《因式分解-提公因式法》知识点归纳
- 格式:docx
- 大小:58.38 KB
- 文档页数:6
七年级数学提公因式法知识点归纳七年级数学提公因式法知识点归纳初中阶段是我们一生中学习的“黄金时期”。
不光愉快的过新学期,也要面对一件重要的事情那就是学习。
应届毕业生店铺为大家提供了七年级数学提公因式法知识点归纳,希望对大家有所帮助。
◆ 因式分解------把一个多项式变成几个整式的积的形式;(化和为积)注意:1、因式分解对象是多项式;2、因式分解必须进行到每一个多项式因式不能再分解为止;3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性;◆ 分解因式的.作用分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。
◆ 分解因式的一些原则(1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式。
(2)分解彻底的原则.即分解因式必须进行到每一个多项式因式都再不能分解为止。
(3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则。
◆ 因式分解的首要方法—提公因式法1、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
2、提公因式法:如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的因式提出以分解因式的方法,叫做提公因式法。
3、使用提取公因式法应注意几点:(1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。
(2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。
(找最高公因式)(3)对多项式中的每一项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。
◆ 提公因式法分解因式的关键:1、确定最高公因式;(各项系数的最大公约数与相同因式的最低次幂之积)2、提出公因式后另一因式的确定;(用原多项式的每一项分别除以公因式)。
因式分解---提取公因式法一、教材分析:(一)教材所处的地位学习因式分解一是为解高次方程作准备,二是学习代数式恒等变形。
它是在学生学习了整式运算的基础上提出的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。
同时也是后续学习分式化简、解方程、解不等式等内容的基础,因此,分解因式这一章在代数部分起到了承上启下的作用。
另外,分解因式体现了“化归”、“整体”以及“逆向”的数学思想,是数学学习的重点。
根据《课标》的要求,介绍最基本的4种分解因式的方法,而运用提公因式法分解因式,作为本部分内容的起始课,具有重要的意义。
(二)说教学目标知识与技能目标理解因式分解的意义;掌握提公因式法,并能够运用提公因式法进行因式分解。
过程与方法目标经历探索提公因式法分解因式的过程,提高学生的观察分析能力、判断能力以及计算能力,同时渗透化归、整体的数学思想。
情感与价值观目标体验运用数学知识解决问题的成就感;引导学生养成积极思考、独立思考的良好学习习惯,同时培养学生合作交流的团队精神。
二、重点、难点分析:本着数学新课程标准的要求,在吃透教材基础上,我确定了以下教学重点和难点:教学重点:找出多项式的公因式,并运用提公因式法分解因式。
教学难点:迅速找出多项式的公因式。
三、教法分析学生是学习的主体,教师是学习的组织者、引导着、合作者。
因此在教学过程中,我以激发学生积极性、主动性、凸显学生主体地位为出发点,采用启发式教学法。
具体地,我将通过引导发现、实例探究、讲练结合等教学过程,让学生积极主动地参与到教学活动中,经历完整的知识形成过程,从而使学生“知其然”,还“知其所以然”。
四、说学法有这样一句话--“现代的文盲不是不懂字的人,而是没有掌握学习方法的人”,因而,我在教学过程中特别重视学法的指导。
让学生从“学会”向“会学”转变,成为学习的真正的主人。
这节课主要采用自主探索、合作交流结合的研讨式学习方式。
学生思考问题,获取知识,掌握方法,同时培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.五、教学过程设计六、板书设计八、结束语本节课我根据初二年级学生的心理特征及其认知规律,采用直观教学和活动探究的教学方法,放手让学生自主探索的学习,主动地参与到知识形成的整个思维过程,力求使学生在积极、愉快的课堂气氛中提高自己的认识水平,从而达到预期的教学效果。
因式分解知识点总结一、因式分解的概念。
1. 定义。
- 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
例如:x^2-4=(x + 2)(x - 2),就是将多项式x^2-4因式分解为两个整式(x + 2)与(x - 2)的积的形式。
2. 与整式乘法的关系。
- 因式分解与整式乘法是互逆的恒等变形。
整式乘法是把几个整式相乘化为一个多项式,如(a + b)(a - b)=a^2-b^2;而因式分解是把一个多项式化为几个整式相乘,如a^2-b^2=(a + b)(a - b)。
二、因式分解的方法。
1. 提公因式法。
- 公因式的确定。
- 系数:取各项系数的最大公因数。
例如,对于多项式6x^2+9x,系数6和9的最大公因数是3。
- 字母:取各项相同的字母。
在6x^2+9x中,相同的字母是x。
- 字母的指数:取相同字母的最低次幂。
对于6x^2+9x,x的最低次幂是1。
所以公因式是3x。
- 提公因式的步骤。
- 找出公因式。
- 用多项式除以公因式,得到另一个因式。
例如,6x^2+9x = 3x(2x+3)。
