(完整版)因式分解练习题(提取公因式)
- 格式:doc
- 大小:176.51 KB
- 文档页数:3
三十道因式分解练习题一、提取公因式类1. 因式分解:$6x^2 + 9x$2. 因式分解:$8a^3 12a^2$3. 因式分解:$15xy 20xz$4. 因式分解:$21m^2n 35mn^2$5. 因式分解:$4ab^2 + 6a^2b$二、公式法类6. 因式分解:$x^2 9$7. 因式分解:$a^2 4$8. 因式分解:$4x^2 25y^2$9. 因式分解:$9m^2 16n^2$10. 因式分解:$25p^2 49q^2$三、分组分解类11. 因式分解:$x^3 + x^2 2x 2$12. 因式分解:$a^3 a^2 3a + 3$13. 因式分解:$3x^2 + 3x 2x 2$14. 因式分解:$4m^2 4m 3m + 3$15. 因式分解:$5n^3 10n^2 + 3n 6$四、十字相乘法类16. 因式分解:$x^2 + 5x + 6$17. 因式分解:$a^2 7a + 10$18. 因式分解:$2x^2 9x 5$20. 因式分解:$4n^2 13n + 3$五、综合运用类21. 因式分解:$x^3 2x^2 5x + 10$22. 因式分解:$a^3 + 3a^2 4a 12$23. 因式分解:$2x^2 + 5x 3$24. 因式分解:$3m^2 7m + 2$25. 因式分解:$4n^2 + 10n 6$六、特殊因式分解类26. 因式分解:$x^4 16$27. 因式分解:$a^4 81$28. 因式分解:$16x^4 81y^4$29. 因式分解:$25m^4 49n^4$30. 因式分解:$64p^4 81q^4$一、平方差公式类1. 因式分解:$x^2 25$2. 因式分解:$4y^2 9$3. 因式分解:$49z^2 100$4. 因式分解:$25a^2 121b^2$5. 因式分解:$16m^2 36n^2$二、完全平方公式类6. 因式分解:$x^2 + 8x + 16$7. 因式分解:$y^2 10y + 25$8. 因式分解:$z^2 + 14z + 49$10. 因式分解:$b^2 + 22b + 121$三、交叉相乘法类11. 因式分解:$x^2 + 7x + 12$12. 因式分解:$y^2 5y 14$13. 因式分解:$z^2 + 11z + 30$14. 因式分解:$a^2 13a 42$15. 因式分解:$b^2 + 17b + 60$四、多项式乘法公式类16. 因式分解:$x^3 + 3x^2 + 3x + 1$17. 因式分解:$y^3 3y^2 + 3y 1$18. 因式分解:$z^3 + 6z^2 + 12z + 8$19. 因式分解:$a^3 6a^2 + 12a 8$20. 因式分解:$b^3 + 9b^2 + 27b + 27$五、分组分解法类21. 因式分解:$x^4 + 4x^3 + 6x^2 + 4x + 1$22. 因式分解:$y^4 4y^3 + 6y^2 4y + 1$23. 因式分解:$z^4 + 8z^3 + 18z^2 + 8z + 1$24. 因式分解:$a^4 8a^3 + 18a^2 8a + 1$25. 因式分解:$b^4 + 12b^3 + 54b^2 + 108b + 81$六、多项式长除法类26. 因式分解:$x^5 x^4 2x^3 + 2x^2 + x 1$27. 因式分解:$y^5 + y^4 + 2y^3 2y^2 y + 1$28. 因式分解:$z^5 3z^4 + 3z^3 z^2 + z 1$29. 因式分解:$a^5 + 3a^4 3a^3 + a^2 a + 1$30. 因式分解:$b^5 5b^4 + 10b^3 10b^2 + 5b 1$答案一、提取公因式类1. $6x^2 + 9x = 3x(2x + 3)$2. $8a^3 12a^2 = 4a^2(2a 3)$3. $15xy 20xz = 5x(3y 4z)$4. $21m^2n 35mn^2 = 7mn(3m 5n)$5. $4ab^2 + 6a^2b = 2ab(2b + 3a)$二、公式法类6. $x^2 9 = (x + 3)(x 3)$7. $a^2 4 = (a + 2)(a 2)$8. $4x^2 25y^2 = (2x + 5y)(2x 5y)$9. $9m^2 16n^2 = (3m + 4n)(3m 4n)$10. $25p^2 49q^2 = (5p + 7q)(5p 7q)$三、分组分解类11. $x^3 + x^2 2x 2 = (x^2 + 2)(x 1)$12. $a^3 a^2 3a + 3 = (a^2 3)(a 1)$13. $3x^2 + 3x 2x 2 = (3x 2)(x + 1)$14. $4m^2 4m 3m + 3 = (4m 3)(m 1)$15. $5n^3 10n^2 + 3n 6 = (5n^2 3)(n 2)$四、十字相乘法类16. $x^2 + 5x + 6 = (x + 2)(x + 3)$17. $a^2 7a + 10 = (a 2)(a 5)$18. $2x^2 9x 5 = (2x + 1)(x 5)$19. $3m^2 + 11m + 4 = (3m + 1)(m + 4)$20. $4n^2 13n + 3 = (4n 1)(n 3)$五、综合运用类21. $x^3 2x^2 5x + 10 = (x^2 5)(x 2)$22. $a^3 + 3a^2 4a 12 = (a^2 + 4)(a 3)$23. $2x^2 + 5x 3 = (2x 1)(x + 3)$24. $3m^2 7m + 2 = (3m 1)(m 2)$25. $4n^2 + 10n 6 = (2n 1)(2n + 6)$六、特殊因式分解类26. $x^4 16 = (x^2 + 4)(x + 2)(x 2)$27. $a^4 81 = (a^2 + 9)(a + 3)(a 3)$28. $16x^4 81y^4 = (4x^2 + 9y^2)(2x + 3y)(2x 3y)$29. $25m^4 49n^4 = (5m^2 + 7n^2)(5m + 7n)(5m 7n)$30. $64p^4 81q^4 = (8p^2 + 9q^2)(4p + 3q)(4p 3q)$一、平方差公式类1. $x^2 25 = (x + 5)(x 5)$2. $4y^2 9 = (2y + 3)(2y 3)$3. $49z^2 100 = (7z + 10)(7z 10)$4. $25a。
