二次根式全章测试卷
- 格式:doc
- 大小:109.59 KB
- 文档页数:4
【最新整理,下载后即可编辑】二次根式全章测试卷(4903)1、判断下列根式是否为二次根式:(1);(2);(3).2、若最简二次根式与是同类二次根式,则a=_____.3、(2014·四川巴中)要使式子有意义,则m的取值范围是____________4、若,则m+n的值为_____.5、下列根式中,属于最简二次根式的是()A. B. C. D.6、若是整数,则正整数n的最小值为__________.7、(2014·山东济宁)如果,,那么下面各式正确的是()①,②,③A.①② B.②③ C.①③ D.①②③8、已知,则a的取值范围是()A. B.a<0 C. D.a>09、把根号外面因式移到根号内为_____.10、(2014四川成都七中月考)已知,化简二次根式的结果为__________.11、计算:.12、(2014河南郑州四中期中)化简:(1);(2);(3);(4).13、计算:(1);(2).14、已知,,则=__________.15、按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14 B.16 C.D.16、设,,,则a,b,c之间的大小关系是()A. B. C. D.17、若的整数部分为a,小数部分为b,求的值.18、观察下列运算:①由,得;②由,得;③由,得;……(1)通过观察你得出什么规律?(2)利用(1)中你发现的规律计算:.19、已知x+y=-4,,求的值.二次根式全章测试卷(4903)答案1、解:(1),是二次根式.(2),不是二次根式.(3),是二次根式.2、5由题意,得,解得a=5.3、D4、25、A6、57、B8、C9、,∴原式.10、11、解:原式.12、(1)原式.(2)原式.(3)原式.(4)原式.13、(1)原式.(2)原式.14、1015、C16、D17、解:,又,.,∴原式.18、(1)(n为自然数).(2)原式.19、解:,∴x、y同号.又,∴x、y同为负数.故原式.。
第5章《二次根式》测试卷一、选择题1.实数a,b,c在数轴上的对应点如图,化简a+|a+b|﹣的值是()2.计算的结果是()+﹣2+﹣3.给出的下列计算或化简:(1)(a2)4=a6;(2)(﹣3a)3=﹣27a3;(3)2﹣2=;(4).其中正确个数有().和6.计算的结果是()B.8.化简二次根式的结果是()B10.化简得( )=4 B ﹣ =±3=3+=13.若0<a <1,则﹣的值为( )15.化简的结果是( )B16.已知:a 、b 、c 是△ABC 的三边,化简=( )17.如果a+=2,那么a 的取值范围是( )二、填空题 18.计算:= ,5﹣的整数部分是 .19.×﹣|﹣2|+= .20.使是整数的最小正整数n= .21.请计算:﹣()0+(﹣3)3÷3﹣1=.22.当x=﹣时,()2﹣2=.23.实数a在数轴上对应点如图所示,则化简式子的结果是.24.若,则a=.25.已知一次函数y=(m﹣2)x+3﹣m的图象经过第一、二、四象限,则化简+=.﹣)).,故错误;、∵、+=.、由于、由于、解:若二次根式有意义,则﹣==|a|解:∵=、)、∵<,、错误,∵是最简二次根式,不能再化简.,=﹣,||a+﹣,+,错误;=|∴=2解:=3=≈≈解:,由于解:﹣(,(∴解:∵∴。
八年级数学下册《二次根式》单元测试卷(带答案)一、选择题(每小题3分,共30分)11x -x 的取值范围是( ) A .1x >B .1xC .1xD .1x <2.已知0a <3a b - ) A .ab --B .-ab C .abD .-ab372a a 的最小值为( ) A .0B .6C .3D .24.下列各式中是最简二次根式的是( ) A .√15B .√15C .√0.1D .√85.下列二次根式中属于最简二次根式的是( ) A . B .C .D .6.若,则( )A .x ≥6B .x ≥0C .0≤x ≤6D .x 为一切实数7.下列计算正确的是( ) A .√2+√3=√5 B .3√2−2√2=1C .√3×√7=√10D .√12÷√2=√68.已知实数a 满足√(a +3)2=−a −3,则下列结论正确的是( ) A .a ≤﹣3 B .a <﹣3C .a ≥﹣3D .a >﹣39.如果25,25a b ==-,那么a 与b 的关系是( ) A .a >b 且互为倒数 B .a >b 且互为相反数 C .ab =-1 D .ab =110.