因式分解提取公因式法
- 格式:ppt
- 大小:8.88 MB
- 文档页数:30
第六讲 因式分解之提取公因式法一、知识要点1、 因式分解:把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
(1) 多项式的乘法与多项式因式分解的区别简单地说:乘法是积.化和.,因式分解是和.化积.。
如:()()22b a b a b a -=-+,从左边到右边的变形属于整式乘法; ()()b a b a b a -+=-22,从左边到右边的变形属于因式分解; (2)因式分解的方法:①提公因式法; ②运用公式法; ③十字相乘法; ④分组分解法2、提公因式法:(1)如果多项式的各项含有公因式,那么就可以把这个公因式提出来。
把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
(2)公因式:多项式ab +ac +ad 的各项ab 、ac 、ad 都含有相同的因式a ,a 称为多项式各项的公因式。
公因式由两部份构成:系数:各项系数的最大公约数相同字母的指数:取最低次幂(3)用提公因式法时的注意点:① 公因式要提尽,考虑的顺序是,先系数,再单独字母,最后多项式。
如:4a 2(a-2b)-18ab(a-2b)=2a(a-2b)(2a-9b);② 当多项式的第一项的系数为负数时,把“-”号作为公因式的负号写在括号外,使括号内的第一项的系数为正。
如:-2m 3+8m 2-12m= -2.m(m 2-4m+6); ③ 提公因式后,另一个多项式的求法是用原多项式除以公因式。
二、知识运用典型例题例1、下列各式由左边到右边的变形中,哪些是因式分解,那些不是,为什么?(1) ()()ab b a b a 422+-=+ (2)()()ab b a b a 422-+=- (3)()()22b a a b -=+- (4)()()22b a b a +=--练习:下列式子从左到右的变形中是因式分解的是( )2233.236A a b ab a b ⋅= 2.(1)(1)1B x x x +-=-()22.211C x x x ++=+ ()2.111D x x x x ++=++例2、 若多项式2x mx n ++分解因式的结果是()()65x x -+,则m = ,n = 。
课题:因式分解之提取公因式法和公式法知识精要:一、因式分解的概念1、定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.2、因式分解和整式乘法正好是互逆变换,可通过如下图示加以理解因式分解多项式(和差形式) 整式的积(积的形式)整式乘法二、提取公因式法1、定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.即()ma mb mc m a b c ++=++(1)公因式的系数应取各项系数的最大公约数;(2)字母取各项的相同字母,而且各字母的指数取最低次数.2、步骤:(1)观察;(2)确定公因式;(3)将公因式提到括号外;(4)将多项式写成因式乘积的形式.3、提公因式法的关键是如何正确地寻找公因式.让学生观察公因式的特点,找出确定公因式的方法:(1)公因式应是各项系数的最大公因数与各项都含有的相同字母的最低次幂的积.(2)公因式不仅可以是单项式,也可以是多项式.4、提取公因式法应注意的事项:(1)提取的公因式应为最大公因式;(2)当某一项被完全提取,该项要用“1”来代替;(3)要使得括号内第一项的系数为正数;(4)要使得括号内每一项的系数为整数;(5)注意符号变换问题.二、公式法1、平方差公式: 22()()a b a b a b -=+-2、完全平方公式:2222()a ab b a b ±+=±3、注意事项:(1)注意公式的结构特点;(2)注意符号;(3)首先想到提取公因式法;(4)注意分解一定要彻底. 精解名题:例1、下列从左到右的变形哪个是分解因式( C )A .223(2)3x x x x +-=+-; B .()()ma mb na nb m a b n a b +++=+++;C .221236(6)x x x -+=-;D .22()22m m n m mn -+=--.例2、多项式3222315520x y x y x y +-的最大公因式是( C )A .5xy ;B .225x y ;C .25x y ;D .235x y . 例3、把多项式2(2)(2)m a m a -+-分解因式正确的是( C )A .2(2)()a m m -+;B .(2)(1)m a m -+;C .(2)(1)m a m --;D .2(2)()a m m -+. 例4、下列各式中,能用平方差公式分解因式的是( A )A .22a b -+;B .22a b --;C .22a b +;D .33a b -.例5、若2(3)4x m x +-+是完全平方式,则实数m 的值是( D )A .5-;B .3;C .7 ;D .7或1-.例6、若二项式24x +加上一个单项式后成为一个完全平方式,则这样的单项式共有( C )A .1个;B .2个;C .3个;D .4个.例7、无论x 、y 为任何实数,多项式22428x y x y +--+的值一定是( A )A .正数;B .负数;C .零;D .不确定.例8、下列多项式能用完全平方公式分解因式的是( B )A .22m mn n -+;B .2()4a b ab +-;C .2124x x -+; D .221x x +-. 例9、若3a b +=,则222426a ab b ++-的值为( A )A .12;B .6;C .3;D .0. 例10、已知221x y -=-,12x y +=,则x y -= .(2-) 例11、已知3x y +=,则221122x xy y ++=__________.(92) 例12、已知2226100x y x y +-++=,则x y +=________.(2-)例13、因式分解:(第(1)-(6)用提取公因式法;第(7)-(22)用公式法)(1)-+-41222332m n m n mn ; (2) 3423424281535a b a b a b -+;解:原式222(261)mn mn m n =--+ 解:原式22222(2512)15a b ab b a =-+ (3)322x x x ()()---; (4)412132q p p ()()-+-;解:原式(2)(31)x x =-+ 解:原式22(1)(221)p q pq =--+(5)3122+++--+-m m m m ax acx abx x a ;(6)3225(2)(2)3(2)(2)n n x y x y ----- 解:原式23()m ax ax bx c x =--++ 解:原式2(2)(2)[5103(2)]n nx y x y =-----(7)2249x y -; (8)3282(1)a a a -+;解:原式(23)(23)x y x y =+- 解:原式2(31)(1)a a a =+-(9)44116a b -; (10)224()25()x y x y --+; 解:原式22(14)(12)(12)a b ab ab =++- 解:原式(73)(37)x y x y =-++ (11)42241128a b a b -; (12)2233(27)4x x --; 解:原式221(2)(2)8a b a b a b =+- 解:原式9(6)(6)4x x =+- (13)31()7()7x y x y ---; (14)222(4)16x x +-; 解:原式1()(7)(7)7x y x y x y =--+--解:原式22(2)(2)x x =+- (15)29124a a ++; (16)229312554a ab b -+; 解:原式2(32)a =+ 解:原式231()52a b =-(17)2244ab a b --; (18)2318248a a a -+;解:原式2(2)a b =-- 解:原式22(23)a a =-(19)42816x x -+; (20)(6)9a a ++;解:原式22(2)(2)x x =+- 解:原式2(3)a =+(21)2()10()25m n m n ++++;(22)2222()6()9()a b a b a b ++-+-;解:原式2(5)m n =++ 解:原式24(2)a b =-例14、已知12a b -=,18ab =,求22332a b ab a b -++的值. 