因式分解练习题(提取公因式)专项训练一:确定以下各多项式的公因式。
1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+-8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。
1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在以下各式左边的括号前填上“+〞或“-〞,使等式成立。
1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=-5、33()__()y x x y -=-6、44()__()x y y x --=-7、22()___()()n n a b b a n -=-为自然数8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把以下各式分解因式。
1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把以下各式分解因式。
因式分解分类练习题(经典全⾯)2因式分解练习题(提取公因式)平昌县得胜中学任璟(编)专项训练⼀:确定下列各多项式的公因式。
2 3 2 25、 25x y -15x y6、12xyz-9x 2y 227、3a y - 3ay 6 y1、ay ax2、3mx -6my 23、4a 10ab2 4、 15a 5a 2 2x y _xy6、12xyz-9x 2y 228、 a b-5ab 9b-24x 2y -12xy 2 28y 329、 - x xy - xz10、7、 mx-y i ⼇n x-y 39、abc(m-n) -ab(m-n) 10、12x(a-b)2-9m(b-a)3 专项训练⼆:利⽤乘法分配律的逆运算填空 1、 2兀R ⼗2^r= __ (R+r) 2、 2兀R ⼗2兀r = 2兀( )3、1 gt 1^丄 gt 22= (tj+t 22)4、15a 2+25ab 2 =5a( ) 2 2 专项训练三、在下列各式左边的括号前填上 + ”或“-”使等式成⽴< 1、x + y=__(x + y) 2、b_a =__(a_b) 2 2 3、-z + y=__(y-z) 4、(y-x) = _____ (x-y) 3 3 4 4 5(y -x) =—(x -y)6、-(x-y) =_(y -x)7、 (a —b)2n =___(b —a)2n(n 为⾃然数)8、 (a —b)2nHr =___(b —a)2n^n 为⾃然数 9、 (1-x )(2-y)=___(1-x)(y-2) 2 311、(a -b) (b-a)=___(a -b)专项训练四、把下列各式分解因式21、nx-ny2、a ab) 10、(1-x)(2-y)=___(x-1)(y-2) 12、(a —b)2(b —a)4=___(a —b)63、4x 3 -6x 24、8m 2n 2mn11、-3ma 6ma -12ma 2 2 2 313、15x y 5x y-20x y专项训练五:把下列各式分解因式 1、x(a b) - y(a b) 3、6q(p q)-4p(p q)5、a(a-b) (a-b)27、(2 a b)(2a-3b)-3a(2a b)12、56x 3yz 14x 2y 2z-21xy 2z 24 3 214、-16x - 32 x 56x2、5x(x_ y) 2y(x_ y)4、 (m n)(P q)- (m n)( p — q)6、x(x- y)2 - y(x- y)8、x(x y)(x _y)「x(x y)22 、9、 p(x _y) _q(y _x)10、m(a -3) 2(3-a)12、a(x - a) b(a - x) - c(x - a)13、3(x-1)3y-(1-x)3z14、-ab(a -b)2 a(b - a)216、(a -2b)(2a-3b) -5a(2b-a)(3b-2a)4、1984 20032003- 2003 19841984专项训练七:利⽤因式分解证明下列各题3220、(x -a) (x -b) (a -x) (b -x)2、证明:⼀个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除21、(y _x)2 x(x _y)3 _(y _x)43(2a -3b)2n 1 _(3b _2a)2n (a -b)(n 为⾃然数)2 3 219、x(x_y) _2(y _x) _(y_x)专项训练六、利⽤因式分解计算。