2. 公式法。
- 平方差公式。
- 公式:a^2-b^2=(a + b)(a - b)。
- 应用条件:多项式必须是两项式,并且这两项都能写成平方的形式,符号相反。
例如,9x^2-16y^2=(3x + 4y)(3x - 4y),这里9x^2=(3x)^2,16y^2=(4y)^2。
- 完全平方公式。
- 公式:a^2+2ab + b^2=(a + b)^2,a^2-2ab + b^2=(a - b)^2。
- 应用条件:多项式是三项式,其中有两项能写成平方的形式,且这两项的符号相同,另一项是这两个数乘积的2倍。
例如,x^2+6x + 9=(x + 3)^2,这里x^2=x^2,9 = 3^2,6x=2× x×3。
3. 十字相乘法(拓展内容,人教版教材部分有涉及)- 对于二次三项式ax^2+bx + c(a≠0),如果能找到两个数m和n,使得m + n=b 且mn = ac,那么ax^2+bx + c=(x + m)(x + n)。
因式分解知识点归纳因式分解是代数中的重要概念和技巧,它在解方程、求根、化简表达式等方面都有广泛的应用。
以下是关于因式分解的知识点归纳:一、基本概念1.因式:在乘法中,参加运算的每个数或字母或含有字母的式子,称为因式。
2.因式分解:把一个多项式写成若干个因式相乘的形式,称为因式分解。
3.因数:若一个数a能够整除另一个数b,那么称a是b的因数,b 是a的倍数。
二、因式分解的原则1.分解的因式中只能有素数,即不能再分解。
2.同一因式在分解式中只能出现一次,不允许出现多个相同的因式。
三、因式分解的方法1.公因式法:把多项式中的公因式提出来,然后将剩余部分进行因式分解。
2.提取因式法:将多项式中的因式提取出来,然后将剩余部分进行因式分解。
3.平方差公式:对于两个完全平方差的多项式,可以利用平方差公式进行因式分解。
4.分组分解法:将多项式中的项进行分组,然后利用求和公式或平方差公式进行因式分解。
5.完全平方公式:对于一个完全平方的多项式,可以利用完全平方公式进行因式分解。
四、常用的因式分解公式1.两个平方差的因式分解公式:a²-b²=(a+b)(a-b);a² + 2ab+ b² = (a + b)²;a² - 2ab + b² = (a - b)²。
2.完全平方公式:a² + 2ab + b² = (a + b)²;a² - 2ab + b² = (a - b)²。
3.一次式的因式分解公式:ax + bx = x(a + b);ax - bx = x(a - b);ax + ay = a(x + y);ax - ay = a(x - y)。
五、案例分析1.因式分解:将多项式因式分解为两个一次因式的乘积。
例如:x²-3x-10=(x-5)(x+2)。
2.提取公因式:将多项式中的公因式提取出来。
因式分解(1)一知识点讲解知识点一:因式分解概念:把一个多项式化为几个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式。
1.因式分解特征:因式分解的结果是几个整式的乘积。
2.因式分解与整式乘法关系:因式分解与整式的乘法是相反方向的变形知识点二:寻找公因式1、小学阶段我们学过求一组数字的最大公因(约)数方法:(短除法)例如:求20,36,80的最大公(约)数?最大公倍数?2、寻找公因式的方法:(一)因式分解的第一种方法(提公因式法)(重点):1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。
2.符号语言:)(c b a m mc mb ma ++=++ 3.提公因式的步骤:(1)确定公因式 (2)提出公因式并确定另一个因式(依据多项式除以单项式) 公因式原多项式另一个因式=4.注意事项:因式分解一定要彻底二、例题讲解模块1:考察因式分解的概念1. (2017春峄城区期末)下列各式从左到右的变形,是因式分解的是( ) A 、x x x x x 6)3)(3(692+-+=+- B 、103)2)(5(2-+=-+x x x x C 、22)4(168-=+-x x x D 、b a ab 326⋅=2. (2017秋抚宁县期末)下列各式从左到右的变形,是因式分解的是( ) A 、2)1(3222++=++x x x B 、22))((y x y x y x -=-+ C 、222)(y x y xy x -=+- D 、)(222y x y x -=- 3. (2017秋姑苏区期末)下列从左到右的运算是因式分解的是( ) A 、1)1(21222+-=+-a a a a B 、22))((y x y x y x -=+- C 、22)13(169-=+-x x x D 、xy y x y x 2)(222+-=+4.(2017秋华德县校级期末)下列各式从左到右的变形,是因式分解的是( ) A 、15123-=-+x y x B 、2249)23)(23(b a b a b a -=-+C 、)11(22xx x x +=+ D 、)2)(2(28222y x y x y x -+=-5. (2017春新城区校级期中)下列各式从左到右的变形是因式分解的是( ) A 、ab a b a a -=-2)( B 、1)2(122+-=+-a a a a C 、)1(2-=-x x x x D 、)(222xy y x y x xy -=-6. (2016秋濮阳期末)下列式子中,从左到右的变形是因式分解的是( ) A 、23)2)(1(2+-=--x x x x B 、)2)(1(232--=+-x x x x C 、4)4(442+-=++x x x x D 、))((22y x y x y x -+=+模块2:考察公因式1. (2017春抚宁县期末)多项式3222320515n m n m n m -+的公因式是( ) A 、mn 5 B 、225n m C 、n m 25 D 、25mn 2.