我国宋代数学家秦九韶和古希腊几何学家海伦都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c ---如图,在ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若7a =,8b =,9c =,则ABC 的面积为( )A .5B .6C .24D .272二、填空题(每小题3分,共24分)11.已知x ,y 213(2)0x y --=xy=_______. 12.当0c <324b c a =________.13.将化为最简二次根式为 .14.已知实数x ,y 满足|x −4|+√y −8=0,则以x ,y 的值为两边长的等腰三角形的周长是______.15、若y 21123x x --,则x +y 的值为 ____. 16512-532+,则它的宽为 m . 177a ,小数部分为b ,则()b a b +=__________.18.一个直角三角形的两条直角边分别为a =3,b =36那么这个直角三角形的面积为______cm 2.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分) 19.(8分)计算: (1)4+﹣+4; (2)(2﹣3)÷;(3)(+)(﹣4); (4)2×÷.20.(6分)已知:x =+1,y =﹣1,求下列各式的值.(1)x 2﹣y 2. (2).21.(8分)已知71x =+,x 的整数部分为a ,小数部分为b ,求的值.22.(8分)已知y =x -2+2-x +5,求x +2y 2的值.23.有一块长方形木板,木工采用如图的方式在木板上截出两个面积分别为212dm 和227dm 的正方形木板.(1)求剩余木料的面积;(2)如果木工想从剩余的木料中截出长为1.5dm ,宽为1dm 的长方形木条,最多能截出 块这样的木条.24.阅读下面的材料,并解决问题.2-12121(21)(2-1)==++ 3-23232(32)(3-2)==++2-32323(23)(2-3)==++(1)1110+=;(2)观察上述规律并猜想:当n1n n++=(用含n的式子表示)(3)请利用(2)的结论计算:1()(3611) 2132361360++⨯+++参考答案一. 选择题题号 1 2 3 4 5 6 7 8 9 10 答案 B A D B A A D A B A二. 填空题11212.cb b13.解:==.故答案为:.14.【答案】20【解析】解:根据题意得,x−4=0,y−8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.15、若y 21123x x --,则x +y 的值为 ____. 解:由题意得:2x -1≥0,1-2x ≥0,解得:x =12, ∴y =3,∴x +y =12+3=72,故答案为:72.16.535151222+-+=, 512+ 17.727- 18.2三.解答题19.解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.解:(1)移项得(x -3)2=25,∴x -3=5或x -3=-5,∴x =8或-2.(5分)(2)移项整理得(x +1)3=-827,∴x +1=-23,∴x =-53.(10分) 21.解:根据相反数的定义可知:解得:a =-8,b =36.4的平方根是:22.解:由题意,得⎩⎨⎧x -2≥0,2-x ≥0,∴x =2.∴y =5.x +2y 2=2+2×52=52=213.23.(1)剩余木料的面积为26dm ;(2)3 24.11101n n +(3)360。
二次根式单元测试题(卷)经典3套二次根式单元测试题一一、填空题(每题2分,共20分)1、当a=0时,有意义1-a=12、计算:(-3/2)^2=9/432)^2=10241-1/2)×(1+1/2)=3/43、计算:(1)×(-27)=-272)8a^3b^2c=8abc^2×a^2b4、计算:(a>0,b>0,c>0)5、计算:(1)=1/42)=3a/86、如果xy>0,化简-xy^2=-y^2x7、32+42=25,332+442=221,3332+4442= 则33×(32+44)×(42+25)=8、(2-1)2005×(2+1)2006=3×(3^2005)9、观察以下各式:1=2-1。
1/2=3-2。