解:∵12a b -=,18ab =, ∴2233221112()()8232a b ab a b ab a b -++=-=⨯=例15、应用简便方法计算。
因式分解和提公因式法因式分解是代数中的一种重要的运算方法,在解题过程中往往可以起到简化问题、求解方程、找出公因数等作用。
而提公因式法是因式分解的一种特殊形式,通过提取公因式来简化多项式的表达式。
本文将详细介绍因式分解和提公因式法的概念、原理以及应用。
一、因式分解的概念和原理1.1 因式分解的概念因式分解是将一个多项式拆解成若干个因式的乘积,其中每个因式都是多项式的一个因子。
通过因式分解,我们可以将复杂的多项式化简为简单的因子形式,便于进一步求解方程、计算和进行其他代数运算。
1.2 因式分解的原理因式分解的原理是根据多项式的特点和运算规律,将其拆解为不可再分解的因子相乘的形式。
常用的分解方法有提取公因式法、配方法、根据特殊公式和因式定理等。
二、提公因式法的概念和步骤2.1 提公因式法的概念提公因式法是一种较为常见且简便的因式分解方法,通过提取多项式中的公因式,将多项式拆解为公因式和剩余部分的乘积。
这样可以达到简化表达式的效果,从而便于求解方程或进行其他计算。
2.2 提公因式法的步骤步骤一:观察多项式中是否存在公因式;步骤二:提取出公因式,并在多项式外面加上括号,表示公因式;步骤三:将多项式中去掉公因式后的部分作为括号内的剩余部分;步骤四:将公因式和剩余部分用乘号连接起来,得到最终的因式分解式。
三、因式分解和提公因式法的应用3.1 解方程因式分解和提公因式法在解方程中经常被使用。
通过因式分解,可以将原方程化简为简单的因子形式,从而更容易求解。
例如,对于二次方程ax^2 + bx + c = 0,如果可以进行因式分解成(a'x + b')(c'x + d') = 0,那么可以根据方程因式乘积为零的性质,得到x的取值。
3.2 简化计算在进行复杂的数学计算时,因式分解和提公因式法可以起到简化计算的作用。
通过将多项式化简为因子形式,可以减少计算的复杂性。
特别是在涉及多次相同运算的情况下,将公因式提取出来可以减少重复计算。
一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
一、提公因式法.:)(c b a m mc mb ma ++=++二、运用公式法.由乘法公式,将其反向使用,即为因式分解中常用的公式,(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).补充公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是:A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ =))((b a n m ++ 例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
因式分解提取公因式法以因式分解提取公因式法为标题,写一篇文章:因式分解提取公因式法是在代数学中常用的一种方法,用于将一个多项式分解为两个或多个公因式相乘的形式。
这种方法可以简化多项式的表达形式,使问题更易于解决。
我们来看一个简单的例子。
假设我们要将多项式3x+6分解为公因式相乘的形式。
我们可以发现,3和6都可以被2整除,所以我们可以提取出公因式2,得到2(3x+6)。
这个过程就是因式分解提取公因式的基本思路。
接下来,我们来看一个稍复杂一些的例子。
假设我们要将多项式6x^2+9x分解为公因式相乘的形式。
首先,我们可以发现6和9都可以被3整除,所以我们可以提取出公因式3,得到3(2x^2+3x)。
然后,我们再观察括号中的多项式2x^2+3x,发现它们都可以被x整除,所以我们可以再次提取公因式x,得到3x(2x+3)。
这个例子展示了因式分解提取公因式法的进一步应用。
在实际应用中,因式分解提取公因式法可以用于简化复杂多项式的计算。
例如,我们要计算多项式2x^3+4x^2+6x的值,可以先将这个多项式分解为公因式相乘的形式,得到2x(x^2+2x+3),然后再计算每个因式的值,最后将结果相加。
这样,我们可以大大简化计算的过程。
除了简化计算,因式分解提取公因式法还可以帮助我们发现多项式中的特殊结构。
例如,如果我们要解方程x^2+5x+6=0,可以先将这个方程因式分解为(x+2)(x+3)=0,然后再求解得到x=-2和x=-3。
这个例子展示了因式分解提取公因式法在解方程中的应用。
在实际应用中,因式分解提取公因式法还可以用于简化分式的计算。
例如,我们要计算分式(2x+4)/(x+2),可以先将分子和分母都进行因式分解提取公因式,得到2(x+2)/(x+2),然后可以简化分式,得到2。
这个例子展示了因式分解提取公因式法在简化分式计算中的应用。
因式分解提取公因式法是代数学中常用的一种方法,可以用于简化多项式的表达形式,简化计算,发现特殊结构,简化分式计算等。
提取公因式法因式分解【知识梳理】一.因式分解的意义1、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.2、因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.例如:3、因式分解是恒等变形,因此可以用整式乘法来检验.二.公因式1、定义:多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.2、确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.三.因式分解-提公因式法1、提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.2、具体方法:(1)当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.(2)如果多项式的第一项是负的,一般要提出“﹣”号,使括号内的第一项的系数成为正数.提出“﹣”号时,多项式的各项都要变号.3、口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.4、提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数再确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同.