(2017春东平县期中)把多项式332223224168bc a c b a c b a -+-分解因式,应提的公因式是( )A 、bc a 28-B 、3222c b aC 、abc 4-D 、33324c b a 3.(2017秋凉州区末)多项式92-a 与a a 32-的公因式是( ) A 、3+a C 、3-a B 、1+a D 、1-a 4.(2017春邵阳县期中)多项式n m n my x y x 31128--的公因式是( )A 、nmy x B 、1-n myx C 、nmy x 4 D 、14-n myx5.(2016春深圳校级期中)多项式mx mx mx 1025523-+-各项的公因式是( )A 、25mxB 、35mx - C 、mx D 、mx 5- 6.下列各组代数式中没有公因式的是( ) A 、)(5b a m -与a b - B 、2)(b a +与b a -- C 、y mx +与y x + D 、ab a +-2与22ab b a -7.观察下列各组式子:①b a +2和b a +;②)(5b a m -和b a +-;③)(3b a +和b a --;④22y x -和22y x +。
因式分解的常用方法第一部分:方法介绍提取公因式法、运用公式法、分组分解法和十字相乘法. 一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.【知识要点】1.运用公式法:如果把科法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
2.乘法公式逆变形(1)平方差公式:))((22b a b a b a -+=-(2)完全平方公式:222222)(2,)(2b a b ab a b a b ab a -=+-+=++ 3.把一个多项式分解因式,一般可按下列步骤进行: (1)如果多项式的各项有公因式,那么先提公因式;(2)如果多项式没有公因式,那么可以尝试运用公式来分解; (3)如果上述方法不能分解,那么可以尝试用。
思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9 (2)9x 2-6x+1二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5 (2)4x 3y+4x 2y 2+xy 3三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2 (2)4x 2-12xy 2+9y 4四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4 (2)16x 4-72x 2y 2+81y 4五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
因式分解之提公因式和公式法因式分解是数学中的一种常见的运算方法,它可以把一个复杂的多项式表达式分解成更简单的因式乘积,从而更好地理解和运算。
一、因式分解的概念因式分解是指把一个多项式表达式写成因式的乘积形式的过程。
因式分解有两种主要的方法,一种是提公因式法,另一种是公式法。
1.1提公因式法提公因式法是指将多项式中的一个或多个公因式提取出来,使得多项式能够写成一个公因式乘以另外一个因式的形式。
提公因式法有以下几个步骤:步骤一:将多项式中的每一项按照公共因子进行分组。
步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。
步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。
步骤四:将每一组的结果再相乘,得到最终的结果。
例子1:将多项式4x^2-5x+2进行因式分解。
首先,我们观察多项式,发现每一项的系数都是正整数,所以可以将多项式因式分解为最简整数.步骤一:将多项式中的每一项按照公共因子进行分组。
4x^2-5x+2=(4x^2)+(-5x)+2步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。
=4x(x)+(-5x)+2步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。
=4x(x-5)+2步骤四:将每一组的结果再相乘,得到最终的结果。
=4x^2-20x+2例子2:将多项式2x^3+3x^2-4x-6进行因式分解。
步骤一:将多项式中的每一项按照公共因子进行分组。
2x^3+3x^2-4x-6=(2x^3)+(3x^2)+(-4x)+(-6)步骤二:分别对每一组内的项进行因式分解,将其写成一个公因子乘以一个因式的形式。
=2x(x^2)+3x(x)+(-4x)+(-6)步骤三:将每一组内的公因子提取出来,然后将每一组的因式相乘。
=2x(x^2+1.5x-2-3)步骤四:将每一组的结果再相乘,得到最终的结果。
=2x^3+3x^2-4x-6通过这个例子我们可以看出,当多项式中存在公因子时,提公因式法能够帮助我们简化运算过程,从而更方便地处理多项式。
高中数学知识点:因式分解提取公因式知识点总结
1)提公因式。
把各项中相同字母或因式的最低次幂的积作为公因式提出来;当系数为整数时,还要把它们的最大公约数也提出来,作为公因式的系数;当多项式首项符号为负时,还要提出负号。
2)用公因式分别去除多项式的每一项,把所得的商的代数和作为另一个因式,与公因式写成积的形式。
由于题目形式千变万化,解题时也不能生搬硬套。
例如,有的需要先对题目适当整理变形;有的分解因式后多项式因式中有同类项的还要进行合并化简;还有的提取公因式后能用其他方法继续分解。
3)在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