1/3=4-3利用以上规律计算:1+1/2+1/3+…+1/2007)/[(2+1)+(3+2)+(4+3)+…+(2006+2005 )]=2007/401310、已知x=3+√2,y=3-√2,则(y/x+1)/(x/y+1)=1二、选择题(每题3分,共30分)11、若2x+3有意义,则x≤-3或x≥212、化简(2-a)^2+a^-2的结果是4+2a13、能使等式x/(x-3)=x/x成立的条件是x≠0且x≠314、下列各式中,是最简二次根式的是y/215、已知x+1/x=5那么x-1/x的值是2或-216、如果a^2-2ab+b^2=-1,则a≠b17、已知xy>0,化简二次根式√(x-y^2/x^2)的正确结果为(y/|x|)√(x-y^2)18、如图,Rt△AMC中,∠C=90°,∠AMC=30°,AM∥BN,MN=23cm,XXX=1cm,则AC的长度为3cm。
19、下列说法正确的个数是()①2的平方根是同类二次根式;②2-1与2+1互为倒数;③2^3/2与(2/3)^-2互为倒数;④3√2是同类三次根式。
第16章 二次根式一、选择题(每小题2分,共20分)1.有意义,那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥2.12a -,那么( ) A.a <12 B.错误!未找到引用源。
≤12 C.a >12D.a ≥123.能够合并,那么a 的值为( )A.2B.3C.4D.54.已知3y =错误!未找到引用源。
, 则2xy 的值为( )A.15-B.15C.152-D.1525..对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 6.下列计算正确的是 ( )①69494=-⋅-=--))((;②69494=⋅=--))((;③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个7. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共24分)11.实数范围分解因式:⑴52-x =⑵742-a = (3)2223y x-=12.比较大小;______错误!未找到引用源。
;23-______32-. 13.计算:(1)=-222425 (2)=⋅baa b 182____________;(3)=⋅b a 10253___________.14.已知a ,b 为两个连续的整数,且a b ,则a b -= . 15.若实数y x ,2(0y =,则xy 的值为 .16.已知,a b 为有理数,,m n 分别表示5的整数部分和小数部分, 且21amn bn +=,则2a b += .17.当x___________时,x 31-是二次根式;当a=3时,则=+215a ___________.18.已知:2420-=x ,则221x x +的值是___________;若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.⑴))((36163--⋅-; ⑵63312⋅⋅;⑶521312321⨯÷;⑷)(b a b b a 1223÷⋅.(5)1); (6)20.先化简,再求值:(1)((6)a a a a --,其中12a =(2)111x x ⎛⎫- ⎪+⎝⎭其中x .21. (6分)已知22x y ==+,求下列代数式的值:(1)222x xy y ++ ; (2)22x y -.22.(6分)一个三角形的三边长分别为54 (1)求它的周长(要求结果化简); (2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.23.(4分)已知,a b 为等腰三角形的两条边长,且,a b满足4b ,求此三角形的周长.24.(6分)阅读下面问题:1=;2=. (1的值;(2(n 为正整数)的值; (3⋅⋅⋅25.(8分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:23(1+=,善于思考的小明进行了一下探索:设2(a m ++ (其中,,,a b m n均为正整数),则有2222a m n +=++, ∴ 222,2a m n b mn =+=.这样小明就找到一种把部分a +. 请仿照小明的方法探索并解决下列问题:(1)当,,,a b m n均为正整数时,若2(a m ++,用含有,m n 的式子分别表示a ,b ,得a =______,b =__________. (2)利用所探索的结论,找一组正整数,,,a b m n 填空:.(答案不唯一)(3)若2(a m ++,且,,a m n 均为正整数,求a 的值.。