【考点剖析】一.因式分解的意义(共4小题)1.(2022秋•黄浦区期中)下列等式中,从左到右的变形是多项式的因式分解的是()A.(a+b)2=a2+2ab+b2B.x2﹣2x+5=x(x﹣2)+5C.a2﹣2ab+b2=(a﹣b)2D.x2+1=x(x+)【分析】根据因式分解的定义对各选项分析后利用排除法求解.【解答】解:A、(a+b)2=a2+2ab+b2是多项式的乘法,不是因式分解,故本选项不合题意;B、x2﹣2x+5=x(x﹣2)+5,等式的右边不是几个整式积的形式,故本选项不合题意;C、a2﹣2ab+b2=(a﹣b)2是因式分解,故本选项符合题意;D、x2+1=x(x+),右边分母上有字母,不是因式分解,故本选项不合题意.故选:C.【点评】本题主要考查了因式分解定义,因式分解就是把一个多项式写成几个整式积的形式,是基础题,比较简单.2.(2022秋•静安区校级期中)在下列等式中,从左到右的变形是因式分解的是()A.2a2﹣3a+1=a(2a﹣3)+1B.C.(a+1)(a﹣1)=a2﹣1D.﹣4﹣x2y2+4xy=﹣(2﹣xy)2【分析】根据因式分解的定义逐个判断即可.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键.3.(2022秋•闵行区校级期末)下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答即可.【解答】解:A.等式右边不是乘积形式,故选项错误,不合题意;B.等式右边不是乘积形式,故选项错误,不合题意;C.等式右边不是乘积形式,故选项错误,不合题意;D.符合定义,故选项正确,符合题意.故选:D.【点评】本题考查了因式分解,解题的关键是理解因式分解的定义.4.(2022秋•浦东新区校级期末)下列等式从左到右是因式分解,且结果正确的是()A.a2+8a+16=(a+4)2B.(a+4)2=a2+8a+16C.a2+8a+16=a(a+8)+16D.a2+8(a+2)=a2+8a+16【分析】根据因式分解的定义逐个判断即可.【解答】解:A.等式由左边到右边的变形属于因式分解,并且正确,故本选符合题意;B.等式由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;CD.等式由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:A.【点评】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.二.公因式(共7小题)5.(2022秋•青浦区校级期中)单项式3a3b与单项式9a2b3的公因式是()A.3a2b B.3a3b3C.a2b D.a3b3【分析】根据公因式的概念分别求得系数的最大公因数,相同字母的次数的最低次数即可.【解答】解:单项式3a3b与单项式9a2b3的公因式是3a2b.故选:A.【点评】此题考查的是公因式,掌握其定义是解决此题的关键.6.(2020秋•浦东新区期末)多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为()A.x+3B.(x+3)2 C.x﹣3D.x2+9【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:因为3x﹣9=3(x﹣3),x2﹣9=(x+3)(x﹣3),x2﹣6x+9=(x﹣3)2,所以多项式3x﹣9,x2﹣9与x2﹣6x+9的公因式为(x﹣3).故选:C.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.7.(2022秋•嘉定区期中)多项式6x3y2﹣3x2y2+12x2y3的公因式是.【分析】直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【解答】解:多项式6x3y2﹣3x2y2+12x2y3的公因式是3x2y2.故答案为:3x2y2.【点评】此题主要考查了公因式,正确把握确定公因式的方法是解题的关键.8.(2019秋•黄浦区校级期中)多项式4a(x﹣y)﹣6a2(x﹣y)中各项的公因式是.:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.【解答】解:多项式4a(x﹣y)﹣6a2(x﹣y)中各项的公因式是2a(x﹣y),故答案为:2a(x﹣y).【点评】本题主要考查了公因式,多项式ma+mb+mc中,各项都含有一个公共的因式m,因式m叫做这个多项式各项的公因式.9.(2018秋•嘉定区期末)写出多项式x2﹣y2与多项式x2+xy的一个公因式.【分析】先把两个多项式因式分解,再找出它们的公因式.【解答】解:因为x2﹣y2=(x+y)(x﹣y),x2+xy=x(x+y),所以两个多项式的公因式为:x+y.故答案为:x+y【点评】本题考查了因式分解的平方差公式和提取公因式法.掌握多项式因式分解的方法是解决本题的关键.10.(2019秋•浦东新区期末)8x3y2和12x4y的公因式是.【分析】根据公因式的定义,找出系数的最大公约数,相同字母的最低指数次幂,然后即可确定公因式.【解答】解:系数的最大公约数是4,相同字母的最低指数次幂是x3y,∴公因式为4x3y.故答案为:4x3y.【点评】本题考查公因式的定义,熟练掌握公因式的确定方法是解题的关键,11.(2019秋•松江区期中)多项式:4x(x﹣y)﹣3(x﹣y)的公因式是.【分析】根据公因式的定义:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数解答.【解答】解:4x(x﹣y)﹣3(x﹣y)的公因式是(x﹣y).故答案为:(x﹣y).三.因式分解-提公因式法(共14小题)12.(2022秋•徐汇区期末)分解因式:(x﹣5)(3x﹣2)﹣3(x﹣5)=.【分析】将原式的公因式(x﹣5)提出即可得出答案.【解答】解:(x﹣5)(3x﹣2)﹣3(x﹣5)=(x﹣5)(3x﹣2﹣3)=(x﹣5)(3x﹣5).故答案为:(x﹣5)(3x﹣5).【点评】本题考查因式分解﹣提公因式法,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.13.(2022秋•嘉定区期中)分解因式:3x3﹣9x2﹣3x=.【分析】提取公因式后即可因式分解.【解答】解:3x3﹣9x2﹣3x=3x(x2﹣3x﹣1),故答案为:3x(x2﹣3x﹣1).【点评】本题考查因式分解,熟练掌握提取公因式法因式分解的方法是解题的关键.14.(2022秋•宝山区校级期末)分解因式:4x2y﹣12xy=.【分析】直接提取公因式4xy进行分解因式即可.【解答】解:4x2y﹣12xy=4xy(x﹣3),故答案为:4xy(x﹣3).【点评】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.15.(2021秋•金山区期末)因式分解:6a2﹣8a3=.【分析】直接找出公因式进而提取公因式得出答案.【解答】解:6a2﹣8a3=2a2(3﹣4a).故答案为:2a2(3﹣4a).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.16.(2021秋•奉贤区期末)分解因式:2m2n﹣mn2=.【分析】直接提取公因式mn进行因式分解即可.