可靠性中常用的概率分布
- 格式:doc
- 大小:105.50 KB
- 文档页数:3
1.可靠性工程的重要性主要表现在三个方面:高科技的需要,经济效益的需要,政治声誉的需要2.产品在规定的条件下和规定的时间内,完成规定功能的能力。
从设计的角度,可靠性可分为基本可靠性和任务可靠性;从应用的角度,可靠性可分为固有可靠性和使用可靠性。
基本可靠性是指产品在规定的条件下无故障的持续时间或概率。
它反映了产品对维修人力的要求。
任务可靠性是指产品在规定的任务剖面中完成规定功能的能力。
它反映了产品对任务成功性的要求.3.可靠性指标(1)可靠度R(t) 0≤R(t)<1 不可靠度(2)故障密度函数f(t)(3)λ(t)也称为产品的瞬时失效率.(4)平均寿命对于不维修产品表示为:失效前平均时间MTTF对于可维修产品表示为:平均故障间隔时间MTBF(5)有效度维修度M(t)——产品在规定条件下进行修理时, 在规定时间内完成修复的概率.平均修复时间MTTR有效度A(t):表示产品在规定条件下保持规定功能的能力。
(固有有效度)(使用有效度))MTBF——反映了可靠性的含义。
MTTR——反映维修活动的一种能力。
4.常用寿命分布函数(1)指数分布主要特点:故障率表现为一个常数,便于计算。
适合对器件处于偶然失效阶段的描述重要性质:无记忆性(2)正态分布主要特点:能同时反映出构成电子元器件产品失效分布的各种微小的独立的随机失效因素的总结果,也即能反映出产品失效模式的多样性和失效机理的复杂性.(3)威布尔分布用三个参数来描述,这三个参数分别是尺度参数α,形状参数β、位置参数γ,5.失效率曲线早期失效期的特点是失效发生在产品使用的初期,失效率较高,随工作时间的延长而迅速下降。
造成早期失效的原因大多属生产型缺陷,由产品本身存在的缺陷所致.通过可靠性设计、加强生产过程的质量控制可减少这一时期的失效。
偶然失效期的特点是失效率很低且很稳定,近似为常数,器件失效往往带有偶然性。
这一时期是使用的最佳阶段。
耗损失效期的特点是失效率明显上升,多由于老化、磨损、疲劳等原因并不是任何一批器件均明显地表现出以上三个失效阶段。
名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形二项分布np npq二项分布:当进行一种试验只有两种可能的结果时,叫成败型试验。
在可靠性工程中,二项分布可用来计算部件相同并行工作冗余系统的成功概率,也适用于计算一次使用系统的成功概率。
返回可靠性中常用的概率分布名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形泊松分布P(λ)λλ泊松分布:一个系统,在运行过程中由于负载超出了它所能允许的范围造成失效,在一段运行时间内失效发生的次数X是一随机变量,当这随机变量有如下特点时,X服从泊松分布。
特点1:当时间间隔取得极短时,智能有0个或1个失效发生;特点2:出现一次失效的概率大小与时间间隔大小成正比,而与从哪个时刻开始算起无关;特点3:各段时间出现失效与否,是相互独立的。
例如:飞机被击中的炮弹数,大量螺钉中不合格品出现的次数,数字通讯中传输数字中发生的误码个数等随机变数,就相当近似地服从泊松分布。
名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形超几何分布H(n,M,N)返回可靠性中常用的概率分布名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形指数分布e(λ)指数分布:许多电子产品的寿命分布一般服从指数分布。
有的系统的寿命分布也可用指数分布来近似。
它在可靠性研究中是最常用的一种分布形式。
指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。
可靠性中常用的概率分布名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形威布尔分布(Ⅲ型极值分布)W(k,a,b)威布尔分布:在可靠性工程中被广泛应用,尤其适用于机电类产品的磨损累计失效的分布形式。
由于它可以利用概率纸很容易地推断出它的分布参数,被广泛应用与各种寿命试验的数据处理。