七下十道因式分解练习题一、提取公因式1. 分解因式:6x^2 + 9x2. 分解因式:8a^3b 4a^2b^23. 分解因式:15m^2n 20mn^2二、运用公式法4. 分解因式:x^2 95. 分解因式:a^2 + 2ab + b^26. 分解因式:4x^2 12xy + 9y^2三、十字相乘法7. 分解因式:x^2 + 5x + 68. 分解因式:2a^2 5a 39. 分解因式:3x^2 2x 1四、分组分解法10. 分解因式:x^3 + 2x^2 5x 1011. 分解因式:a^3 a^2 6a + 612. 分解因式:3x^3 3x^2 4x + 4五、综合运用13. 分解因式:x^4 1614. 分解因式:a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^415. 分解因式:2x^3 5x^2 + 2x 516. 分解因式:4x^4 9x^217. 分解因式:3a^5 27a^318. 分解因式:8m^3n 2mn^319. 分解因式:x^6 y^620. 分解因式:a^3 + b^3 + c^3 3abc六、特殊因式分解21. 分解因式:x^2 5x + 622. 分解因式:2y^2 8y + 823. 分解因式:a^2 4a + 4七、多项式乘法逆运算24. 分解因式:x^2y xy^225. 分解因式:ab^2 a^2b26. 分解因式:3mn^2 2n^3m八、复杂多项式因式分解27. 分解因式:x^3 + 3x^2y + 3xy^2 + y^328. 分解因式:a^4 b^429. 分解因式:x^5 x^3九、含有平方差的结构30. 分解因式:4x^2 25y^231. 分解因式:9a^2 16b^232. 分解因式:25m^2 144n^2十、多项式长除法后的因式分解33. 分解因式:x^4 2x^3 3x^2 + 6x34. 分解因式:a^5 3a^4 + 2a^335. 分解因式:3x^5 6x^4 + 3x^3请同学们认真练习,掌握因式分解的各种方法。
提取公因式练习题提取公因式是数学中的一个重要概念,它在代数运算中具有广泛的应用。
通过提取公因式,我们可以简化复杂的代数表达式,使其更易于计算和理解。
在本文中,我们将通过一系列练习题来探讨提取公因式的方法和技巧。
练习题一:将表达式3x + 6y的公因式提取出来。
解答一:首先观察给定的表达式,我们可以发现3是x和y的公因子,因此可以将3提取出来。
提取公因式后,原表达式可以简化为3(x + 2y)。
练习题二:将表达式4a^2 - 8ab的公因式提取出来。
解答二:观察给定的表达式,我们可以发现4是a和b的公因子,因此可以将4提取出来。
同时,a也是两项的公因子,所以我们可以将a提取出来。
提取公因式后,原表达式可以简化为4a(a - 2b)。
练习题三:将表达式6x^3 + 9x^2 - 15x的公因式提取出来。
解答三:观察给定的表达式,我们可以发现6是x的系数的公因子,因此可以将6提取出来。
同时,x也是三项的公因子,所以我们可以将x提取出来。
提取公因式后,原表达式可以简化为6x(x^2 + 3x - 5)。
练习题四:将表达式2x^2y + 4xy^2 - 6xy的公因式提取出来。
解答四:观察给定的表达式,我们可以发现2是x和y的系数的公因子,因此可以将2提取出来。
同时,xy也是三项的公因子,所以我们可以将xy提取出来。
提取公因式后,原表达式可以简化为2xy(x + 2y - 3)。
练习题五:将表达式3a^3b - 6a^2b^2 + 9ab^3的公因式提取出来。
解答五:观察给定的表达式,我们可以发现3是a和b的系数的公因子,因此可以将3提取出来。
同时,ab也是三项的公因子,所以我们可以将ab提取出来。
提取公因式后,原表达式可以简化为3ab(a^2 - 2ab + 3b^2)。
通过以上练习题,我们可以看到提取公因式的方法和技巧。
首先观察表达式中的系数和变量,找出它们的公因子。
然后将公因子提取出来,并将原表达式简化为公因子与剩余部分的乘积。
因式分解分类练习题(经典全⾯)因式分解练习题(提取公因式) 平昌县得胜中学任璟(编)专项训练⼀:确定下列各多项式的公因式。
1、ay ax +2、36mx my -3、2410a ab +4、2155a a + 5、22x y xy - 6、22129xyz x y - 7、()()m x y n x y -+- 8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练⼆:利⽤乘法分配律的逆运算填空。
1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成⽴。
1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=-4、()22___()y x x y -=-5、33()__()y x x y -=-6、44()__()x y y x --=-7、22()___()()nna b b a n -=-为⾃然数 8、2121()___()()n n a b b a n ++-=-为⾃然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=-专项训练四、把下列各式分解因式。
1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y -6、22129xyz x y -7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。