【解答】解:2m2n﹣mn2=mn(2m﹣n).故答案为:mn(2m﹣n).【点评】如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.17.(2022秋•嘉定区校级期中)因式分解:﹣15a﹣10ab+5abc=.【分析】直接提取公因式﹣5a,进而分解因式即可.【解答】解:原式=﹣5a(3+2b﹣bc).故答案为:﹣5a(3+2b﹣bc).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.18.(2022秋•嘉定区期中)当a=3,b=时,代数式﹣a2+4ab的值为.【分析】将原式变形为﹣a(a﹣4b),把a与b的值分别代入计算即可得到结果.【解答】解:当a=3,b=时,﹣a2+4ab=﹣a(a﹣4b)=﹣3×(3﹣4×)=﹣3×2=﹣6.故答案为:﹣6.【点评】此题考查了代数式求值和因式分解,熟练掌握运算法则是解本题的关键.19.(2022秋•嘉定区期中)因式分解:6(x+y)2﹣2(x+y)(x﹣y)【分析】直接提取公因式进而分解因式得出答案.【解答】解:6(x+y)2﹣2(x+y)(x﹣y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y).【点评】此题主要考查了提取公因式法分解因式,正确掌握公因式是解题关键.20.(2022秋•杨浦区期中)分解因式:a2(a+2b)﹣ab(﹣4b﹣2a).【分析】原式变形可得a2(a+2b)+2ab(a+2b),再提公因式a(a+2b)因式分解即可.【解答】解:a2(a+2b)﹣ab(﹣4b﹣2a)=a2(a+2b)+2ab(a+2b)=a(a+2b)(a+2b)=a(a+2b)2.【点评】本题考查了提公因式法因式分解,正确找出公因式是解答本题的关键.21.(2022秋•浦东新区校级期中)因式分解:(y﹣x)2+2(x﹣y)=.【分析】利用提公因式法,进行分解即可解答.【解答】解:(y﹣x)2+2(x﹣y)=(y﹣x)2﹣2(y﹣x)=(y﹣x)(y﹣x﹣2),故答案为:(y﹣x)(y﹣x﹣2).【点评】本题考查了因式分解﹣提公因式法,熟练掌握提公因式法是解题的关键.22.(2022秋•青浦区校级期中)因式分解:15a2b﹣3ab=.【分析】先确定公因式为3ab,然后提取公因式后整理即可.【解答】解:15a2b ﹣3ab =3ab (5a ﹣1).故答案为:3ab (5a ﹣1).【点评】本题考查提公因式法分解因式,较为简单,准确找出公因式是解题的关键.23.(2022秋•虹口区校级期中)分解因式:3x 2y ﹣12xy 2= .【分析】得出多项式的公因式进而提取得出即可.【解答】解:3x2y ﹣12xy2=3xy (x ﹣4y ).故答案为:3xy (x ﹣4y ).【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.24.(2022秋•宝山区校级期中)分解因式:a (a ﹣b )+b (b ﹣a )= .【分析】首先把式子变形为:a (a ﹣b )﹣b (a ﹣b ),再找出多项式的公因式,然后提取公因式法因式分解即可.【解答】解:a (a ﹣b )+b (b ﹣a )=a (a ﹣b )﹣b (a ﹣b )=(a ﹣b )(a ﹣b )=(a ﹣b )2.故答案为:(a ﹣b )2.【点评】此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.25.(2022m (a ﹣c )﹣5(a ﹣c ).【分析】直接提取公因式a ﹣c 即可.【解答】解:原式=(a ﹣c )(2m ﹣5).【点评】此题主要考查了提公因式法分解因式,关键是正确找到公因式.【过关检测】一、单选题1.(2023·上海·七年级假期作业)下列各式从左到右的变形是因式分解的是( ) A .()2222x y x y xy +=−+ B .()422211(1x x x x x x ++=++−+) C .()230130x x x x −−=−−D .()22121a a a −=−+【答案】B【分析】根据因式分解的定义,逐项判断即可求解.【详解】解:A 、从左到右的变形不是因式分解,故本选项不符合题意;B 、从左到右的变形是因式分解,故本选项符合题意;C 、从左到右的变形不是因式分解,故本选项不符合题意;D 、从左到右的变形不是因式分解,故本选项不符合题意;故选:B【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.2.(2022秋·上海宝山·七年级校考期中)分解因式()()222b x b x −+−正确的结果是( )A .()()22x b b −+B .()()21b x b −+C .()()22x b b −−D .()()21b x b −−【答案】D【分析】先将式子变形,再提取公因式分解即可.【详解】解:()()222b x b x −+− ()()222b x b x =−−− ()(2)1b x b =−−.故选:D 【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法分解因式. 3.(2022秋·上海松江·七年级校考期中)已知多项式2ax bx c ++分解因式得()()32x x −+,则a ,b ,c 的值分别为( )A .1,1−,6B .1,1,6−C .1,1−,6−D .1,1,6 【答案】C【分析】根据多项式乘以多项式运算法则将()()32x x −+展开,分别对应2ax bx c ++即可得出答案.【详解】解:()()2632x x x x =−+−−,∵多项式2ax bx c ++分解因式得()()32x x −+,∴1,1,6a b c ==−=−,故选:C .【点睛】本题考查了多项式乘以多项式,也可根据十字相乘法因式分解得326,321,111c b a =−⨯=−=−+=−=⨯=进行求解.4.(2023秋·上海浦东新·七年级校考期末)下列等式从左到右是因式分解,且结果正确的是( ) A .22816(4)a a a ++=+B .22(4)=816a a a +++C .2816(8)16a a a a ++=++D .228(2)816a a a a ++=++ 【答案】A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据定义即可判断.【详解】A .把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;B .是整式乘法,不是因式分解,故此选项不符合题意;C .结果不是整式的乘积的形式,不是因式分解,故此选项不符合题意;D .是整式乘法,不是因式分解,故此选项不符合题意;故选:A【点睛】因式分解是整式的变形,注意结果是整式的乘积的形式,并且变形前后值不变.5.(2020秋·七年级校考课时练习)把多项式-4a 3+4a 2-16a 分解因式( )A .-a (4a 2-4a+16)B .a (-4a 2+4a-16)C .-4(a 3-a 2+4a )D .-4a (a 2-a+4) 【答案】D【详解】把多项式-4a3+4a2-16a 运用提取公因式法因式分解,可得-4a3+4a2-16a=-4a (a2-a+4). 故选D .【答案】D【分析】根据完全平方公式求出225x y +=,再把原式因式分解后可代入求值.