二次根式单元测试卷一、 选择题(每题3分共30分) 1.下列式子中二次根式的个数有( );⑶1)x >A .2个 B.3个 C.4个 D.5个2.要使二次根式2x-6 有意义,x 应满足的条件是( )A .x ≥3B .x <3C .x >3D .x ≤3 3.下列二次根式中,与24 是同类二次根式的是( )A .18B .30C .48D .54 4.下列根式中是最简二次根式的是( )A .a2+1B .12 C .8 D .275.把m m 1-根号外的因式移到根号内,得( )A .mB .m -C .m --D .m -6.10b -=,那么2007)b a (+的值为( )A.-1B.1C.20073D.20073-7.已知12-n 是正整数,则实数n 的最大值为( )A .12B .11C .8D .3 8.若x ·x-6 = x(x-6) ,则( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数9.若0a >且2a x a -<<-,则化简22x a x a ++的结果为( )A.4aB.6x -2aC.2x +2aD.2a -2x10.若化简|1-x|-1682+-x x 的结果为2x-5则x 的取值范围是( )A.x 为任意实数B.1≤x ≤4C.x ≥1D.x ≤4 二、填空题(每空4分共24分) 11.比较大小:-32___________-2 312.请写出3的两个同类二次根式:____________________13.若3的整数部分是a ,小数部分是b ,则=-b a 3 ______________14.= ___= ___=____ 15.在实数范围内分解因式: 494-x =________二、 计算题(每题5分共20分)16. 4 5 + 45 - 8 17.(12 - 33)×2418.0(3)1--+19.1)a四、(本题共3题,共26分)20.已知:x y==yx11+的值。
二次根式单元章节测试(满分:120分 时间:90分钟)姓名:____________ 成绩:_____________一.选择题。
(每题3分,共30分)。
(1)下列各式中,是二次根式的有…………………………………………………………………………………( )3)x ≥2)3x ≥)a b >. A.2个 B.3个 C. 4个 D.5个(2)x 的取值范围是……………………………………………………………………( ) A. x ≠1 B. x ≠0 C. x >-1且x ≠0 D. x ≥-1且x ≠0(3)当a <0,b >0时,b 的结果为………………………………………………………………( )A.a +bB.-a -bC.a -bD.-a +b(4)下列函数中,自变量x 取值范围是x ≥3的是…………………………………………………………………( )A. 13y x =- B. y = C. y =x -3 D. y =(5)2)x y +,则x -y 的值为………………………………………………………………( ) A.-1 B.1 C.2 D.3(6)下列式子中正确的是…………………………………………………………………………………………( )A. B.a b =-C. (a b =-D.2 (7)若1<x <2,则()213-+-x x 的值为…………………………………………………………………( )A .2x-4B .-2C .4-2xD .2(8则正整数n 的最小值是……………………………………………………………………( )A .4;B .5;C .6;D .7 (9)若2x +1+|y +3|=0,则(x +y)2 的值为…………………………………………………………………( ) A .52 B .-52 C .72 D .-72(10)已知三角形三边为a 、b 、c ,其中a 、b 两边满足0836122=-++-b a a ,那么这个三角形的最大边c 的取值范围是……………………………………………………………………………………………( )A .8>cB .814c ≤<C .68c <≤D .142<<c二.填空题。