4)在提取多项式各项的公因式时,对数字系数和因式要分别进行考虑.如果是整数系数,提取它们的最大公约数;如果是分数系数,提取它们分母的最小公倍数;相同的因式应提取次数最低的.。
《因式分解》全章复习与巩固(基础)【学习目标】1. 理解因式分解的意义,了解分解因式与整式乘法的关系; 2.掌握提公因式法分解因式,理解添括号法则; 3. 会用公式法分解因式;4. 综合运用因式分解知识解决一些简单的数学问题. 【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律. 要点三、添括号的法则括号前面是“﹢”号,括到括号里的各项都不变号;括号前面是“﹣”号,括到括号里的各项都变号. 要点四、公式法 1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-.形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点五、十字相乘法和分组分解法 十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq cp q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点六、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解. (4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、已知21x x +-=0,求3223x x ++的值.【思路点拨】观察题意可知21x x +=,将原式化简可得出答案. 【答案与解析】解:依题意得:21x x +=, ∴3223x x ++, =3223x x x +++, =22()3x x x x +++, =23x x ++,=4;【总结升华】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值. 【思路点拨】对所求的代数式先进行整理,再利用整体代入法代入求解. 【答案与解析】解:()()2259x x x x x -+--,=322359x x x x -+--, =249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0.【总结升华】本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解. 举一反三:【变式】()()33a y a y -+是下列哪一个多项式因式分解的结果( )A .229a y+B .229a y-+C .229a y-D .229a y--【答案】C ;3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式324x xy -进行因式分解,得到()()32422x xy x x y x y -=+-,然后把x =10,y =10代入,分别计算出()2x y +及()2x y -的值,从而得出密码. 【答案与解析】解:()()()32224422x xy x x yx x y x y -=-=+-,当x =10,y =10时,x =10,2x +y =30,2x -y =10, 故密码为103010或101030或301010.【总结升华】本题是中考中的新题型.考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键. 举一反三:【变式】利用因式分解计算 (1)16.9×18+15.1×18(2) 22683317- 【答案】 解:(1)16.9×18+15.1×18=()116.915.18⨯+=13248⨯= (2)22683317-=()()683317683317+⨯- =1000×366 =366000. 4、因式分解:(1)()()269a b a b ++++; (2)222xy x y ---(3)()()22224222x xyy x xy y -+-+.【思路点拨】都是完全平方式,所以都可以运用完全平方公式分解.完全平方公式法:()2222a b a ab b ±=±+.【答案与解析】解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x y x y ---=-++=-+(3)()()22224222x xyy x xy y -+-+=()()24222x xy yx y -+=-【总结升华】本题考查了完全平方公式法因式分解,(3)要两次分解,注意要分解完全. 举一反三:【变式】下列各式能用完全平方公式进行分解因式的是( )A .21x + B .221x x +- C .21x x ++ D .244x x ++【答案】D ;5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【思路点拨】根据材料,找出规律,再解答. 【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x xxx +++-.【总结升华】此题要综合运用配方法,完全平方公式,平方差公式,熟练掌握公式并读懂题目信息是解题的关键.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______;(2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+.【思路点拨】(1)根据一个正方形和三个长方形的面积和等于由它们拼成的这个大长方形的面积作答; (2)根据(1)的结论直接作答. 【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++②()()271234y y x x -+=--【总结升华】本题实际上考查了利用十字相乘法分解因式.