【详解】解:因为2x y −=,12xy =,所以()24x y −=,22425x y xy +=+=所以32233x y x y xy ++()223xy x xy y =++115322134⎛⎫=+⨯ ⎪⎝⎭=故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.二、填空题7.(2023·上海·七年级假期作业)若5x y −=,6xy =则22x y xy −=________,2222x y +=________.【答案】 30 74【分析】第一个空先利用提公因式法因式分解,再代入计算即可;第二个空利用完全平方公式变形后,代入计算即可.【详解】解:22()6530x y xy xy x y −=−=⨯=;()222222()22251274x y x y xy ⎡⎤+=−+=⨯+=⎣⎦.故答案为:30,74.【点睛】本题考查代数式求值,掌握因式分解法和熟练利用完全平方公式是解题关键.8.(2022秋·上海·七年级上海市西延安中学校考期中)分解因式:22615x z yz −+=__________.【答案】()2325z x yz −−【分析】提取公因式即可分解.【详解】解:()222615325x z yz z x yz −+=−−, 故答案为:()2325z x yz −−. 【点睛】本题是一道有关因式分解的题目,解题的关键是掌握提公因式法分解因式的步骤.9.(2022秋·上海浦东新·七年级校考期中)分解因式:223714ab a b −=______.【答案】()2712ab ab −【分析】直接提取公因式进行计算即可.【详解】解:原式()2712ab ab =−.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.10.(2022秋·上海·七年级上海市建平中学西校校考期中)因式分解:2()2()y x x y −+−=___________.【答案】()()2x y x y −−+【分析】直接利用提公因式法分解因式即可. 【详解】()()2()2()2y x x y x y x y −+−=−−+.故答案为:()()2x y x y −−+.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【答案】234y x y −【分析】利用提公因式法分解因式求解即可.【详解】()23268234y x y xy y −=−. 故答案为:()2234y x y −. 【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.12.(2023秋·上海浦东新·七年级校考期中)分解因式:25x y xy +=__________.【答案】()5xy x +【分析】根据提公因式法分解因式即可.【详解】解:()255x y xy xy x +=+.故答案为:()5xy x +.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握提公因式法.13.(2023秋·上海宝山·七年级校考期末)分解因式:2412x y xy −=______.【答案】()43xy x −【分析】直接提取公因式4xy 进行分解因式即可.【详解】解:2412x y xy −()43xy x =−,故答案为:()43xy x −.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.14.(2022秋·上海松江·七年级校考期中)因式分解:()()()2222a b b a a b −−−+=___________.【答案】()()23a b a b −−【分析】提公因式()2a b −,即可求解.【详解】解:()()()2222a b b a a b −−−+ ()()()2222a b a b a b −+−+=()()222a b a b a b =−−++ ()()23a b a b =−−. 故答案为:()()23a b a b −−.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.15.(2023·上海·七年级假期作业)因式分解:15105a ab abc −−+=___________.【答案】()532a b bc −+−【分析】提出公因式5a −即可.【详解】解:()15105532a ab abc a b bc −−+=−+− 故答案为:()532a b bc −+−. 【点睛】本题考查因式分解,熟练掌握提公因式法分解因式是解题的关键.16.(2023·上海·七年级假期作业)已知:()()2111x x x x x +++++=[](1)1(1)x x x x +⋅+++=()()()()31111x x x x ⎡⎤+⋅+⋅+=+⎣⎦,因式分解()()()220221111x x x x x x x ++++++⋅⋅⋅++,结果为_______________. 【答案】()20231x + 【分析】将()()()220221111x x x x x x x ++++++⋅⋅⋅++提出一个()1x +,再将 ()()()()220211111...1x x x x x x x x ⎡⎤+++++++++⎣⎦提出一个()1x +,继续提出一个()1x +,以此类推,直到原式变为()()202211x x ++,再化简即可.【详解】解:()()()220221111x x x x x x x ++++++⋅⋅⋅++ ()()()()220211111...1x x x x x x x x ⎡⎤=+++++++++⎣⎦()()()()2220201111...1x x x x x x x ⎡⎤=+++++++++⎣⎦()()()()3220191111...1x x x x x x x x ⎡⎤=+++++++++⎣⎦…()()2021111x x x x =++++⎡⎤⎣⎦ ()()202211x x =++()20231x =+故答案为:()20231x +【点睛】本题考查了提公因式法,一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成多项式与另一个因式的乘积的形式,在这种分解因式的方法叫做提公因式法.17.(2022秋·上海普陀·七年级统考期中)如果210x x ++=,那么23991x x x x ++++⋅⋅⋅+的值是______.【答案】1【分析】首先需要先将23991x x x x ++++⋅⋅⋅+变形为()()234561x x x x x x +++++++()979899x x x ⋅⋅⋅+++,经过提公因式得到()()242111x x x x x x ++++++()9721x x x +⋅⋅⋅+++ ,将210x x ++=整体代入即可. 【详解】解:23991x x x x ++++⋅⋅⋅+()()234561x x x x x x =+++++++()979899x x x ⋅⋅⋅+++ ()()242111x x x x x x =++++++()9721x x x +⋅⋅⋅+++将210x x ++=代入,得到10001=+++⋅⋅⋅+=. 故答案为:1.【点睛】本题主要考查因式分解的应用,寻找公因式21x x ++是解题的关键.18.(2023·上海·七年级假期作业)分解因式:(5)(32)3(5)x x x −−−−=___________【答案】()()535x x −−/()()355x x −−【分析】提取公因式()5x −,同类项合并即可解得. 