 作为估计值). 参考数据:lg3.760.5752≈,lg3.80.5798≈,lg3.960.5977≈,lg 40.6021≈.成都石室中学2023~2024学年度下期高2025届零诊模拟考试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分. 1.A .2.C .3.C .4.C .5.B .6.A .7.D .8.B . 二、多项选择题:本题共3小题,每小题6分,共18分. 9.BC .10.ACD .11.BC .三、填空题:本大题共3小题,每小题5分,共计15分. 12.π6+.13.811.14.1. 四、解答题:共73分.解答应写出文字说明,证明过程或演算步骤. 15.解:(1)设{}n a 的公差为d ,则由题意,2(12)18d d +=+,(3分) 解得1d =或0d =.(6分) (2)由(1)因此数列{}n a 的通项公式为1n a =或n a n =.(8分) 由于22n a =或22n a n =,(10分) 由等比数列前n 项和公式得2n S n =或12(12)2212n n nS +−==−−.(13分) 注:漏掉0d =的扣5分.16.证明:(1)过1B 作1B O AC ⊥于O ,(2分) 由平面11ABB A ⊥平面ABC 得1B O ⊥平面ABC ,因此160B BA ∠=°,(5分) 从而1ABB 为等边三角形,O 为AB 中点.(7分) (2)由于ABC 是等边三角形,所以CO AB ⊥,而平面11ABB A ⊥平面ABC ,所以CO ⊥平面1ABB .(10分) 过O 作1OH AB ⊥于H ,连接CH ,则OHC ∠是二面角1C AB B −−的平面角.(13分)由于CO =,CH tan 2OHC ∠=.因此二面角1C AB B −−的正切值为2.(15分)17. 解:(1)2()e [(2)]x f x x a x −′=−−−.(2分) 当2a =时,()f x 无极值;当2a <时,0x =是()f x 的极小值点;当2a >时,0x =是()f x 的极大值点.因此2a <.(7分)A 1C B(2)2x a =−是()f x 的极大值点.因此2()(2)e (4)a g a f a a −=−=−−(2a <).于是2()e (3)x g x x −′=−−.(10分)令2()e (3)x h x x −=−−,则2()e (2)x h x x −′=−−,故()h x 在(,2)−∞上单调递增,()(2)1h x h <=,即()1g x ′<恒成立.(13分)所以曲线()y g x =的切线的斜率可能为23,不可能为32,即只可能与230x y m −+=相切.(15分) 18.解:(1)设椭圆的方程为22221y x a b+=(0a b >>),c =,则c a =(2分)由题意,1a c −= (5分) 解得1a =,b c ==,因此椭圆的方程为2221x y +=.(8分) (2)由题意可知3λ=.(10分) 显然直线l 斜率存在且不为0,设其方程为y kx m =+.联立方程消去y ,得222(2)2(1)0k x kmx m +++−=,224(22)0k m ∆=−+>.设11(,)A x y ,22(,)B x y ,则12222kmx x k +=−+,212212m x x k −=+.(12分) 由于1230x x +=,即123x x =−.因此1222x x x +=−,从而1232km x k −=+,222kmx k =+,所以2221222231(2)2k m m x x k k −−==++,整理得22224220k m m k +−−=,(15分) 22222041m k m −=>−,解得112m −<<−或112m <<.经检验,此时0∆>.因此m 的取值范围是11(1,)(,1)22−− .(17分) 19.解:(1)①由题意可知X 服从超几何分布,则40200()24000E X ×==.(3分) (2)②由于(1)1(0)P X P X ≥=−=,而404038004040003800379937613760(0)()4000399939613960C P X C ×××===>××× ,(5分) 从而lg (0)40(lg3.76lg3.96)0.91P X =>−≈−>−,(7分)因此(0)0.1P X =>,(1)0.9P X ≥<,所以没有90%的把握认为能捞出身上有标记的鱼.(8分) (2)由题意,30670200200700(30)N NC C P X C −==且700(20030)870N ≥+−=.(9分) 只需求使得670200700N N NC a C −=最大的N .由于(200)!700!(700)!!670!(870)!N N N a N N −××−=××−,1(199)!700!(699)!(1)!670!(869)!N N N a N N +−××−=+××−,(11分) 从而1(200)!700!(700)!670!(869)!N NN N a a N N N N N N +−××−−−−−+−+××−(200)!700!(700)!670!(869)!N N N N N −××−×+−+−++××−(200)!700!(700)!670!(869)!N N N N N −××−−−+−+−−+××−(200)!700!(700)!(13997030)(1)!670!(869)!N N N N N −××−−+××−(14分)因此,当4665N ≤时,1N N a a +>,当4666N ≥时,1N N a a +<.所以,当4666N =时,(30)P X =最大.综上所述,N 的估计值为4666.(17分) 注:第(2)问用70020030×来计算的,结果是4666的得2分,结果是4667的不得分.。
四川省成都市石室中学2013年高考数学一模试卷(理科)一、选择题:只有唯一正确答案,每小题5分,共50分
2.(5分)复数的虚部是()
解:复数==i
3.(5分)已知,则的值为()
,
=
﹣
)
)﹣(﹣).