运用这种方法的关键是把二次项系数a 分解成两个因数12,a a 的积12a a ,把常数项c 分解成两个因数12c c 的积12,c c ,并使1221a c a c +正好是一次项b ,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号. 举一反三:【变式】已知A =2a +,B =25a a -+,C =2519a a +-,其中a >2. (1)求证:B -A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 解:(1)B -A =()21a -+2>0,所以B >A ;(2)C -A =25192a a a +---,=2421a a +-, =()()73a a +-.因为a >2,所以a +7>0,从而当2<a <3时,A >C ;当a =3时,A =C ;当a >3时,A <C .【巩固练习】 一.选择题1.下列各式从左到右的变化中属于因式分解的是( ). A .()()22422m n m n m n -=+- B .()()2111m m m +-=-C .()23434m m m m --=-- D .()224529m m m --=--2. 把24a a -多项式分解因式,结果正确的是( )A .()4a a -B .()()22a a +-C .()()22a a a +-D .()224a -- 3. 下列多项式能分解因式的是( ) A .22x y +B .22x y--C .222x xy y-+-D .22x xy y-+4. 将2m()2a -+()2m a -分解因式,正确的是()A .()2a -()2m m - B .()()21m a m -+ C .()()21m a m -- D .()()21m a m --5. 下列四个选项中,哪一个为多项式28102x x -+的因式?( )A .2x -2B .2x +2C .4x +1D .4x +2 6. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.2 7. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是()A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a - 8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+;⑥22122m n -+. A .1个 B .2个 C .3个 D .4个 二.填空题9.分解因式:()241x x -- =________.10.把23x x c ++分解因式得:23x x c ++=()()12x x ++,则c 的值为________.11.若221x y -=,化简()()20122012x y x y +-=________.12. 若2330x x +-=,32266x x x +-=__________. 13.把()()2011201222-+-分解因式后是___________.14.把多项式22ax ax a --分解因式,下列结果正确的是_________.15. 当10x =,9y =时,代数式22x y -的值是________.16.把2221x y y ---分解因式结果正确的是_____________. 三.解答题 17.分解因式:(1)234()12()x x y x y ---; (2)2292416a ab b -+; (3)21840ma ma m --.18. 已知10a b +=,6ab =,求:(1)22a b +的值;(2)32232a b a b ab -+的值. 19.已知关于x 的二次三项式2x mx n ++有一个因式()5x +,且17m n +=,试求m 、n 的值.20. 两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成()()219x x --,另一位同学因看错了常数项而分解成()()224x x --,请将原多项式分解因式.【答案与解析】 一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式. 2. 【答案】A ;【解析】()244a a a a -=-. 3. 【答案】C ;【解析】A .不能分解;B .2222()x y x y --=-+,不能分解;C .()2222x xy y x y -+-=--,故能够分解;D .不能分解.4. 【答案】C ; 【解析】2m()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】A ;【解析】将28102x x -+进行分解因式得出()()281024122x x x x -+=--,进而得出答案即可.6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-. 7. 【答案】A【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦.8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解. 二.填空题9. 【答案】()22x -;【解析】()()22241442x x x x x --=-+=-.10.【答案】2;【解析】()()21232x x x x ++=++.11.【答案】1; 【解析】()()()()()201220122012201222201211x y x y x y x y x y+-=+-=-==⎡⎤⎣⎦.12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=. 