【详解】(5)(32)3(5)x x x −−−−(5)(323)x x =---(5)(35)x x =--【点睛】此题考查了分解因式,解题的关键是熟悉提取公因式法.三、解答题【答案】()()25a c m −−【分析】根据提公因式法分解因式求解即可.【详解】解:2()5()m a c a c −−−()()25a c m =−−【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.20.(2022秋·上海·七年级专题练习)因式分解:()13(1)22n n n a a a a +−−−【答案】)(1n a a +【分析】先计算单项式乘多项式,合并后,再提取公式即可.【详解】解:()13(1)22n n n a a a a +−−−112433n n n n a a a a ++=−−+1n n a a +=+)(1n a a =+.【点睛】本题考查了单项式乘多项式,同底数相乘,提公因式分解因式,解题的关键是灵活运用所学知识解决问题.21.(2022秋·上海·七年级专题练习)因式分解:()()42a x y b y x −−−.【答案】()()22x y a b −+【分析】将原式变为()()42a x y b x y −+−,再利用提公因式法分解因式即可. 【详解】解:()()42a x y b y x −−− ()()42a x y b x y =−+− ()()22x y a b =−+.【点睛】本题考查了提公因式法分解因式,注意将题目中的y x −变为x y −时符号的变化,正确找到公因式是解答本题的关键.22.(2022秋·上海黄浦·七年级上海市民办立达中学校考期中)因式分解:()22a b a b −−+【答案】()()221a b a b −−−【分析】先把原式化为()()22a b a b −−−,再提取公因式分解因式即可.【详解】解:()22a b a b −−+ ()()22a b a b =−−−()()21a b a b =−−−⎡⎤⎣⎦()()221a b a b =−−−【点睛】本题考查的是提取公因式分解因式,掌握“公因式的确定以及提取公因式的方法”是解本题的关键.23.(2022秋·上海浦东新·七年级校考期中)因式分解:()()()22x y x y x y +−−−【答案】()()3x y x y +−【分析】直接提取公因式()x y −进行分解因式即可. 【详解】解:()()()22x y x y x y +−−−()()()2x y x y x y =+−−−⎡⎤⎣⎦()()22x y x y x y =+−+−()()3x y x y =+−.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键. 24.(2023·上海·七年级假期作业)把下列各式分解因式:(1)()()33113510m m a b a b a b b a +−−−−;(2)()()()223222122418ab x y a b y x ab y x −+−+−.【答案】(1)13225()(2)m a b a b a b −−+ (2)26()(2433)ab x y b ab x y −+−+【分析】(1)原式利用提公因式法解答;(2)原式利用提公因式法解答.【详解】(1)原式()()33113510m m a b a b a b a b +−=−+−13225()(2)m a b a b a b −=−+;(2)原式()()()223222122418ab x y a b x y ab x y =−+−−−26()[243()]ab x y b ab x y =−+−−26()(2433)ab x y b ab x y =−+−+.【点睛】本题主要考查利用提取公因式法分解因式,注意公因式是指每一项中都含有的因式,取相同字母的最低次幂.【答案】3()(32)16x y a b −− 【分析】根据提公因式法因式分解直接求解即可得到答案【详解】解:()()93168a x y b y x −+−()()93168a x y b x y =−−− 3()(32)16x y a b =−−.【点睛】本题主要考查利用提取公因式法分解因式,注意提取公因式后,剩余的项的项数与原来的项数相同,并且让系数变为整数.26.(2022秋·上海普陀·七年级统考期中)因式分解:()()32232x a a a x −+−.【答案】()()222x a x a −+【分析】先提取公因式,然后化简即可.【详解】解:原式()()2223x a x a a =−−+ ()()2222x a x a =−+()()222x a x a =−+.【点睛】本题主要考查因式分解,掌握提公因式法是解决因式分解的关键.27.(2022秋·上海宝山·七年级校考期中)分解因式:()()()()2232253x y x y y x x y −+−−+.【答案】()()3243x y x y −+【分析】根据提公因式法分解因式求解即可【详解】解:()()()()2232253x y x y y x x y −+−−+()()()()2232253x y x y x y x y =−++−+ ()()223253x y x y x y =−+++⎡⎤⎣⎦()()2129x y x y =−+()()3243x y x y =−+ 【点睛】此题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的方法.28.(2023·上海·七年级假期作业)化简下列多项式:()()()()23200611111x x x x x x x x x ++++++++++.【答案】()20071x +【分析】原式利用提公因式法逐步分解因式得出答案.【详解】原式22005(1)[1(1)(1)(1)]x x x x x x x x =+++++++++222004(1)[1(1)(1)(1)]x x x x x x x x =+++++++++ 322003(1)[1(1)(1)(1)]x x x x x x x x =+++++++++ =()()200611x x =++()20071x =+. 【点睛】本题主要考查利用提取公因式法分解因式,掌握解答的方法是关键.。
提取公因式法分解因式的步骤一、引言在代数学中,我们经常需要对多项式进行因式分解,以便更好地理解和处理问题。
其中一种常用的因式分解方法就是提取公因式法。
本文将详细介绍提取公因式法分解因式的步骤和方法。
二、什么是公因式在开始介绍提取公因式法之前,我们首先要了解什么是公因式。
在一个多项式中,如果某一个因子能够被所有的项整除,那么它就是这些项的公因式。
例如,在多项式2x+4y中,2是这两项的公因式。
三、步骤一:观察多项式中的公因式在使用提取公因式法分解因式之前,我们首先要仔细观察多项式,找出其中的公因式。
公因式可以是一个常数或者一个变量,也可以是它们的乘积。
四、步骤二:提取公因式一旦我们找到了多项式中的公因式,我们就可以开始提取公因式。
具体来说,我们需要将公因式提取出来,然后将其乘以剩下的部分。
五、步骤三:简化多项式在提取公因式后,我们需要对剩下的部分进行简化。
具体来说,我们需要将剩下的部分通过除以公因式来得到一个简化的表达式。
六、步骤四:检查是否还有公因式在简化多项式后,我们需要再次观察是否还有公因式。
如果还有公因式,我们需要继续提取公因式并简化多项式,直到没有公因式为止。
