几种常见的概率分布复习过程
- 格式:doc
- 大小:162.01 KB
- 文档页数:4
考研数学概率与统计备考掌握常见概率分布和统计方法概率与统计是考研数学中的一个重要内容,备考期间,掌握常见的概率分布和统计方法是非常关键的。
本文将介绍几种常见的概率分布和统计方法,以助于考生备考时的复习。
一、离散型随机变量及其概率分布离散型随机变量是指在一次试验中,可能取一些特定值的变量。
在概率论中,常见的离散型随机变量有二项分布、泊松分布和几何分布。
1. 二项分布二项分布是指在n次试验中,成功次数为X的概率分布。
它的概率质量函数为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,n为试验次数,k为成功次数,p为一次试验成功的概率,C(n, k)为组合数。
2. 泊松分布泊松分布是一种在独立时间段内总体事件发生次数的离散概率分布。
它的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,X为事件发生的次数,λ为单位时间或空间内事件的平均发生率。
3. 几何分布几何分布是指在一系列独立重复的伯努利试验中,首次成功所需的试验次数的概率分布。
它的概率质量函数为:P(X=k) = p * (1-p)^(k-1)其中,X为首次成功所需的试验次数,p为一次试验成功的概率。
二、连续型随机变量及其概率分布连续型随机变量是指在某一区间内可能取任意值的变量。
在概率论中,常见的连续型随机变量有均匀分布、正态分布和指数分布。
1. 均匀分布均匀分布是指在一个区间内,随机变量取任意值的概率相等的分布。
它的概率密度函数为:f(x) = 1 / (b-a) (a <= x <= b)其中,a为区间下界,b为区间上界。
2. 正态分布正态分布也称为高斯分布,是自然界和社会现象中最常见的分布。
它的概率密度函数为:f(x) = 1 / (σ* √(2π)) * e^(-(x-μ)^2 / (2σ^2))其中,μ为均值,σ为标准差。
3. 指数分布指数分布是一种用于描述事件发生时间间隔的分布。
第三章第二次课: 回顾概率基础知识,通过离散型和连续型随机变量的概率分布引出本次讲授内容。
第二节几种常见的理论分布重点:掌握正态分布、二项分布、泊松分布的定义、特点和概率计算。
难点:二项分布的概率函数特征,正态分布的特征。
一、二 项 分 布一)、贝努利试验及其概率公式将某随机试验重复进行n 次,若各次试验结果互不影响, 即每次试验结果出现的概率都不依赖于其它各次试验的结果,则称这n 次试验是独立的。
对于n 次独立的试验,如果每次试验结果出现且只出现对立事件A 与A 之一,在每次试验中出现A 的概率是常数p (0<p <1),因而出现对立事件A 的概率是1-p=q ,则称这一串重复的独立试验为n 重贝努利试验,简称贝努利试验(Bernoulli trials )。
在生物学研究中,我们经常碰到的一类离散型随机变量,如入孵n 枚种蛋的出雏数、n 头病畜治疗后的治愈数、n 尾鱼苗的成活数等,可用贝努利试验来概括。
在n 重贝努利试验中,事件A 可能发生0,1,2,…,n 次,现在我们来求事件A 恰好发生k (0≤k ≤n )次的概率P n (k)。
先取n =4,k =2来讨论。
在4次试验中,事件A 发生2次的方式有以下24C 种: 21A A 43A A 4321A A A A 4321A A A A 4321A A A A 4321A A A A 4321A A A A其中A k (k =1,2,3,4)表示事件A 在第k 次试验发生;k A (k =1,2,3,4)表示事件A 在第k 次试验不发生。
由于试验是独立的,按概率的乘法法则,于是有 P (21A A 43A A )=P (4321A A A A )=…= P (4321A A A A )= P (1A )·P (2A )·P (3A )·P (4A )=242-qp又由于以上各种方式中,任何二种方式都是互不相容的,按概率的加法法则,在4 次试验中,事件A 恰好发生2次的概率为)2(4P = P (21A A 43A A )+P (4321A A A A )+…+ P (4321A A A A )=24C 242-qp一般,在n 重贝努利试验中,事件A 恰好发生k (0≤k ≤n)次的概率为)(k P n =kn C kn k qp - k =0,1,2…,n (3-14)若把(4-14)式与二项展开式∑=-=+nk kn k k n nqp C p q 0)(相比较就可以发现,在n 重贝努利试验中,事件A 发生k 次的概率恰好等于np q )(+ 展开式中的第k +1项,所以也把(4-14)式称作二项概率公式。
第四章 几种常见的概率分布第一节 二项分布 一、二项总体 1. 定义由非此即彼事件构成的总体,叫做二项总体(binomial population) 孵n 枚种蛋的出雏数、n 头病畜治疗后的治愈数、n 尾鱼苗的成活数等 2. 表示方法通常给“此”事件以变量“1”,具概率φ ,给“彼”事件以变量“0”,具概率1- φ 。
二项总体又称0、1总体。
● 在n 重贝努利试验中,事件A 可能发生0,1,2,…,n 次,现在我们来求事件A 恰好发生k(0≤k ≤n)次的概率Pn(k)。
● 先取n=4,k=2来讨论。
在4次试验中,事件A 发生2次的方式有 24C● 其中Ak(k=1,2,3,4)表示事件A 在第k 次试验发生;kA (k=1,2,3,4)表示事件A 在第k 次试验不发生。