13.【答案】20112; 【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】()()21a x x -+;【解析】22ax ax a --=()()2(2)21a x x a x x --=-+.15.【答案】19;【解析】()()()()2210910919x y x y x y -=+-=+-=.16.【答案】()()11x y x y ++--;【解析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.三.解答题 17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--; (2)22292416(34)a ab b a b -+=-;(3)()()()2218401840202ma ma m m a a m a a --=--=-+. 18.【解析】解:∵10a b +=,6ab =,则(1)()2222a b a b ab +=+-=100-12=88;(2)()()2322322224a b a b ab ab a ab b ab a b ab ⎡⎤-+=-+=+-⎣⎦=6×(100-24)=456. 19.【解析】解:设另一个因式是x a +,则有()()5x x a ++=()255x a x a +++=2x mx n ++∴5a m +=,5a n =,这样就得到一个方程组5517a ma nm n +=⎧⎪=⎨⎪+=⎩,解得2107a n m =⎧⎪=⎨⎪=⎩.∴m 、n 的值分别是7、10. 20.【解析】解:设原多项式为2ax bx c ++(其中a 、b 、c 均为常数,且abc ≠0).∵()()()22219210922018x x x x x x --=-+=-+, ∴a =2,c =18;又∵()()()2222426821216x x x x x x --=-+=-+, ∴b =-12.∴原多项式为221218x x -+,将它分解因式,得()()2222121826923x x x x x -+=-+=-.。
因式分解八大考点一、提公因式法。
这可是因式分解里最基础也最常见的考点哦。
就像是从一堆东西里把大家都有的东西先拿出来一样。
比如说,对于式子3x + 6,这里面3就是公因式啦,提出来就变成3(x + 2)。
那怎么找公因式呢?先看数字部分,找这些数字的最大公因数,像前面例子里3和6的最大公因数就是3。
再看字母部分,相同字母取次数最低的,要是式子是x²y+xy²,公因式就是xy,提出来就成了xy(x + y)。
这个考点虽然简单,但是可千万不能马虎,要是公因式找错了,后面就全错啦。
二、公式法之平方差公式。
平方差公式a² - b²=(a + b)(a - b),这个公式超级好用。
就像玩拼图一样,看到一个式子符合这个形式,就可以直接分解啦。
比如说9x² - 16y²,这里a = 3x,b = 4y,那分解出来就是(3x + 4y)(3x - 4y)。
有时候式子可能会稍微复杂一点,需要先变形一下才能看出来是平方差公式的形式。
比如(x + 2)² - 9,可以把9看成3²,那么这个式子就可以写成(x + 2)² - 3²,然后按照公式分解成(x + 2+3)(x + 2 - 3)=(x + 5)(x - 1)。
三、公式法之完全平方公式。
完全平方公式有两个哦,a²+2ab + b²=(a + b)²和a² - 2ab + b²=(a - b)²。
这个考点呢,关键就是要能识别式子是不是完全平方的形式。
比如说x²+6x + 9,这里a = x,b = 3,因为2ab = 2× x×3 = 6x,所以这个式子就可以分解成(x + 3)²。
要是遇到4x² - 12x + 9,a = 2x,b = 3,2ab = 2×2x×3 = 12x,就可以分解成(2x - 3)²。
因式分解-提公因式法知识点归纳1. 什么是因式分解-提公因式法?因式分解是将一个多项式写成两个或多个不可再因式分解的多项式相乘的形式。
提公因式法是一种常用的因式分解方法,它通过提取多项式中的公因式来简化多项式的表示。
2. 如何进行因式分解-提公因式法?步骤1:提取公因式首先,观察多项式中是否存在公因式,即是否有因子可以整除多项式的每一项。
如果存在公因式,将其提取出来。
例如:2x^2 + 4x = 2x(x + 2)步骤2:判断多项式的可进一步因式分解性质提取公因式后,判断剩余的部分是否还可以进行进一步因式分解。
常见的因式分解性质包括二次平方差公式、差平方公式等。
例如:x^2 - 4 = (x + 2)(x - 2)3. 因式分解-提公因式法的应用因式分解-提公因式法在解决各种数学问题时广泛应用,包括但不限于以下几个方面:3.1. 简化多项式因式分解-提公因式法可以将复杂的多项式简化为更简洁的形式,从而使问题的求解更加方便。
例如:3x^2 + 6x = 3x(x + 2)3.2. 解方程在解方程时,因式分解-提公因式法可以帮助我们找到方程的根。
例如:x^2 - 4 = 0通过因式分解得到:(x + 2)(x - 2) = 0解得x的值为2和-2。
3.3. 求导数在微积分中,因式分解-提公因式法常常用于求函数的导数。
例如:f(x) = x^3 + 3x^2 + 3x + 1可以通过因式分解-提公因式法得到导数:f'(x) = 3x^2 + 6x + 33.4. 求极限在求极限的过程中,因式分解-提公因式法可以帮助我们简化复杂的表达式,使得求解更加便利。
例如:lim(x->0) (x^2 - 4x) / x通过因式分解-提公因式法,可以将上述表达式化简为:lim(x->0) x(x - 4) / x = lim(x->0) (x - 4) = -44. 因式分解-提公因式法的重要性因式分解-提公因式法是数学中的基础操作之一,对于深入理解和解决复杂的数学问题至关重要。