七、例题演示为了更好地理解提取公因式法的步骤,我们来看一个例题的演示。
例题:将多项式4x^2y+8xy^2分解因式。
解:首先,观察多项式中的公因式。
我们可以发现4是这两项的公因式。
然后,我们提取公因式4,得到4(x^2y+2xy^2)。
接下来,我们简化剩下的部分(x^2y+2xy^2)。
在这个剩下的部分中,我们可以发现xy是这两项的公因式。
我们提取公因式xy,得到最终的分解结果4xy(x+y)。
八、总结通过以上的例题演示,我们可以清楚地看到提取公因式法的步骤。
首先,我们观察多项式中的公因式;然后,提取公因式并简化多项式;最后,重复以上步骤,直到没有公因式为止。
这种方法简单而有效,可以帮助我们快速分解因式。
九、应用和扩展提取公因式法不仅可以用于分解因式,还可以应用于其他代数运算中。
因式分解和提公因式法因式分解方法灵活,技巧性强,初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.1.定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。
一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
2.提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式.②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.am+bm+cm=m(a+b+c)③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.3.区分因式分解与整式的乘法:它们的关系是意义上正好相反,结果的特征是因式分解是积的形式,整式的乘法是和的形式,抓住这一特征,就不容易混淆因式分解与整式的乘法。
经典例题:1.证明:对于任何数x,y,下式的值都不会为33x5+3x4y-5x3y²+4xy4+12y5-15x²y3解:原式=(x5+3x4y)-(5x3y²+15x²y3)+(4xy4+12y5)=x4(x+3y)-5x²y²(x+3y)+4y4(x+3y)=(x+3y)(x4-5x²y²+4y4)=(x+3y)(x²-4y²)(x²-y²)=(x+3y)(x+y)(x-y)(x+2y)(x-2y)当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立2、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)3、 十字相乘法对于mx ²+px+q 形式的多项式,如果a×b=m,c×d=q 且ac+bd=p ,则多项式可因式分解为(ax+d)(bx+c) 分解因式7x ²-19x-6解:7x ²-19x-6=(7x+2)(x-3)4、 分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)巩固练习一、选择题1、下列从左边到右边的变形,是因式分解的是( )A 、29)3)(3(x x x -=+-B 、))((2233n mn m n m n m ++-=-C 、)1)(3()3)(1(++-=-+y y y yD 、z yz z y z z y yz +-=+-)2(22422、下列多项式中能用平方差公式分解因式的是( )A 、22)(b a -+B 、mn m 2052-C 、22y x --D 、92+-x3、若E p q p q q p ⋅-=---232)()()(,则E 是( )A 、p q --1B 、p q -C 、q p -+1D 、p q -+14、若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A 、-15B 、-2C 、8D 、25、如果2592++kx x 是一个完全平方式,那么k 的值是( )A 、 15B 、 ±5C 、 30D ±306、△ABC 的三边满足a 2+b 2+c 2=ac +bc +ab ,则△ABC 是( )A 、等腰三角形B 、直角三角形C 、等边三角形D 、锐角三角形7、已知2x 2-3xy+y 2=0(xy ≠0),则x y +y x的值是( ) A 2或212 B 2 C 212 D -2或-2128、要在二次三项式x 2+□x-6的□中填上一个整数,使它能按x 2+(a +b )x +ab 型分解为(x +a )(x +b )的形式,那么这些数只能是 ( )A .1,-1;B .5,-5;C .1,-1,5,-5;D .以上答案都不对9、已知二次三项式x 2+bx+c 可分解为两个一次因式的积(x +α)(x+β),下面说法中错误的是 ( )A .若b >0,c >0,则α、β同取正号;B .若b <0,c >0,则α、β同取负号;C .若b >0,c <0,则α、β异号,且正的一个数大于负的一个数;D .若b <0,c <0,则α、β异号,且负的一个数的绝对值较大.10、已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a 2+b 2+c 2-ab-bc-ca 的值为( )A 、0B 、1C 、2D 、3二、填空题11、已知:02,022=-+≠b ab a ab ,那么ba b a +-22的值为_____________.12、分解因式:ma 2-4ma+4a=_________________________.13、分解因式:x (a-b )2n +y (b-a )2n+1=_______________________.14、△ABC 的三边满足a 4+b 2c 2-a 2c 2-b 4=0,则△ABC 的形状是__________.15、若A y x y x y x ⋅-=+--)(22,则A =___________.16、多项式2,12,2223--+++x x x x x x 的公因式是___.17、若x 2+2(m-3)x+16是完全平方式,则m=___________.18、若a 2+2a+b 2-6b+10=0, 则a=___________,b=___________.19、若(x 2+y 2)(x 2+y 2-1)=12, 则x 2+y 2=___________.三、把下列各式因式分解(1)22)34()43)(62()3(y x x y y x y x -+-+++ (2)27624--a a(3)32)(10)(5x y n y x m -+- (4)8x m y n-1+56x m+1y n四、解答题1、求证:无论x 、y 为何值,3530912422+++-y y x x 的值恒为正。