分解因式(提公因式法、公式法)(人教版)一、单选题(共16道,每道6分)1.下列选项中,从左到右的变形是分解因式的是( )A. B.C. D.答案:C解题思路:选项A等式左边不是多项式,选项B等式右边不是积的形式,选项D等式右边不是整式的积的形式,只有选项C正确,故选C.试题难度:三颗星知识点:分解因式的定义2.把多项式分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——提公因式法3.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.注意:提公因式要彻底.试题难度:三颗星知识点:分解因式——提公因式法4.将分解因式时,应提取的公因式是( )A.a2B.aC.axD.ay答案:B解题思路:此多项式中各项的公因式为a,∴,故选B.试题难度:三颗星知识点:分解因式——提公因式法5.把分解因式,结果正确的是( )A. B.(x-y)(x-y-1)C.(x-y)(x-y+1)D.(x-y)(y-x-1)答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——提公因式法6.把分解因式,结果正确的是( )A. B.C. D.答案:A解题思路:,故选A.试题难度:三颗星知识点:分解因式——提公因式法7.下列选项中,能用完全平方公式分解因式的是( )A. B.C. D.答案:D解题思路:完全平方公式的特征是“首平方、尾平方,二倍乘积放中央”,只有选项D符合题意,.故选D.试题难度:三颗星知识点:分解因式——公式法8.下列选项中,能用公式法分解因式的是( )A. B.C. D.答案:C解题思路:只有选项C能用公式法分解因式,,其他选项均不符合完全平方公式和平方差公式的特征. 故选C.试题难度:三颗星知识点:分解因式——公式法9.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——公式法10.把分解因式,结果正确的是( )A. B.C. D.答案:D解题思路:,故选D.试题难度:三颗星知识点:分解因式——公式法11.把分解因式,结果正确的是( )A.(2x+4y)(2x-4y)B.2(x+2y)(x-2y)C.4(x+2y)(x-2y)D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——公式法12.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——公式法13.把分解因式,结果正确的是( )A.(x+8)(x+1)B.(x+2)(x-4)C.(x-2)(x+4)D.(x-10)(x+8)答案:B解题思路:,故选B.试题难度:三颗星知识点:分解因式——公式法14.把分解因式,结果正确的是( )A. B.C. D.答案:D解题思路:,故选D.试题难度:三颗星知识点:分解因式——公式法15.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:,故选C.试题难度:三颗星知识点:分解因式——公式法16.把因式分解,结果正确的是( )A. B.C. D.答案:D解题思路:,故选D.试题难度:三颗星知识点:分解因式——公式法。
完整版)提公因式法因式分解练习题因式分解——提公因式法以下是因式分解和不是因式分解的变形:1) 6a^3-3a^2b = 3a^2(2a-b) 是因式分解。
2) -x^2+x^3 = -x^2(1-x) 是因式分解。
3) (a-b)(a^2+ab+b^2) = a^3-b^3 是因式分解。
4) (x-2)(x-3) = x^2-5x+6 是因式分解。
5) m^2 = m×m 不是因式分解。
6) m^2+m = m^3 不是因式分解。
二、用提公因式法因式分解1) 8ab^2-16a^3b^3 = 8ab^2(1-2a^2b^2)。
2) -m^2n+mn^2 = -mn(m-n)。
3) -15xy-5x^2 = -5x(x+3y)。
4) a^2b^2-1/4ab^3 = 1/4ab^2(a-4b)。
5) a^3b^3+a^2b^2-ab = ab(a^2b^2+a-b)。
6) -8a^3y+12a^2y^2-16ay^3 = -4ay(2a-y)(2a+3y)。
7) -3a^3m-6a^2m+12am = -3am(a^2+2a-4)。
8) -x^3y^2+2x^2y+xy = xy(-x^2+2x+1)。
用提公因式法因式分解(二)1) (a+b)-(a+b)^2 = -(a+b)(2a+b)。
2) x(x-y)+y(y-x) = 0.3) 6(m+n)^2-2(m+n) = 2(m+n)(3m+3n-1)。
4) 3(y-x)^2+2(x-y) = (y-x)(3y-3x+2)。
5) -3x(y-x)-(x-y) = -2(x-y)(x+3)。
6) m(m-n)^2-n(n-m)^2 = (m-n)^2(m+n)。
7) 6p(p+q)-4q(q+p) = 2p(3p-2q)。
8) 12a^2b(x-y)-4ab(y-x) = 4ab(3a-1)(y-x)。
9) (a+b)(x+y)-(a+b)(x-y) = 2(a+b)y。
因式分解 - 提公因式法【知能点分类训练】知能点 1因式分解的意义1.以下从左到右的变形,属于因式分解的是().A.( x+3)(x- 3) =x2- 9B. x2- 9+x=( x+3)( x- 3)- x C. xy2- x2y=xy(y-x)D. x2 +5x+4=x( x+5+)2.以下变形不属于分解因式的是().A.x2- 1=( x+1)( x- 1)B. x2+x+1=( x+1) 242C. 2a5- 6a2=2a2( a3- 3)D. 3x2-6x+4=3x( x- 2) +43.以下各式从左到右的变形中,哪些是整式乘法哪些是因式分解哪些二者都不是(1) ad+bd+cd+n=d( a+b+c) +n(2)ay2-2ay+a=a(y-1)2( 3)( x- 4)( x+4) =x2- 16(4)x2-y2+1=(x+y)(x-y)+1知能点 2提公因式法分解因式4.多项式- 7ab+14abx- 49aby 的公因式是 ________.5. 