4.(5分)阅读右边的程序框图,运行相应的程序,则输出s的值为()
6.(5分)函数f(x)=Asin(ωx+φ)的部分图象如图所示,则此函数的解析式为()
....
=3
=3
(
.
(
×1+
﹣
2
﹣
|x|+
8.(5分)O为平面上的定点,A、B、C是平面上不共线的三点,若
,则△ABC是()
,由条件可得•2,故⊥
,∵•(2•2=0⊥,故△ABC
9.(5分)反复抛掷一枚质地均匀的骰子,每一次抛掷后都记录下朝上一面的点数,当记录
10.(5分)已知关于x的方程﹣2x2+bx+c=0,若b、c∈{0,1,2,3,4},记“该方程有实
p=
二、填空题:每小题5分,共25分
11.(5分)已知数列{a n}的前n项和,则a n= ﹣3×2n﹣1(n∈N*).
(
12.(5分)(1+2x)n的展开式中x3的系数等于x2的系数的4倍,则n等于8 .
•x
,
=4×4,
=2×,解得
13.(5分)如图是一个空间几何体的主视图、左视图、俯视图,如果主视图、左视图所对应的三角形皆为边长为2的正三角形,俯视图对应的四边形为正方形,那么这个几何体的体
积为.
高为
,高为
=
故答案为:
14.(5分)设向量与的夹角为θ,,,则cosθ等于
.
的坐标,再利用向量的夹角公式,即可求得结论.
,
=
==
故答案为:
15.(5分)定义在(﹣1,1)上的函数f(x)满足:对任意x,y∈(﹣1,1),
恒成立.有下列结论:①f(0)=0;②函数f(x)为(﹣1,1)上的奇函数;③函数f(x)是定义域内的增函数;④若,
且a n∈(﹣1,0)∪(0,1),则数列{f(a n)}为等比数列.
其中你认为正确的所有结论的序号是①②④.
,可证出,当
,
,则
,所以,
,则
=f
三、解答题(共6小题,满分75分)
16.(12分)已知△ABC的面积S满足,的夹角为θ.
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最大值.
)由题意知
=
,∴
,∴
,∴
,即时,取得最大值
)的最大值为=3
17.(12分)三棱锥P﹣ABC中,PA=PB=PC,∠ACB=90°,AC=CB=2.
(Ⅰ)求证:平面PAB⊥平面ABC;
(Ⅱ)若,且异面直线PC与AD的夹角为60°时,求二面角P﹣CD﹣A的余弦值.
中,
为正三角形,解得
,,,
,∴
,
为钝角,其的余弦值为
18.(12分)设函数y=f(x)满足:对任意的实数x∈R,有f(sinx)=﹣cos2x+cos2x+2sinx ﹣3.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若方程有解,求实数a的取值范围.
时方程
,此时只需求出的值域即可,分类讨论:①当
时,可求出其值域.
(Ⅱ)①当时,
时,
,则,
因为函数
时,
,则,
+32a≤g()
19.(12分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入
为R(x)万元,且
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?
(注:年利润=年销售收入﹣年总成本)
)当
﹣
﹣
取最大值,且
当且仅当
时,
x=
21.(13分)设数列{a n}为单调递增的等差数列,a1=1,且a 3,a6,a12依次成等比数列.(Ⅰ)求数列{a n}的通项公式a n;
(Ⅱ)若,求数列{b n}的前n项和S n;
(Ⅲ)若,求证:.
∴
(Ⅲ)证明:
22.(14分)已知函数.
(Ⅰ)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;(Ⅱ)当x>0时,恒成立,求整数k的最大值;
(Ⅲ)试证明:(1+1•2)•(1+2•3)•(1+3•4)•…•(1+n(n+1))>e2n﹣3.
恒成立,即
(Ⅲ)由(Ⅱ)知:
(Ⅰ)解:由题
时,
,则
,则(Ⅲ)证明:由(Ⅱ)知:。