课题:因式分解之提取公因式法和公式法知识精要:一、因式分解的概念1、定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.2、因式分解和整式乘法正好是互逆变换,可通过如下图示加以理解因式分解多项式(和差形式) 整式的积(积的形式)整式乘法二、提取公因式法1、定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.即()ma mb mc m a b c ++=++(1)公因式的系数应取各项系数的最大公约数;(2)字母取各项的相同字母,而且各字母的指数取最低次数.2、步骤:(1)观察;(2)确定公因式;(3)将公因式提到括号外;(4)将多项式写成因式乘积的形式.3、提公因式法的关键是如何正确地寻找公因式.让学生观察公因式的特点,找出确定公因式的方法:(1)公因式应是各项系数的最大公因数与各项都含有的相同字母的最低次幂的积.(2)公因式不仅可以是单项式,也可以是多项式.4、提取公因式法应注意的事项:(1)提取的公因式应为最大公因式;(2)当某一项被完全提取,该项要用“1”来代替;(3)要使得括号内第一项的系数为正数;(4)要使得括号内每一项的系数为整数;(5)注意符号变换问题.二、公式法1、平方差公式: 22()()a b a b a b -=+-2、完全平方公式:2222()a ab b a b ±+=±3、注意事项:(1)注意公式的结构特点;(2)注意符号;(3)首先想到提取公因式法;(4)注意分解一定要彻底. 精解名题:例1、下列从左到右的变形哪个是分解因式( )A .223(2)3x x x x +-=+-;B .()()ma mb na nb m a b n a b +++=+++;C .221236(6)x x x -+=-;D .22()22m m n m mn -+=--.例2、多项式3222315520x y x y x y +-的最大公因式是( )A .5xy ;B .225x y ;C .25x y ;D .235x y .例3、把多项式2(2)(2)m a m a -+-分解因式正确的是( )A .2(2)()a m m -+;B .(2)(1)m a m -+;C .(2)(1)m a m --;D .2(2)()a m m -+. 例4、下列各式中,能用平方差公式分解因式的是( )A .22a b -+;B .22a b --;C .22a b +;D .33a b -.例5、若2(3)4x m x +-+是完全平方式,则实数m 的值是( )A .5-;B .3;C .7 ;D .7或1-.例6、若二项式24x +加上一个单项式后成为一个完全平方式,则这样的单项式共有( )A .1个;B .2个;C .3个;D .4个.例7、无论x 、y 为任何实数,多项式22428x y x y +--+的值一定是( )A .正数;B .负数;C .零;D .不确定.例8、下列多项式能用完全平方公式分解因式的是( )A .22m mn n -+;B .2()4a b ab +-;C .2124x x -+; D .221x x +-. 例9、若3a b +=,则222426a ab b ++-的值为( )A .12;B .6;C .3;D .0. 例10、已知221x y -=-,12x y +=,则x y -= . 例11、已知3x y +=,则221122x xy y ++=__________. 例12、已知2226100x y x y +-++=,则x y +=________.例13、因式分解:(第(1)-(6)用提取公因式法;第(7)-(22)用公式法)(1); (2) 3423424281535a b a b a b -+;(3); (4);(5)3122+++--+-m m m m ax acx abx xa ;(6)3225(2)(2)3(2)(2)n n x y x y -----(7)2249x y -; (8)3282(1)a a a -+;(9)44116a b -; (10)224()25()x y x y --+;(11)42241128a b a b -; (12)2233(27)4x x --;(13)31()7()7x y x y ---; (14)222(4)16x x +-;(15)29124a a ++; (16)229312554a ab b -+;(17)2244ab a b --; (18)2318248a a a -+;(19)42816x x -+; (20)(6)9a a ++;(21)2()10()25m n m n ++++;(22)2222()6()9()a b a b a b ++-+-;例14、已知1128a b ab -==,,求22332a b ab a b -++的值.例15、应用简便方法计算。
提取公因式的方法提取公因式是在代数式计算中常见的一种方法,通过提取公因式可以简化计算过程,使得代数式更加简洁、易于处理。
下面我们将介绍几种常见的提取公因式的方法。
一、提取公因式的基本原理。
在代数式中,如果多个项有一个共同的因子,那么我们就可以将这个共同的因子提取出来,这个过程就是提取公因式。
提取公因式的基本原理就是找出代数式中各项的最大公因式,然后将其提取出来,从而简化代数式的形式。
二、提取公因式的方法。
1. 查找公因式。
在进行提取公因式的时候,首先需要对代数式进行分解,然后找出各项的公因式。
通常情况下,我们可以通过观察各项中的变量和常数的因子,来找出它们的最大公因式。
2. 提取公因式。
找到各项的最大公因式之后,我们就可以将其提取出来,形成一个公因式和一个括号内的代数式相乘的形式。
这样可以使得代数式更加简洁,方便后续的计算和化简。
3. 化简代数式。
提取公因式之后,我们还可以进一步对代数式进行化简。
通过提取公因式,可以将复杂的代数式化简成简单的形式,从而更容易进行计算和分析。
三、提取公因式的应用。
1. 因式分解。
在因式分解的过程中,提取公因式是非常重要的一步。
通过提取公因式,可以将复杂的代数式分解成简单的因式,从而更容易进行后续的计算和分析。
2. 求解方程。
在求解方程的过程中,有时候我们需要对方程进行化简,这时候提取公因式就可以发挥作用。
通过提取公因式,可以将方程化简成简单的形式,从而更容易求解方程的根。
3. 求解不定积分。
在求解不定积分的过程中,有时候我们需要对被积函数进行化简,这时候提取公因式也可以发挥作用。
通过提取公因式,可以将被积函数化简成简单的形式,从而更容易进行积分运算。
四、总结。
提取公因式是代数运算中常见的一种方法,通过提取公因式可以简化代数式的形式,使得计算更加简洁高效。
在实际应用中,提取公因式有着广泛的应用,可以用于因式分解、方程求解、不定积分等方面。
因此,掌握提取公因式的方法对于代数运算是非常重要的。
因式分解的四种方法
1. 因式分解法一:提取公因式法
这种方法适用于多项式中存在公共因式的情况。
首先,找出多项式中的公共因式,然后将其提取出来,在剩下的部分进行进一步的因式分解。
例如,对于多项式2x² + 4x,可以提取公因式2x,得到2x(x + 2)。
2. 因式分解法二:二次因式法
这种方法适用于多项式中存在二次因式的情况。
具体步骤是将多项式进行因式分解,将其表示为一个二次因式乘以一个一次因式的形式。
例如,对于多项式x² - 4,可以通过差平方公式进行因式分解,得到(x - 2)(x + 2)。
3. 因式分解法三:分组法
这种方法适用于多项式中存在四项以上的情况。
具体步骤是将多项式中的项进行分组,然后在每个组内因式分解,最后再进行合并。
例如,对于多项式x³ + 8y³ + 2xy² + 16y²,可以将其分为(x³ + 2xy²) + (8y³ + 16y²),然后在每个组内因式分解,得到x(x² + 2y²) + 8y²(y + 2),最后合并得到(x + 2y)(x² + 8y²)。
4. 因式分解法四:完全平方式
这种方法适用于多项式是平方差的形式。
具体步骤是将多项式表示为两个完全平方数的差,然后应用差平方公式进行因式分解。
例如,对于多项式x⁴ - 16,可以将其表示为(x²)² - 4²,然后应用差平方公式得到(x² - 4)(x² + 4)。