初中数学同步训练必刷题(人教版八年级下册第十六章二次根式全章测试卷)一、单选题(每题3分,共30分)1.(2022八下·中山期末)式子√x+3在实数范围内有意义,则x的取值范围是()A.x≠-3B.x≥−3C.x≥3D.x≥02.(2022八下·番禺期末)下列计算正确的是()A.√22=2B.√(−2)2=﹣2C.√−83=2D.√(−2)2=±2 3.(2022八下·防城港期末)下列各式中,是最简二次根式的为().A.√52B.√2C.√27D.√134.(2022八下·拱墅期末)−√2×√5=()A.√10B.−√10C.√7D.−√75.(2022八下·朝阳期末)若√63n是整数,则正整数n的最小值是()A.3B.7C.9D.636.(2022八下·潢川期中)下列关于2√6的表述错误的是()A.2√6是最简二次根式B.2√6是无理数C.2√6就是2×√6D.2√6大于57.(2022八下·临海期末)下列计算正确的是()A.√2+√3=√5B.2√2−√2=1C.√6×√2=2√3D.√(−2)2=−2 8.(2022八下·滨海期末)化简后,与√2的被开方数相同的二次根式是()A.√10B.√12C.√12D.√169.(2022八下·藁城期末)下列四个算式中,正确的是() A.√(−1)2=−1B.√5−√2=√3 C.√(−4)×(−9)=√−4×√−9D.√12÷√3=210.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等二、填空题(每题3分,共30分)11.(2022八下·镇海区期末)代数式2√1−x有意义,则x的取值范围是. 12.(2022八下·诸暨期末)当x=-2时,二次根式√2−7x的值是13.(2021八下·澄海期末)计算√3×√15√5的结果是.14.(2021八下·建华期末)若0≤a≤3 ,则√a2+√a2−6a+9=.15.(2021八下·新罗期末)长方形的宽是√3,面积为2√6,则长方形的长为16.(2022八下·诸暨期末)已知x,y均为实数,y=√x−2+√2−x+5,则x+y的值为17.(2022八下·灌云期末)如果最简二次根式√x+3与最简二次根式√1+2x是同类二次根式,则x=.18.(2021八下·营口期末)计算:√12+|√3−2|=.19.(2021八下·平泉期末)已知:√12+3√13=a√3+√3=b√3,则b a=.20.(2021八下·曲靖期末)如图是一个简单的数值运算程序,当输入x的值为√6时,则输出的值为.三、解答题(共6题,共60分)21.(2022八下·涿州期末)计算(1)2√7−√7(2)(√5+√6)(√6−√5)(3)(√12−√13)×√3(4)√8+√18√222.如图A,B,C三点表示的数分别为a,b,c.利用图形化简:|a−b|−√(c−b)2+√(a−c)2.23.(2019八下·岱岳期末)在一个边长为(2 √3+3 √5)cm的正方形的内部挖去一个长为(2 √3+ √10)cm,宽为(√6﹣√5)cm的矩形,求剩余部分图形的面积.24.(2020八下·潢川期中)(1)当x=54时,求√x+1的值;(2)①x为何值时二次根式√12−x的值是10?②当x=▲时二次根式√12−x有最小值.25.挖掘问题中所隐含的条件,解答下列问题:(1)如果√(x−2)2=2-x,那么()A.x<2B.x≤2C.x>2D.x≥2(2)已知√(x−3)2−(√2−x)2=2x,求x的值.(3)已知a,b是实数,且b>√a−2-2 √2−a+1,请化简:√1−2b+b2−√a2.26.(2020八下·北京期中)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明利用完全平方公式进行了以下探索:3+2√2=12+2×1×√2+(√2)2=(1+√2)2.请你仿照小明的方法解决下列问题:(1)7−4√3=(a−b√3)2,则a=,b=;的算术平方根,求4x2+4x−2020的值;(2)已知x是2−√32(3)当1≤x≤2时,化简√x+2√x−1√x−2√x−1=.答案解析部分1.【答案】B【知识点】二次根式有意义的条件【解析】【解答】解:依题意有x+3≥0,即x≥−3时,二次根式有意义.故答案为:B.【分析】根据题意先求出x+3≥0,再求解即可。