3x2y3, 2x2y,- 5x3y2z 的公因式是 ________.6.以下各式用提公因式法分解因式,此中正确的选项是().A.5a3+4a2- a=a( 5a2+4a)B. p( a- b)2+pq ( b- a)2=p( a-b )2(1+q)C.- 6x2( y- z)3+x( z- y)3=- 3x( z- y)2( 2x- z+y)D.- x n- x n+1- x n+2 =- x n( 1- x+x2)7.把多项式 a2( x- 2) +a( 2- x)分解因式等于().A.( x- 2)(a2+a)B.( x-2 )( a2- a)C. a( x-2)( a-1)D. a( x- 2)( a+1)8.以下变形错误的选项是().A.( y- x)2=( x- y)2B.- a- b=-( a+b)C.(a- b)3=-( b -a)3D.- m+n=-( m+n)9.分解以下因式 :( 1) 6abc- 3ac2( 2)- a3c+a4b+a3( 3)- 4a3+16a2- 26a(4)x(m-x)(m-y)-m(x-m)(y-m)知能点 3 利用因式分解解决问题10. 9992+999=__________=_________.11.计算(- 2)2007+(- 2)2008的结果是().A.2B.- 2C. 2007D.- 1 12.计算以下各题 :( 1)-× ;( 2)× +×-×13.先分解因式,再求值:xyz2+xy2z+x2yz,此中 x= 2, y=7,z=1.5204【综合应用提升】14.假如 3x2- mxy2 =3x( x- 4y2),那么 m 的值为 ________.15.写出以下各项的公因式 :( 1) 6x2+18x+6;( 2)- 35a( a+b)与42( a+b).16.已知 n 为正整数,试判断n2+n 是奇数仍是偶数,说明原因.17.试说明817- 279- 913能被 45 整除.因式分解 -公式法【知能点分类训练】知能点 1用平方差公式分解因式1.- b2+a2=___________________;9x 2- 16y2=________________________ .2.以下多项式(1) x2+y2;( 2)- 2a2- 4b2;(3)(-m)2-(-n)2;(4)-144x2+169y2;( 5)( 3a)2- 4( 2b)2中,能用平方差公式分解的有()A.1 个B.2 个C.3 个D.4 个3.一个多项式,分解因式后结果是(x3+2)( 2-x3),那么这个多项式是().A. x6-4B. 4- x6C. x9- 4D. 4- x94.以下因式分解中错误的选项是()A. a2- 1=( a+1)( a- 1)B.1- 4x2=( 1+2x)( 1- 2x)C. 81x2- 64y2=( 9x+8y)( 9x- 8y) D.(- 2y)2- x2=(- 2y+x)( 2y+x)5.分解因式 :(1) a2-( 2) 25( m+n)2- 16( m- n)244- 64x22-9y2(3)x( 4)( x+y)9知能点 2 用完整平方公式分解因式6. 4a2+______+81=( 2a- 9)2.7.多项式 a2- 4b2与 a2+4ab+4b2的公因式是().A.a2- 4b2B. a+2b C. a- 2b D.没有公因式8.以下因式分解中正确的选项是().A.x4- 8x2+16=( x-4)2B.- x2+x-1=-1(2x- 1)244C. x( m-n )- y( n- m)=( m-n)(x- y) ; D. a4- b4=( a2+b2)( a2-b2)9.以下各式:①-2212122222x - xy- y;② a +ab+2b;③- 4ab- a +4b;④ 4x +9y-12xy;2⑤ 3x2- 6xy+3y2. ?此中能用完整平方公式分解因式的有().10.分解以下因式 :( 1)- x 2+12xy - 36y 2( 2)25x 2-10x+1( 3)- 2x 7+36x 5- 162x 3( 4)( a 2+6a ) 2+18( a 2+6a ) +81知能点 3 利用因式分解解决问题11.计算: 2 0072 -72 =_____________;992+198+1=___________. 12.假如 ab=2, a+b=3,那么 a 2+b 2=________.13.若 a 2+2( m - 3) a+16 是完整平方式,则 m 的值为().A .- 5B .- 1C .7D .7 或- 114.已知 a=22, b=25,求( a+b ) 2-( a - b ) 2 的值.754415.利用因式分解计算 :( 1) 9×- 4× ;( 2) 80× +160×× +80×(3) 1812 6123012 1812【综合应用提升】16.分解以下因式:( 1) 9x2( a- b) +y2( b- a)(2)4a2b2-(a2+b2)2( 3) x4- 81(4)1-x2+6xy-9y217.已知 x- y=- 2,求( x2 +y2)2- 4xy( x2+y2) +4x2y2的值.【开放探究创新】18.已知 a, b, c 是△ ABC的三条边.(1)判断( a- c)2- b2的值的正负 ;(2)若 a, b, c 知足 a2+c2+2b (b -a- c) =0,判断△ ABC的形状.【中考真题实战】19.(沈阳)分解因式:2x2- 4x+2=________.20.(成都)把 a3+ab2- 2a2b 分解因式的结果是 ________.21.(衡阳)分解因式x3- x,结果为().A. x( x2- 1)B.x( x-1)2C.x( x+1)2D. x( x+1)( x-1)22.(北京)分解因式a2-4a+4- b2.因式分解阶段性复习一、阶段性内容回首1.