生物统计学 几种常见的概率分布律
- 格式:ppt
- 大小:923.50 KB
- 文档页数:66
统计学中的常用概率分布及其性质概率论是数学中的一个分支,它研究的是随机事件的发生概率以及由随机变量带来的影响。
概率分布则是衡量随机变量取值的可能性的一种方法。
概率分布可以用来得出某些随机变量出现的概率,同时可以用来比较多个随机变量之间的差异。
在统计学中,常用的概率分布有正态分布、伯努利分布、泊松分布、指数分布、二项分布、负二项分布以及几何分布。
正态分布正态分布是一种非常常见的概率分布,也叫高斯分布。
正态分布的概率密度函数是一个钟形曲线,其均值、方差以及标准差的值决定了曲线的位置与形态。
伯努利分布伯努利分布是一种离散概率分布,其只有两个可能结果,即成功或失败。
在伯努利分布中,成功的概率为p,失败的概率为1-p。
伯努利分布可以用来估计投掷硬币等随机事件的概率。
泊松分布泊松分布是一种离散概率分布,它用来衡量独立随机事件在一段时间内发生的次数。
泊松分布的概率密度函数为: P(X=k)= e^-λ * λ^k/k!,其中λ为平均发生次数。
指数分布指数分布是一种连续概率分布,其用途非常广泛,例如在可靠性工程学中,指数分布可以用来描述设备故障发生之间的时间间隔。
指数分布的概率密度函数为: f(x) = λ * e^-λx,其中λ为发生比例。
二项分布二项分布是一种离散概率分布,其表示在n次试验中成功的次数。
二项分布的概率函数为:P(X=k)= (n!/(k!*(n-k)!)) * p^k * (1-p)^(n-k),其中p为成功概率,n为试验次数。
负二项分布负二项分布是一种离散概率分布,其表示在成功x次之前,需要进行n次试验中失败的次数。
负二项分布的概率密度函数为:P(X=k)= (k-1)!((r-1)!*(k-r)!)p^r(1-p)^(k-r)几何分布几何分布是二项分布的一个特例,其表示在n次试验中,首次发生成功的次数。
几何分布的概率密度函数为:P(X=k)=(1-p)^(k-1)* p,其中p为成功概率,k为试验次数。
几种常见的概率分布及应用常见的概率分布有很多种,在统计学和概率论中,这些分布被广泛应用于各种领域,包括自然科学、工程、经济和社会科学等。
下面是几种常见的概率分布及其应用:1. 均匀分布(Uniform Distribution):均匀分布是最简单的概率分布之一,它的概率密度函数在一个给定的区间内是常数。
这种分布广泛应用于统计推断、模拟和随机数生成等领域。
2. 二项分布(Binomial Distribution):二项分布适用于具有两个可能结果的离散试验,如抛硬币、打靶等。
在二项分布中,每个试验都是独立的,并且具有相同的概率。
二项分布在实验研究和贝叶斯统计等领域有广泛的应用。
3. 泊松分布(Poisson Distribution):泊松分布适用于描述单位时间或空间内稀有事件发生次数的概率分布。
它在复杂事件模型、风险评估和可靠性分析等领域有广泛的应用。
4. 正态分布(Normal Distribution):正态分布是最常见的连续概率分布之一,也被称为高斯分布。
它具有对称的钟形曲线,广泛应用于自然科学、社会科学和工程等领域。
正态分布在统计推断、回归分析、贝叶斯统计等方面发挥着重要作用。
5. 指数分布(Exponential Distribution):指数分布适用于描述事件发生之间的时间间隔的概率分布。
它在可靠性工程、队列论、生存分析等领域有广泛的应用。
6. γ分布(Gamma Distribution):γ分布是一类连续概率分布,用于描述正数随机变量的分布,如等待时间、寿命和利润等。
它在贝叶斯统计、过程控制和金融分析等领域被广泛使用。
7. t分布(T-Distribution):t分布是一种用于小样本情况下的概率分布,它类似于正态分布,但考虑了样本容量较小的情况。
t分布在统计推断和假设检验等方面有广泛的应用。
8. χ²分布(Chi-Square Distribution):χ²分布是一种用于度量变量之间的独立性和相关性的概率分布。
第三章 几种常见的概率分布律3.1 有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?答:代入二项分布概率函数,这里φ=1/2。
()75218.02565621562121!5!3!83835==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=p结论:共有56种,每种的概率为0.003 906 25(1/256 ),这一类型总的概率为 0.21875。
3.2 5对相互独立的等位基因间自由组合,表型共有多少种?它们的比如何? 答:(1)543223455414143541431041431041435434143⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+表型共有1+5+10+10+5+1 = 32种。
(2)()()()()()()6976000.0024114165014.00241354143589087.002419104143107263.0024127104143105395.00241815414353237.0024124343554322345541322314==⎪⎭⎫⎝⎛==⨯=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛=隐隐显隐显隐显隐显显P P P P P P 它们的比为:243∶81(×5)∶27(×10)∶9(×10)∶3(×5)∶1 。
3.3 在辐射育种实验中,已知经过处理的单株至少发生一个有利突变的概率是φ,群体中至少出现一株有利突变单株的概率为P a ,问为了至少得到一株有利突变的单株,群体n 应多大?答: 已知φ为单株至少发生一个有利突变的概率,则1―φ为单株不发生一个有利突变的概率为:()()()()()φφφ--=-=--=-1lg 1lg 1lg 1lg 11a a an P n P n P3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。
常见概率分布特征总结
1、正态分布:正态分布是最常用的概率分布之一,它出现在许多形
式的研究中,主要是属于连续性概率分布。
正态分布的形状是一个钟形曲线,由一个均值(μ)和标准差(σ)决定。
它两侧各有一个“长”尖,就像
一个钟形。
正态分布的总体平均值μ=样本的均值,正态分布的总体方差
σ2=样本的方差。
正态分布有着特殊的性质:(1)中位数等于均值。
(2)标准差越大,尖峰越低,右腹越宽,左腹越窄。
(3)曲线两侧对称,均值、中位数、众数均相同。
2、贝叶斯分布:贝叶斯分布是一种连续性概率分布,其函数形式为
x^(α-1)*exp(-x^2/2b^2)。
贝叶斯分布具有有限的可变性,因此可以用
来描述连续现象的概率分布,如测量误差、估计参数等现象。
贝叶斯分布
亦称为Α-分布,其中α是分布的形状参数,β则表示尺度参数,可以
衡量其方差的大小。
当α=1和β=1时,贝叶斯分布可以用高斯分布来描述,此时又称为双变量高斯分布。
3、对数正态分布:对数正态分布是一种同密度连续概率分布,它是
一种特殊的正态分布,分布的概率密度函数与正态分布不同之处在于,其
取值范围限制在非负值,而且在正值上变化更为迅速,由均值μ和方差
σ2决定。