九年级上学期数学测试题(二次根式)一、选择题1.已知233x x +=-x 3+x ,则………………………………………………()A .x ≤0B .x ≤-3C .x ≥-3D .-3≤x ≤0 2.化简aa3-(a <0)得……………………………………………………………()A .a - B .-a C .-a - D .a3.当a <0,b <0时,-a +2ab -b 可变形为…………………………………( )A .2)(b a +B .-2)(b a -C .2)(b a -+- D .2)(b a ---4.在根式①22b a + ②5x ③xy x -2④ abc 27中,最简二次根式是(中,最简二次根式是( )A .①②.①②B .③④.③④C .①③.①③D .①④.①④5.下列二次根式中,可以合并的是…………………………………………………()A .23aa a 和 B .232a a 和 C .aaa a 132和 D .2423a a 和6.如果1122=+-+a a a ,那么a 的取值范围是……………………………()A .0=aB .1=aC .1£aD .10==a a 或 7.能使22-=-x x x x 成立的x 的取值范围是…………………………………())A .2¹xB B..0³xC C..2³xD D..x >2 8.若化简|1-x|x|--2x -8x+162x-5的结果是,则x 的取值范围是………………()A .x 为任意实数为任意实数B .1≤x ≤4 C .x ≥1 D .x <4 9.已知三角形三边为a 、b 、c ,其中a 、b 两边满足0836122=-++-b a a ,那,那么这个三角形的最大边c 的取值范围是……………………………………………()A .8>cB .148<<cC .86<<cD .142<<c 10.小明的作业本上有以下四题①24416a a =;②25105a a a =×;③③a aa a a=×=112; ④a a a =-23。
人教版数学8年级下册第16章专题01 二次根式一、选择题(共12小题)1.(2022x的取值范围是( )A.x≥0B.x≥﹣2C.x>2D.x≤22.(2022秋•门头沟区期末)下列代数式能作为二次根式被开方数的是( )A.x B.3.14﹣πC.x2+1D.x2﹣13.(2022秋•x的取值范围在数轴上表示正确的是( )A.B.C.D.4.(2021春•光山县期末)下列各式中,一定是二次根式的是( )B C DA5.(2022x的取值范围为( )A.x>0B.x≥﹣1C.x≥0D.x>﹣16.(2021春•番禺区期末)下列运算正确的是( )A=B=C=D=x7.(2021春•海珠区期末)下列各式中,最简二次根式的是( )A B C D8.(2021A.2B C.D.9.(2022秋•黄浦区月考)下列二次根式中,属于最简二次根式的是( )A B C D10.(2022秋•静安区校级期中)下列二次根式中,最简二次根式是( )A B C D11.(2021秋•惠民县期末)下列二次根式中属于最简二次根式的是( )A B C D12.(2022秋•徐汇区校级期中)下列根式中,最简二次根式有( )个.A.2B.3C.4D.5二、填空题(共12小题)13.(2022秋•吉林期末)代数实数范围内有意义,则x的取值范围是 .14.下列代数式中,是二次根式的有 (填序号).x<0).15.(2021春•黄埔区期末)计算:= ,= ,③(―2= .16.(2017.17.(2020•梧州一模)计算:2= .18.(2021春•花都区期末)已知x<2= .19.(2022 .20.(2022•南阳二模)写出一个实数x x可以是 .21.(2022秋•的是 .22.(2022秋•晋江市校级期中) .23.(2022a>0,b>0)化为最简二次根式: .24.(2022秋•虹口区校级月考),最简二次根式有 个.三、解答题(共13小题)25.(2021a>0,b>0).26.(2022秋•萧县期中)先阅读下面提供的材料,再解答相应的问题:x的值是多少?∴x﹣1≥0且1﹣x≥0.又∵x﹣1和1﹣x互为相反数,∴x﹣1=0,且1﹣x=0,∴x=1.问题:若y=++2,求x y的值.27.(2022秋•昌平区期中)已知y=++5,求x+y的平方根.28.(2022秋•奉贤区期中)已知x,y为实数,且y=―+1,求xy的平方3根.29.(2022秋•湖口县期中)已知y=+++2.(1)求y x的值;(2)求y的整数部分与小数部分的差.30.(2022秋•洛宁县月考)已知a,b,c为实数,且c=+―+2―c2+ab的值.31.(2022春•岑溪市期中)已知实数x,y满足y=++5,求:(1)x与y的值;(2)x2﹣y2的平方根.32.(2022春•龙岩期中)已知|2022﹣a|+=a,求a﹣20222的值.33.