把多项式化成几个整式_______的形式叫做因式分解,也叫________.2.多项式中每一项都含有_________的因式叫公因式.3.把一个多项式中各项的________提出来进行因式分解的方法叫提公因式法.4.运用多项式的 _________ 进行因式分解的方法叫做公式法.5 . a2- b2=_______, ?即两个数的平方差等于这两个数的________?乘以这两个数的_______.6. a2± 2ab+b2=________,即两个数的平方和加上(或减去)这两个数的积的2?倍等于这两个数的 ________.7.分解因式的一般步骤:假如多项式各项有_______,则先把 _______提出来, ?而后再考虑用 ________,最后 _________ .二、阶段性稳固训练1.(福州)分解因式: x3-4x=_____________.2.(贵阳)分解因式: 2x2-20x+50=____________ .3.以下变形属于因式分解的是().A.(x+1)( x- 1) =x2- 1B. a2-1(a1)22a b2b bC. x2+x+ 1=( x+1)2D. 3x2- 6x+4=3x2(x-2) +4 42x4.以下多项式加上 4x2后,能够成为完整平方式的是().A. a2+2ax B.- a2+2axC.- 2x+1D. x4+45.① 4xy;② 12xy2;③- 2y2;④ 4y.此中能够作为多项式-28x2y+12xy2-24y 3的因式的是().A.④B.②④C.①③D.③④6.用因式分解的方法计算 +× +的值为().A.5 730B.2 500C. 250 000D.100 0007.分解以下多项式 :( 1) 5ax2- 10axy+5ay2( 2)4x2-3y( 4x- 3y)( 3)( x2-1)2+6( 1- x2) +9(4)1-x2+6xy-9y2( 5)( a 2- 1a ) 2+(a 2- a )+ 12 168.假如 x 2+mxy+9y 2 是完整平方式,求代数式 m 2+4m+4 的值.1 1 1 12 ) .9.计算( 1-2 )(132 )(1 2 )ggg(1102410.假如 m , n 知足│ m+2│ +( n - 4) 2=0,那么你能将代数式( x 2+y 2)-( mxy+n )?分解因式吗11.已知 a 2+b 2+c 2=20, ab+bc+ac=10,试求出( a+b+c ) 2 的值.12.已知 a ,b ,c 为△ ABC 的三边,且知足条件a 2 -c 2+ab - bc=0,试说明△ ABC?为等腰三角形.13.察以下各式:32- 12=4× 2, 42- 22=4× 3,52-3 2=4×4,⋯(1)猜想( n+2)2- n2的果.(2)你的猜想.14.已知 a+b= 2,ab=1,求 a3b+2a2b2+ab3的.3215.(1)假如 x2+2x+2y+y2 +2=0,求 x2007+y2008的.(2)已知 m+n= 3, m- n=1,求 m2- 2mn+3m+3n+n 2的.44。
因式分解练习题免费一、提取公因式法1. \( 3a^2 + 6a \)2. \( 4x^3 8x^2 + 4x \)3. \( 5xy 15xz \)4. \( 9m^2n 12mn^2 + 3mn \)5. \( 16ab^2 24a^2b + 8ab \)二、公式法1. \( x^2 9 \)2. \( a^2 4b^2 \)3. \( x^3 27 \)4. \( 4x^2 12x + 9 \)5. \( 25y^2 20y + 4 \)三、分组分解法1. \( x^2 + 5x + 6 \)2. \( 2a^2 + 5a 3 \)3. \( 3x^2 7x 6 \)4. \( 4y^2 9y + 5 \)5. \( 5m^2 2m 7 \)四、十字相乘法1. \( x^2 + 6x + 9 \)2. \( a^2 4a + 4 \)3. \( 2x^2 8x + 8 \)4. \( 3y^2 + 12y + 12 \)5. \( 4m^2 10m + 6 \)五、综合运用1. \( x^3 3x^2 + 2x \)2. \( a^2 + 2ab + b^2 4 \)3. \( 2x^2 5x 3 \)4. \( 3y^4 9y^3 + 6y^2 \)5. \( 4m^3 12m^2 + 9m \)六、特殊因式分解法1. \( x^4 16 \)2. \( a^4 + 4a^2b^2 + 4b^4 \)3. \( x^6 y^6 \)4. \( 9m^2n^2 4p^2 \)5. \( 25x^2y^2 30xy + 9 \)七、多项式乘法逆运算1. \( (x + 2)(x 3) \)2. \( (a 4)(a + 5) \)3. \( (2x + 3y)(2x 3y) \)4. \( (3m 4n)(4m + 3n) \)5. \( (x + 1)(x^2 x + 1) \)八、含有复杂系数的因式分解1. \( 6x^2 + 5x 6 \)2. \( 4a^2 12a + 9 \)3. \( 3x^2 10x + 8 \)5. \( 7m^2 14m + 7 \)九、含有高次项的因式分解1. \( x^4 6x^3 + 9x^2 \)2. \( a^5 2a^4 + a^3 \)3. \( 2x^5 8x^4 + 8x^3 \)4. \( 3y^6 18y^4 + 27y^2 \)5. \( 4m^3 12m^2n + 9mn^2 \)十、实际应用题中的因式分解1. 一个长方形的面积为 \( 2x^2 5x 12 \) 平方单位,求其可能的长和宽。