可靠性中常用的概率分布名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形正态分布(高斯分布)N(μ,σ)μσ2正态分布:是在机械产品和结构工程中,研究应力分布和强度分布时,最常用的一种分布形式。
关于可靠性分布函数及其工程应用的讨论学号:*********姓名:***目录一、引言 (3)二、分布函数及其应用的讨论 (3)(一)、指数分布 (3)1.定义: (3)2.指数分布的可靠度与不可靠度函数 (4)3.图像分析 (4)4.应用 (5)(二)、正态分布 (6)1.定义: (6)2.正态分布的可靠度与不可靠度函数 (6)3.失效率函数 (6)4.图像分析 (7)5.应用 (8)(三)、对数正态分布 (9)1.定义: (9)2.对数正态分布的可靠度与不可靠度函数 (9)3.对数正态分布失效率 (9)4.图像分析 (9)5应用 (11)(四)、威布尔分布 (12)1.三参数威布尔分布的定义: (12)2.可靠度与不可靠度函数 (12)3.威布尔分布失效率 (12)4.图像分析 (12)5.应用 (15)三、小结 (16)参考文献 (17)附录 (18)一、引言可靠性是指产品在规定的条件下,规定时间内,完成规定功能的能力,是对产品无故障工作能力的度量。
可靠性作为衡量产品质量的一个重要的指标,已广泛的应用于各个工程领域。
与可靠性相反,产品丧失规定功能称为失效或故障。
工程机械系统是由零件和部件组成的,零件或部件的失效会导致系统的失效。
然而,失效的原因是多种多样的,如结构缺陷、工艺缺陷、使用不当、老化等等。
引起每种失效的原因也可能是不同的,如性能退化可能由于疲劳、蠕变、裂纹扩展、磨损或者腐蚀等导致的[1]。
实践表明,系统或零、部件的失效时间往往是不确定的,要定量描述系统或零、部件的失效时间,应当采用统计学方法。
将失效时间作为一个随机变量,用一个恰当的概率分布函数去描述它。
从数据的统计分析中找出产品寿命分布的规律,是进一步分析产品故障,预测故障发展,研究其失效机理及制定维修策略的重要手段。
可靠性分析与评估是可靠性分析中非常重要的一部分,它是指在产品的寿命周期内,根据产品的可靠性分布模型、结构,以及相关的可靠性信息,利用统计方法,对产品的可靠性指标做出估计的过程。
二参数威布尔分布
二参数威布尔分布是一种常见的概率分布,也是一种可靠性分析中常用的分布。
它的概率密度函数为:
$$f(x)=frac{beta}{alpha}(frac{x-gamma}{alpha})^{beta-1}exp[ -(frac{x-gamma}{alpha})^{beta}]$$
其中,$alpha$ 和 $beta$ 分别是形状参数和尺度参数,$gamma$ 是位移参数。
二参数威布尔分布的特点是它的故障率函数是单峰的,并且可以描述一些具有逐渐加速的失效率的系统。
该分布在可靠性分析、风险评估、医学统计学等领域有广泛应用。
二参数威布尔分布的参数估计可以使用最大似然估计法或贝叶
斯估计法。
在实际应用中,我们可以使用统计软件对数据进行分析,并得到相应的分布参数,从而进行可靠性分析和风险评估。
- 1 -。
16种常见概率分布概率密度函数意义及其应用1. 常数分布(Constant distribution):概率密度函数(Probability Density Function,PDF)为常数,表示特定区间内的概率相等。
这种分布常用于模拟实验或作为基线分布进行比较。
2. 均匀分布(Uniform distribution):概率密度函数为一个常数,表示在特定区间内的各个取值的概率相等。
均匀分布经常用于随机抽样,以确保样本的代表性。
3. 二项分布(Binomial distribution):概率密度函数描述了进行n次独立二类试验中成功次数的概率分布。
二项分布在实验设计、质量控制和市场研究中广泛应用。
4. 泊松分布(Poisson distribution):5. 正态分布(Normal distribution):概率密度函数为指数函数形式,常用来描述自然界中众多连续变量的分布,例如身高、体重等。
正态分布在统计学和金融学中广泛应用。
6. χ2分布(Chi-square distribution):概率密度函数描述了n个独立标准正态分布随机变量的平方和的分布,是假设检验和方差分析中常用的分布。
7. t分布(t-distribution):概率密度函数描述了标准正态分布随机变量与一个自由度为n的卡方分布随机变量的比值的分布。