由于试验是独立的,按概率的乘法法则,于是有● 由于以上各种方式中,任何二种方式都是互不相容的,按概率的加法法则,在4 次试验中,事件A 恰好发生2次的概率为● 一般,在n 重贝努利试验中,事件A 恰好发生k(0≤k ≤n)次的概率为k n k kn n q p C (k)P -=nk ,,2,1,0 =二、二项分布如果我们每次独立抽取二项总体的n 个个体,则所得变量X 将可能有0,1,…n ,共n+1种变量有它各自的概率而组成一个分布。
这个分布就叫做二项概率分布,或简称二项分布(binomial distribution) 由此得到计算二项分布任何一项概率的通式为:p(x) =Cnx φ x(1- φ)n-x二项分布是一种离散型随机变量的概率分布性质1)1(0=-∑=-nx x n x x n C ϕϕ∑=--=≤mx xn x x n C m x P 0)1()(ϕϕ∑=--=≥nmx xn x x nCm x P )1()(ϕϕ∑=-=≤≤=≤≤21)()(2121m m x xn x x nn q p Cm k m p m x m P● 例1:若研究施用某种农药后蚜虫的死亡数,设死虫子为0,其概率为0.3;其活的为1,概率为0.7。
几种常见的概率分布
一、 离散型概率分布
1. 二项分布
n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布
应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的
平均数: (Y)np X E μ==
方差与标准差:2(1)X np P σ=-
;X σ=特例:(0-1)分布
若随机变量X 的分布律为
1(x k)p (1p)k k p -==- k=0,1;0<p<1,
则称X 服从参数p 的(0-1)分布
2. 泊松分布
泊松分布是一种用来描述一定的空间和时间里稀有事件发生次数的概率分布
泊松分布变量x 只取零和正整数:0、1、2…..其概率函数为:
(x)!x p e x μμ-=
泊松分布的平均数:(x)E μμ==
泊松分布的方差和标准差:2σμ=
、σ=
3. 超几何分布 P(X=k)=k n k M N M n N C C C -- 记X~(N ,M ,n ) P=M N
期望:E(X)=np
方差:D(X)=np(1-p)1
N n N -- 适用范围:多次完全相同并且相互独立的重复试验,如果在有限总体中不重
复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票
二、 连续型概率分布
1. 均匀分布
若随机变量X 具有概率密度函数
(x)f =
则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b)
在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为
0F(x),1
x a x a a x b b a b x ⎧<⎪-⎪=≤<⎨-⎪≤⎪⎩
2指数分布
若随机变量X 具有概率密度函数,0(x)0,0
x e x f x λλ-⎧≥=⎨<⎩ 其中0λ> 是常数,
则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为
1,0(x)0,0
x e x F x λ-⎧-≥=⎨<⎩
3.正态分布
正态随机变量X 的概率密度函数的形式如下:
22(x )2(x),f x μδ--=-∞<<∞
式中,μ 为随机变量X 的均值;2δ 为随机变量X 的方差。
通常对具有均值μ,方差为2δ的正态概率分布,记为N (μ,2δ)。
于是有正态随机变量X~N (μ,2δ)。
1,;0,a x b b a ⎧<<⎪-⎨⎪⎩其他
4.2χ 分布
如果从标准正态分布N (0,1)的总体中得到n 个随机变量分别为12n ,....,X X X ,
时,则由2i X ∑ 得到的分布叫做自由度为n 的2χ 分布,记为2~n X χ()
2~n X χ() 。
2χ分布的数学期望和方差分别为:
E (X )= n ,D (X )=2n
关于2χ分布的加法定理。
设12,....k X X X ,
,是相互独立的随机变量,且2~(n ),i 1,2,....,i i X k χ=则
2121~(n n ...n )k i
k i X χ=++∑
2χ分布与N (0,1)分布有如下关系:
设12n ,....X X X ,是相互独立的随机变量,并且i X ~(0,1),i=1,2,…n ,则 221~(n)n
i
i X χ=∑ 5.t 分布
设X~N (0,1),2~(n)Y χ ,X 与Y 相互独立,则随机变量
t =
遵从n 个自由度的t
分布,记为~(n)t t =。
t 分布的数学期望和方差如下:
当n>2时,E(t)=0,D(t)=2
n n - t 分布的图形是对称的。
当n<30时,t 分布的分散程度比标准正态分布大,密度函数曲线比较平缓,随着n 的增大,t 分布逐渐逼近标准正态分布。
当n →∞ 时,t 分布渐近标准正态分布。
6.F 分布
设随机变量21~(n )X χ ,22Y ~(n )χ,且X 与Y 相互独立,则称随机变量
12
//X n F Y n 遵从自由度为12(n ,n ) 的F 分布,记作F~F 12(n ,n )
F 分布的形状为正偏态分布状,但随着12n ,n 的增大,其概率密度曲线的偏斜度虽有所缓减却仍保持偏态分布,并不以正态分布为其极限分布形式。
如果~(n)t t ,则2~(1,n)t F 如果12211~F(n ,n ),~F F
F 则(n ,n ) 。