(2021春•花都区期末)计算:―+34.(2022春•灵宝市期中)把下列二次根式化简最简二次根式:(1(2(3(435.(2021•中原区开学)(1)把下列二次根式化为最简二次根式:(2)解方程:(3x﹣2)2﹣4=036.(2021•黄岛区校级开学)把下列二次根式化简成最简二次根式:(1(2(337.(2022秋•西安月考)若a=2,b=3,c=﹣6参考答案一、选择题(共12小题)1.D2.C3.A4.D5.B6.B7.C8.C9.C10.C11.D12.C;二、填空题(共12小题)13.x≥514.①③⑥15.5;4;316.>17.318.2﹣x19.420.5(答案为不唯一)21.22.223.24.1;三、解答题(共13小题)25.解:原式==2a >0,b >0).26.解:由题意得:2x ―1≥01―2x ≥0,∴2x ﹣1=0,解得x =12,所以y =2,所以x y =(12)2=14.27.解:由二次根式有意义可得:3―x ≥0x ―3≥0,解得x =3.∴y =5.∴x +y =3+5=8.故x +y 的平方根为±28.解:由题意得,x ―27≥027―x ≥0,解得x =27,则y =13,∴xy =27×13=9,∴9=±3.29.解:∵y =+++2,∴x ―2≥02―x ≥0,解得x =2,∴y =+2.(1)y x =2=6++4=10+(2)∵y =+2,23,∴y 的整数部为4+2―4=―2,∴y的整数部分与小数部分的差为:4―2)=6―30.解:∵c=+―+2―∴a﹣2=0,b﹣1=0,c=2―∴a=2,b=1,∴c2+ab=(2―2+2×1=4+3﹣+2=9﹣31.解:(1)根据题意得:x﹣13≥0,13﹣x≥0,∴x=13,∴y=5;(2)x2﹣y2=132﹣52=169﹣25=144,144的平方根为±12,∴x2﹣y2的平方根为±12.32.解:∵a﹣2023≥0,∴a≥2023,∴2022﹣a<0,∴a﹣2022+=a,=2022,∴a﹣2023=20222,∴a﹣20222=2023.33.解:原式=―+=34.解:(1==(2==(3===(4==35.解:(1)=====∴(3x﹣2)2=4,∴3x﹣2=±2,即3x﹣2=2或3x﹣2=﹣2,或x=0.解得x=4336.解:=====37.解:∵a=2,b=3,c=﹣6,===。
二次根式全章测试卷(4903)
1、判断下列根式是否为二次根式:
(1);(2);(3).
2、若最简二次根式与是同类二次根式,则a=_____.
3、(2014·四川巴中)要使式子有意义,则m的取值范围是____________
4、若,则m+n的值为_____.
5、下列根式中,属于最简二次根式的是()
A. B. C. D.
6、若是整数,则正整数n的最小值为__________.
7、(2014·山东济宁)如果,,那么下面各式正确的是()
①,②,③
A.①② B.②③ C.①③ D.①②③
8、已知,则a的取值范围是()
A. B.a<0 C. D.a>0
9、把根号外面因式移到根号内为_____.
10、(2014四川成都七中月考)已知,化简二次根式的结果为
__________.
11、计算:.
12、(2014河南郑州四中期中)化简:
(1);(2);
(3);(4).
13、计算:(1);(2).
14、已知,,则=__________.
15、按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()
A.14 B.16 C.
D.
16、设,,,则a,b,c之间的大小关系是()
A. B. C. D.
17、若的整数部分为a,小数部分为b,求的值.
18、观察下列运算:
①由,得;
②由,得;
③由,得;……
(1)通过观察你得出什么规律?
(2)利用(1)中你发现的规律计算:
.
19、已知x+y=-4,,求的值.
二次根式全章测试卷(4903)答案1、解:(1),是二次根式.
(2),不是二次根式.
(3),是二次根式.
2、5
由题意,得,解得a=5.
3、D
4、2
5、A
6、5
7、B
8、C
9、
,∴原式.
10、
11、解:原式.
12、(1)原式.
(2)原式.
(3)原式.
(4)原式.
13、(1)原式.
(2)原式
.
14、10
15、C
16、D
17、解:,又,.,∴原式.
18、(1)(n为自然数).
(2)原式.
19、解:,∴x、y同号.又,∴x、y同为负数.
故原式
.。