重点:掌握提公因式法,公式法进行因式分解;难点:怎么样进行多项式的因式分解,如何能将多项式分解彻底;重难点突破:1、确定公因式的一般方法:①各项系数都是整数时,因式的系数应取各项系数的最大公约数;②字母取各项的相同的字母,而且各字母的指数取次数最低的.③它们的乘积就是多项式的公因式2、提公因式法分解因式的一般步骤:①找出公因式;②提公因式(即用多项式除以公因式)例把下列多项式分解因式:(1)-5a2+25a (2)3a2-9ab分析第(1)题:由公因式的几个特征,我们可以这样确定公因式:①定系数:∵系数-5和25的最大公约数为5,∴公因式的系数为( )②定字母:∵两项中的相同字母是( ),∴公因式的字母取( );③定指数:∵相同字母a的最小指数为( ),∴a的指数取为( );-5a2+25a的公因式为:( )(2)解法:用心观察,找到答案多项式公因式8x+12y8ax+12ay8a3bx+12a2b2y9x2-6xy+3x试一试,填空:(1)2x-6xy=2x ( ) (2)-6x3+9x2 =-3x2 ( ) 巩固提高1.用提公因式法分解因式(先找公因式)(1)3a2-9ab2(2)-5x2 + 25x3 (3)4x3y+2x2y2-6xy3(4)-9m 2n -3mn 2+27m 3n 4 (5)2(x+y)2-4x(x+y) (6)2(a -1)+a(1-a)检测与提高(一)、做一做1、对下列多项式进行因式分解①-20a -25ab ②-32233b a b a - ③1+-m m a a④44252336279x a x a x a +- ⑤3a 2-9ab2、填一填:(1)2525a a -+ =(2)代数式328a b -与312a b 的公因式为____________(3)22________()R r R r ππ+=+;(4)1622(__________)abx ax ax +=(5)3a+3b 的公因式是:(6)-24m 2x+16n 2x 公因式是:(7)2x(a+b)+3y(a+b)的公因式是:(8) 4ab -2a 2b 2的公因式是:3、(分一分)把下列各式分解因式①3 x 3 -3x 2 –9x ② 8a 2c+ 2b c③-4a 3b 3 +6 a 2 b -2ab ④ a(x -y)+by -bx(二)查一查:1、判断下列各题是否为因式分解:①m(a+b+c)= ma+mb+mc. ②a 2-b 2 = (a+b)(a -b) ③a 2-b 2 +1= (a+b)(a -b)+12、试一试:请找出下列多项式中各项的相同因式(公因式)(1) 3a+3b 的公因式是:(2)-24m 2x+16n 2x 公因式是:(3)2x(a+b)+3y(a+b)的公因式是:(4) 4ab-2a2b2的公因式是:(四)练一练:1. 把下列多项式分解因式①2p3q2+p2q3②x n-x n y ③a(x-y)-b(x-y) ④4a3b-2a2b2 ⑤323ma ma ma3612-+-812-⑥32a b ab c(五)解答已知,x+y=2,xy=-3,求x2y+xy2的值.。
因式分解知识点归纳可以是多项式或单项式 女口: (a b)2|_(a b)3二(a b)56、幂的乘方法则:(a m )n=a mn( m,n 都是正整数) 幂的乘方,底数不变,指数相乘。
如: 幂的乘方法则可以逆用:即amn=(a m )n =(a n )m如:46=(42)3=(43)27、积的乘方法则:(ab)n=a n b n(n 是正整数) 积的乘方,等于各因数乘方的积。
如:( -2x 3y 2z)5= ( -2)5*(x 3)5*(y 2)5・z 5二 一32x 15y 10z 58、同底数幂的除法法则:a m"a n=a mJ1( a=O,m,n 都是正整 数,且m - n)同底数幂相除,底数不变,指数相减。
女口:(ab)4 +(ab) =(ab)3 =a 3b 39、 零指数和负指数;a 0 =1,即任何不等于零的数的零次方等于 1。
a^=*( a^0,p 是正整数),即一个不等于零的数的-P 次 方等于这个数的P 次方的倒数。
如:2—(y=810、 单项式的乘法法则:单项式与单项式相乘,把他 们的系数,相同字母分别相乘,对于只在一个单项式 里含有的字母,贝U 连同它的指数作为积的一个因式。
注意:m、n mn(-35)2二 310(3a 2b)(a - 3b) (x 5)(x -6)3.( a—2b+ 3c—d) ( a+ 2b—3c—d) 考点一、因式分解的概念因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解。
因式分解和整式乘法互为逆运算1、下列从左到右是因式分解的是( )A. x(a-b)=ax-bxB.2 2 2x-1+y =(x-1)(x+1)+y2C. x -1=(x+1)(x-1)D. ax+bx+c=x(a+b)+c2、若4a2 kab 9b2可以因式分解为(2a — 3b)2,贝k的值为3、已知a为正整数,试判断a2+a是奇数还是偶数?4、已知关于X的二次三项式x2 mx n有一个因式(x 5),且m+n=17,试求m,n的值(3) X n—x・严(4) (一3)2011 (一3)20104、先分解因式,在计算求值(1) (2x—1)2(3x 2)—(2x—1)(3x 2)2—x(1—2x)(3x 2) 其中X=1 ・5(2) (a—2)(a2 a 1)—(a2—1)(2—a) 其中a=185、已知多项式x4 2012x2 2011x 2012有一个因式为x2 ax 1 , 另一个因式为x2 bx 2012,求a+b的值6、若ab2 1 =0,用因式分解法求-ab(a2b5-ab3-b)的值7、已知a, b, c满足ab + a+ b=bc + b + c = ca+c+a = 3 , 求(a 1)(b 1)(c 1) 的值。
