第三章 几种常见的概率分布率资料讲解
- 格式:ppt
- 大小:844.50 KB
- 文档页数:38
第三章第二次课: 回顾概率基础知识,通过离散型和连续型随机变量的概率分布引出本次讲授内容。
第二节几种常见的理论分布重点:掌握正态分布、二项分布、泊松分布的定义、特点和概率计算。
难点:二项分布的概率函数特征,正态分布的特征。
一、二 项 分 布一)、贝努利试验及其概率公式将某随机试验重复进行n 次,若各次试验结果互不影响, 即每次试验结果出现的概率都不依赖于其它各次试验的结果,则称这n 次试验是独立的。
对于n 次独立的试验,如果每次试验结果出现且只出现对立事件A 与A 之一,在每次试验中出现A 的概率是常数p (0<p <1),因而出现对立事件A 的概率是1-p=q ,则称这一串重复的独立试验为n 重贝努利试验,简称贝努利试验(Bernoulli trials )。
在生物学研究中,我们经常碰到的一类离散型随机变量,如入孵n 枚种蛋的出雏数、n 头病畜治疗后的治愈数、n 尾鱼苗的成活数等,可用贝努利试验来概括。
在n 重贝努利试验中,事件A 可能发生0,1,2,…,n 次,现在我们来求事件A 恰好发生k (0≤k ≤n )次的概率P n (k)。
先取n =4,k =2来讨论。
在4次试验中,事件A 发生2次的方式有以下24C 种: 21A A 43A A 4321A A A A 4321A A A A 4321A A A A 4321A A A A 4321A A A A其中A k (k =1,2,3,4)表示事件A 在第k 次试验发生;k A (k =1,2,3,4)表示事件A 在第k 次试验不发生。
由于试验是独立的,按概率的乘法法则,于是有 P (21A A 43A A )=P (4321A A A A )=…= P (4321A A A A )= P (1A )·P (2A )·P (3A )·P (4A )=242-qp又由于以上各种方式中,任何二种方式都是互不相容的,按概率的加法法则,在4 次试验中,事件A 恰好发生2次的概率为)2(4P = P (21A A 43A A )+P (4321A A A A )+…+ P (4321A A A A )=24C 242-qp一般,在n 重贝努利试验中,事件A 恰好发生k (0≤k ≤n)次的概率为)(k P n =kn C kn k qp - k =0,1,2…,n (3-14)若把(4-14)式与二项展开式∑=-=+nk kn k k n nqp C p q 0)(相比较就可以发现,在n 重贝努利试验中,事件A 发生k 次的概率恰好等于np q )(+ 展开式中的第k +1项,所以也把(4-14)式称作二项概率公式。
概率论常见的几种分布常见的几种概率分布概率论是研究随机现象的数学理论,其中涉及到许多常见的概率分布。
概率分布描述了随机变量在不同取值上的概率分布情况。
本文将介绍几种常见的概率分布,包括均匀分布、正态分布、泊松分布和指数分布。
一、均匀分布均匀分布是最简单的概率分布之一,也被称为矩形分布。
在均匀分布中,随机变量在一定的取值范围内的概率是相等的。
例如,抛一枚公正的硬币,正面朝上和反面朝上的概率都是1/2。
均匀分布通常用于模拟随机数发生器的输出,或者在一定范围内随机选择一个数值。
二、正态分布正态分布是最重要的概率分布之一,也被称为高斯分布。
在正态分布中,随机变量在取值范围内的概率密度函数呈钟形曲线状。
正态分布具有许多重要的性质,例如均值、标准差等。
正态分布在自然界和社会科学中广泛应用,例如身高、体重、考试成绩等都符合正态分布。
三、泊松分布泊松分布描述了单位时间或空间内事件发生的次数的概率分布情况。
泊松分布的特点是,事件之间相互独立且平均发生率恒定。
泊松分布通常用于描述稀有事件的发生情况,例如单位时间内的电话呼叫次数、单位面积内的交通事故次数等。
四、指数分布指数分布描述了连续随机变量首次达到某一值的时间间隔的概率分布情况。
指数分布的特点是,事件之间相互独立且事件发生的概率与时间间隔成反比。
指数分布通常用于模拟随机事件的发生时间间隔,例如单位时间内的电话呼叫间隔、单位距离内的交通事故间隔等。
除了上述几种常见的概率分布外,还有许多其他概率分布,例如二项分布、伽玛分布、贝塔分布等。
每种概率分布都有其特定的应用场景和数学性质,对于不同的问题可以选择适合的概率分布进行建模和分析。
总结起来,概率论中常见的几种分布包括均匀分布、正态分布、泊松分布和指数分布。
这些分布在各自的领域有着广泛的应用,可以帮助我们理解和解决许多随机现象和问题。
对于研究概率论和统计学的人来说,熟悉这些常见的概率分布是非常重要的。
概率分布律
概率分布律是概率论中的重要概念之一,指的是随机变量取值的分布规律。
在统计学、物理学、工程学等领域中,概率分布律也被广泛应用。
本文将介绍常见的概率分布律,并分析其特点和应用。
1. 二项分布律
二项分布律是指在n次独立重复试验中,成功事件发生的次数服从的分布律。
其中,每次试验中成功事件发生的概率为p,失败事件发生的概率为q=1-p。
二项分布律在实际应用中非常广泛,例如模拟股票涨跌、判断产品合格率等。
2. 泊松分布律
泊松分布律是指在一定时间或空间内,某事件发生的次数服从的分布律。
例如,在一定时间内电话呼叫次数、车辆通过次数等。
泊松分布律具有简单、实用的特点,在实际应用中得到广泛使用。
3. 正态分布律
正态分布律又称高斯分布律,是指随机变量服从正态分布的分布律。
正态分布律具有对称性、可重复性、中心极限定理等特点,可以用于描述很多自然现象,例如身高、体重、考试成绩等。
4. 均匀分布律
均匀分布律是指随机变量服从均匀分布的分布律。
均匀分布律具有等可能性、无记忆性等特点,在实际应用中广泛用于随机抽样、随机游走等。
5. 指数分布律
指数分布律是指随机变量服从指数分布的分布律。
指数分布律具有无记忆性、反指数增长等特点,可以用于描述等待时间、寿命等。
以上是常见的概率分布律,每种分布律都有其独特的特点和应用场景。
在实际应用中,需要根据具体问题选择合适的概率分布律,以准确地描述随机变量的分布规律。
同时,在使用概率分布律时,也需要注意分布律的参数选择、数据的采集方法等问题,以保证分析结果的准确性。