t分布在小样本推断和回归分析中常用。
8. F分布(F-distribution):概率密度函数描述了两个自由度为m和n的卡方分布随机变量的比值的分布。
F分布在方差分析、回归分析和信号处理中常应用。
9. 负二项分布(Negative binomial distribution):概率密度函数描述了进行一系列独立二类试验中直到第r次取得第k 次成功的概率。
负二项分布在可靠性工程和传染病模型中常用。
10. 伽马分布(Gamma distribution):概率密度函数描述了多个指数分布随机变量的和的分布,常被用于描述连续事件的时间间隔。
一、可靠性概论1.1 可靠性工程的发展及其重要性1、可靠性工程起源与第二次世界大战(日本,齐藤善三郎)。
20 世纪60 年代是可靠性全面发展的阶段,20 世纪70 年代是可靠性发展步入成熟的阶段,20 世界80 年代是可靠性工程向更深更广的方向发展。
2、1950 年12 月,美国成立了“电子设备可靠性专门委员会”,1952 年8 月,组成“电子设备可靠性咨询组(AGREE) ,1957 年 6 月发表《军用电子设备可靠性》, 标志着可靠性已经成为一门独立的学科,是可靠性发展的重要里程碑。
3、可靠性工作的重要性和紧迫性:①武器装备的可靠性是发挥作战效能的关键,民用产品的可靠性是用户满意的关键②成为参与国际竞争的关键因素③是影响企业盈利的关键④是影响企业创建品牌的关键⑤是实现由制造大国向制造强国转变的必由之路。
4、可靠性关键产品是指一旦发生故障会严重影响安全性、可用性、任务成功及寿命周期费用的产品、价格昂贵的产品。
1.2 可靠性定义及分类1、产品可靠性指产品在规定的条件下和规定的时间内,完成规定功能的能力. 概率度量成为可靠度. 2、寿命剖面是指产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述,包含一个或几个任务剖面。
任务剖面是指产品在完成规定任务这段时间内所经历的事件和环境的时序描述。
3、产品可靠性可分为固有和使用可靠性,固有可靠性水平肯定比使用可靠性水平高. 产品可靠性也可分为基本可靠性和任务可靠性。
基本可靠性是产品在规定条件下和规定时间内无故障工作的能力,它反映产品对维修资源的要求。
任务可靠性是产品在规定的任务剖面内完成规定功能的能力。
同一产品的基本可靠性水平肯定比任务可靠性水平要低。
1.3 故障及其分类1、故障模式是指故障的表现形式,如短路、开路、断裂等。
故障机理是指引起故障的物理、化学或生物的过程。
故障原因是指引起故障的设计、制造、使用和维修等有关的原因。
2、非关联故障是指已经证实未按规定的条件使用而引起的故障,或已经证实仅属某项将不采用的设计所引起的故障,关联故障才能作为评价产品可靠性的故障数。
二项分布:当进行一种试验只有两种可能的结果时,叫成败型试验。
在可靠性工程中,二项分布可用来计算部件相同并行工作冗余系统的成功概率,也适用于计算一次使用系统的成功概率。
返回
可靠性中常用的概率分布
)
泊松分布:一个系统,在运行过程中由于负载超出了它所能允许的范围造成失效,在一段运行时间内失效发生的次数X是一随机变量,当这随机变量有如下特点时,X服从泊松分布。
特点1:当时间间隔取得极短时,智能有0个或1个失效发生;特点2:出现一次失效的概率大小与时间间隔大小成正比,而与从哪个时刻开始算起无关;特点3:各段时间出现失效与否,是相互独立的。
例如:飞机被击中的炮弹数,大量螺钉中不合格品出现的次数,数字通讯中传输数字中发生的误码个数等随机变数,就相当近似地服从泊松分布。
返回
可靠性中常用的概率分布
指数分布:许多电子产品的寿命分布一般服从指数分布。
有的系统的寿命分布也可用指数分布来近似。
它在可靠性研究中是最常用的一种分布形式。
指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。
可靠性中常用的概率分布
威布尔分布:在可靠性工程中被广泛应用,尤其适用于机电类产品的磨损累计失效的分布形式。
由于它可以利用概率纸很容易地推断出它的分布参数,被广泛应用与各种寿命试验的数据处理。
可靠性中常用的概率分布
正态分布:是在机械产品和结构工程中,研究应力分布和强度分布时,最常用的一种分布形式。
它对于因腐蚀、磨损、疲劳而引起的失效分布特别有用。