因式分解—提公因式法一、因式分解:把一个多项式化为几个整式的积的形式,也叫做把这个多项式分解因式。
是整式乘法的逆运算。
如:a2-b2=(a+b)(a-b)同类演练一:(1)2m(m-n)=2m2-2mn;(2)x2-2x+1=x(x-2)+1;(3)a2-b2=(a+b)(a-b);(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);(6)m2-1+ n2=(m+1)(n-1)二、提公因式法公因式:多项式中的每一项都含有一个相同因式,这个相同的因式叫做各项的公因式。
如:ma+mb+mc 每项都含有m,则m是这个多项式的公因式。
把这个公因式提到括号外面,这样ma+mb+mc就分解成两个因式的积m(a+b+c),即ma+mb+mc= m(a+b+c)。
这种因式分解的方法叫做提公因式法。
(用公因式法分解因式后,应保证含有多项式的因式中再无公因式)。
归纳方法:如何确定多项式各项的公因式?1.定系数:找多项式各项系数的最大公约数.2.定字母:找多项式各项相同的字母.3.定指数:相同字母的最低的次数.同类演练二:1、找出下列多项式的公因式:(1)4ax-8ay;(2)5y3+20y2;(3)a2b-2ab2+ab;(4)-4a3b2-6a2b+2ab;(5)(2a+b)(2a-3b)-3a(2a+b).2、因式分解:(1)24a3m-18a2m2;(2)5y2-15y +5;(3)28x3-14x2+7x.3、因式分解:对于首项是带有负号的多项式分解因式,多项式第一项的系数是负数,通常先提出“-”号,且括号内各项都要变号.(1)-7ab+49ab2c;(2)-6ax2+9axy -3a;(3)-2a3b2-ab3c +3abc巩固练习1、将分解因式时,应提取的公因式是( )A.a2B.aC.axD.ay2、因式分解(1);(2)-12a2b+24ab2;(3)xy-x2y2-x3y3;(4).2.已知a-b=3,ab=-1,求a2b-ab2.3.若x2+3x-2=0,求2x3+6x2-4x的值.4.先分解因式,再求值:4a2(x+7)-3(x+7),其中a=-5,x=3.能力提升5、.因式分解(1);(2);(3);(4).。
《因式分解-提公因式法》知识点归纳★★
知识体系梳理
◆
因式分解------把一个多项式变成几个整式的积的形式;(化和为积)
注意:
、因式分解对象是多项式;
2、因式分解必须进行到每一个多项式因式不能再分解为止;
3、可运用因式分解与整式乘法的互逆关系检验因式分解的正确性;
◆
分解因式的作用
分解因式是一种重要的代数恒等变形,它有着广泛的应用,常见的用途有化简多项式和进行简便运算,恰当的运用分解因式,常可以使计算化繁为简。
◆
分解因式的一些原则
(1)提公因式优先的原则.即一个多项式的各项若有公因式,分解时应首先提取公因式。
(2)分解彻底的原则.即分解因式必须进行到每一个
多项式因式都再不能分解为止。
(3)首项为负的添括号原则.即如果多项式的首项系数为负,应先添上带“-”号的括号,并遵循添括号法则。
◆
因式分解的首要方法—提公因式法
、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
2、提公因式法:如果一个多项式的各项含有公因式,可以逆用乘法分配律,把各项共有的
因式提出以分解因式的方法,叫做提公因式法。
3、使用提取公因式法应注意几点:
(1)提取的“公因式”可以是数、单项式,也可以是一个多项式,是一个整体。
(2)公因式必须是多项式的每一项都有的因式,在提取公因式时,要把这些公共的因式全部找出来,并提到括号外面去,才算完成了提取公因式。
(找最高公因式)(3)对多项式中的每一项的数字系数,在提取时要提出这些数字系数的最大公约数,各项都含有相同的字母,要提取相同字母的指数的最低指数。
◆
提公因式法分解因式的关键:
、确定最高公因式;(各项系数的最大公约数与相同因
式的最低次幂之积)
2、提出公因式后另一因式的确定;(用原多项式的每一项分别除以公因式)
★★
典型例题、方法导航
◆
考点一:因式分解的意义
【例1】判断下列变形哪些是因式分解?
(1)---------------------------(
)
(2)-------------------(
)
(3)--------------------(
)
(4)----------------------------------(
)
()-------------------------------(
)
【例2】根据整式乘法与因式分解的关系连线
【例3】已知关于的多项式分解因式为,求的值。
◎变式议练一
、下列从左边到右边的变形,是因式分解的是(
A、
B、
、
D、
2、辨析下列因式分解是否正确,若错误请改正。
(1)分解因式不彻底:
(2)提出公因式后漏项:
◆
考点二:提公因式法
【例4】分解因式:
(1)
(2)
(3)
(4)
()
◎变式议练二:
、多项式与多项式的公因式是
;
2、若多项式的一个因式是,那么另一个因式是()
、
、
、
3、若是的因式,则p为()
A、-1
B、-2
、8
D、2
4、把下列各式分解因式:(1)
(2)
(3)
(4)
◆
考点三:提公因式法的应用【例】计算:(1)
(2)
◎变式议练三:
、已知,,则
;
2、计算:
3、已知,求的值。
◆
考点四:能力拓展
【例6】已知,,求的值;
【例7】已知:,求代数式的值。
【例8】已知整数、、使等式对任意的均成立,求的值;
(山东省竞赛题)
◎变式议练四:
、多项式可以分解为两个整式的积,其中一个整式为,求另一个整式;
2、分解因式:
3、(IT杯赛)化简:
◆◆◆
快乐体验
将一个乒乓球的半径增加,其周长增加,将地球的半径增加,其周长增加,比较与的大小;。