专项训练--因式分解(全)因式分解专项练习题(一)提取公因式一、分解因式1、2x 2y -xy2、6a 2b 3-9ab 23、 x (a -b )+y (b -a )4、9m 2n-3m 2n 25、4x 2-4xy+8xz6、-7ab-14abx+56aby7、6m 2n-15mn 2+30m 2n 2 8、-4m 4n+16m 3n-28m 2n9、x n+1-2x n-1 10、a n -a n+2+a 3n11、p(a-b)+q(b-a) 12、a(b-c)+c-b13、(a-b)2(a+b)+(a-b)(a+b)2 14、ab +b 2-ac -bc15、3xy(a-b)2+9x(b-a) 16、(2x-1)y 2+(1-2x)2y17、6m(m-n)2-8(n-m)3 18、15b(2a-b)2+25(b-2a)319、a 3-a 2b+a 2c-abc 20、2ax +3am -10bx -15bm21、m (x -2)-n (2-x )-x +222、(m -a )2+3x (m -a )-(x +y )(a -m )23、 ab(c 2+d 2)+cd(a 2+b 2) 24、(ax+by)2+(bx-ay)225、-+--+++a x abx acx ax m m m m 221326、a a b a b a ab b a ()()()-+---32222二、应用简便方法计算1、4.3×199.8+7.6×199.8-1.9×199.82、9×10100-101013、2002×20012002-2001×200220024、1368987521136898745613689872681368987123⨯+⨯+⨯+⨯(2)证明:812797913--能被45整除。
6、已知x 2+x+1=0,求代数式x 2006+x 2005+x 2004+…+x 2+x+1的值。
提公因式法练习卷一、选择题1.多项式a n-a3n+a n+2分解因式的结果是()A.a n(1-a3+a2)B.a n(-a2n+a2)C.a n(1-a2n+a2)D.a n(-a3+a n)2.将m2(a-2)+m(a-2)分解因式的结果是()A.(a-2)(m2-m)B.m(a-2)(m-1)C.m(a-2)(m+1)D.m(2-a)(m-1)3.计算(-2)2015+22014等于()A.22015B.-22015C.-22014D.22014 4.把多项式3m(x-y)-2(y-x)2分解因式的结果是()A.(x-y)(3m-2x-2y)B.(x-y)(3m-2x+2y)C.(x-y)(3m+2x-2y)D.(y-x)(3m+2x-2y)5.多项式mx+n可分解为m(x-y),则n表示的整式为()A.m B.my C.-y D.-my6.下列因式分解中,是利用提公因式法分解的是()A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.ab+ac=a(b+c)D.a2+2ab+b2=(a+b)27.分解因式a2-9a的结果是()A.a(a-9)B.(a-3)(a+3)C.(a-3a)(a+3a)D.(a-3)28.把a2-4a多项式分解因式,结果正确的是()A.a(a-4)B.(a+2)(a-2)C.a(a+2)(a-2)D.(a-2)2-49.把多项式x2-x分解因式,得到的因式是()A.只有x B.x2和x C.x2和-x D.x和x-1 10.计算a2(2a)3-a(3a+8a4)的结果是()A.3a2B.-3a C.-3a2D.16a511.若ab=3,a-4b=5,则a2b-4ab2的值是.12.已知a+b=4,ab=2,则a2b+ab2的值为.13.分解因式:3a3-12a2b+12ab2= .14.因式分解:2x2-4xy= .15.因式分解:-3x3+9x= .16.分解因式:a4b-6a3b+9a2b= .三、解答题.17.因式分解:(1)x(x-y)-y(y-x);(2)a2x2y-axy2.18.将x(x+y)(x-y)-x(x+y)2进行因式分解,并求当x+y=1,xy=12时此式的值.19.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)3,则需应用上述方法次,结果是.(3)分解因式:1+x+x(x+1)+x(x+1)2…+x(x+1)n(n为正整数)的结果是.1. 将3a(x-y)-b(x-y)用提公因式法分解因式,提出的公因式是()A.3a-b B.3(x-y)C.x-y D.3a+b2. 多项式(x+2)(2x-1)-(x+2)可以因式分解成(x+m)(2x+n),则m-n的值是()A.2 B.-2 C.4 D.-43. 若ab=-3,a-2b=5,则a2b-2ab2的值是()A.-15 B.15 C.2 D.-84.下列运算中,因式分解正确的是()A.-m2+mn-m=-m(m+n-1)B.9abc-6a2b2=3bc(3-2ab)C.3a2x-6bx+3x=3x(a2-2b)D.12ab2+12a2b=12ab(a+b)5.(-8)2014+(-8)2013能被下列数整除的是()A.3 B.5 C.7 D.96.(-2)2013+(-2)2014的值为()A.2 B.-2 C.-22013D.220137. 设P=a2(-a+b-c),Q=-a(a2-ab+ac),则P与Q的关系是()A.P=Q B.P>Q C.P<Q D.互为相反数8.把a2-2a分解因式,正确的是()A.a(a-2)B.a(a+2)C.a(a2-2)D.a(2-a)二、填空题9. 若a=49,b=109,则ab-9a的值为.10. 分解因式:x2-xy= .11. 已知a-b=2,a=3,则a2-ab= .12. 把多项式-16x3+40x2y提出一个公因式-8x2后,另一个因式是.13.分解因式:m(x-y)+n(y-x)= .14.多项式4x2-12x2y+12x3y2分解因式时,应提取的公因式是.三、解答题15.化简求值:当a=2005时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2005的值.16. 若a+b=-3,ab=1.求12a3b+a2b2+12ab3的值.17.先将代数式因式分解,再求值:2x(a-2)-y(2-a),其中a=0.5,x=1.5,y=-2.18. 已知(19x-31)(13x-17)-(17-13x)(11x-23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.。
因式分解练习题(提取公因式)
知识点一 因式分解的定义理解
把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式。
【例题 】 1.下列变形是分解因式的是( )
A .6x 2y 2=3xy ·2xy
B .a 2-4ab+4b 2=(a -2b)2
C .(x+2)(x+1)=x 2+3x+2
D .x 2-9-6x=(x+3)(x -3)-6x
2.下列各式从左到右的变形中,是因式分解的为( )
A 、2222)1(xy y x x xy -=-
B 、)3)(3(92-+=-x x x
C 、222)1)(1(1y x x y x ++-=+-
D 、c b a x c bx ax ++=++)(
3、下列分解因式结果正确的是( )
A. a 2b +7ab -b =b (a 2+7a )
B. 3x 2y -3xy +6y =3y (x 2-x +2)
C. 8xyz -6x 2y 2=2xyz (4-3xy )
D. -2a 2+4ab -6ac =-2a (a -2b -3c )
知识点二:确定多项式的公因式的方法
1、我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
2、找公因式的方法
【例题】 1、ay ax + 2、36mx my - 3、2
410a ab +
4、2155a a +
5、22x y xy -
6、22129xyz x y -
7、()()m x y n x y -+-
8、()()2x m n y m n +++
9、3()()abc m n ab m n --- 10、2312()9()x a b m b a ---
知识点三、在下列各式左边的括号前填上“+”或“-”,使等式成立。
1、__()x y x y +=+
2、__()b a a b -=-
3、__()z y y z -+=-
4、()2
2___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数
【专项训练】
一、把下列各式分解因式。
1、nx ny -
2、2a ab +
3、3246x x -
4、2
82m n mn +
5、23222515x y x y -
6、22129xyz x y -
7、2336a y ay y -+
8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+
11、323612ma ma ma -+- 12、32222
561421x yz x y z xy z +-
13、32223
15520x y x y x y +- 14、432163256x x x --+
二:把下列各式分解因式。
1、()()x a b y a b +-+
2、5()2()x x y y x y -+-
3、6()4()q p q p p q +-+
4、()()()()m n P q m n p q ++-+-
5、2()()a a b a b -+-
6、2
()()x x y y x y ---
7、(2)(23)3(2)a b a b a a b +--+ 8、2()()()x x y x y x x y +--+
9、()()p x y q y x --- 10、(3)2(3)m a a -+- 11、()()()a b a b b a +--+
12、()()()a x a b a x c x a -+--- 13、333(1)(1)x y x z --- 14、22()()ab a b a b a --+-
15、()()mx a b nx b a --- 16、(2)(23)5(2)(32)a b a b a b a b a -----
17、(3)(3)()(3)a b a b a b b a +-+-- 18、2()()a x y b y x -+-
19、232()2()()x x y y x y x ----- 20、32()()()()x a x b a x b x --+--
21、234()()()y x x x y y x -+--- 22、2123(23)
(32)()()n n a b b a a b n +----为自然数
三、利用因式分解计算。
1、7.6199.8 4.3199.8 1.9199.8⨯+⨯-⨯ 2、2.186 1.237 1.237 1.186⨯-⨯
3、212019(3)(3)63-+-+⨯
4、198420032003200319841984⨯-⨯
四:利用因式分解证明下列各题。
1、求证:当n 为整数时,2n n +必能被2整除。
2、证明:一个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除。
3、证明:2002200120003
431037-⨯+⨯能被整除。
五:利用因式分解解答列各题。
1、22已知a+b=13,ab=40, 求2a b+2ab 的值。
2、32232132
a b ab +=
=已知,,求a b+2a b +ab 的值。