浙江省衢州市中考数学试题(,含答案)
- 格式:doc
- 大小:877.50 KB
- 文档页数:11
2019-2020学年浙江省衢州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1的同位角是∠4.故选C.【点评】本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.(3分)根据衢州市统计局发布的统计数据显示,衢州市2017年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为()A.1.38×1010元B.1.38×1011元C.1.38×1012元D.0.138×1012元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将138000000000用科学记数法表示为:1.38×1011.故选B.【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是()A.B.C.D.【分析】得到从几何体正面看得到的平面图形即可.【解答】解:从正面看得到3列正方形的个数依次为2,1,1.故选C.【点评】考查三视图的相关知识;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.5.(3分)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°【分析】直接根据圆周角定理求解.【解答】解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.(3分)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0B.C.D.1【分析】直接利用概率公式计算得出答案.【解答】解:∵某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,∴老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是:=.故选B.【点评】本题主要考查了概率公式,利用符合题意数据与总数的比值=概率求出是解题的关键.7.(3分)不等式3x+2≥5的解集是()A.x≥1B.x≥C.x≤1D.x≤﹣1【分析】根据一元一次不等式的解法即可求出答案.【解答】解:3x≥3x≥1故选A.【点评】本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.8.(3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【分析】由折叠可得:∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.9.(3分)如图,AB是圆锥的母线,BC为底面半径,已知BC=6cm,圆锥的侧面积为15πcm2,则sin∠ABC的值为()A.B.C.D.【分析】先根据扇形的面积公式S=L•R求出母线长,再根据锐角三角函数的定义解答即可.【解答】解:设圆锥的母线长为R,由题意得15π=π×3×R,解得R=5,∴圆锥的高为4,∴sin∠ABC=.故选B.【点评】本题考查了圆锥侧面积公式的运用,注意一个角的正弦值等于这个角的对边与斜边之比.10.(3分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm【分析】根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.【解答】解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故选D.【点评】本题考查了垂径定理,关键是根据垂径定理得出OE的长.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.12.(4分)数据5,5,4,2,3,7,6的中位数是5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.(4分)如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AB=ED(只需写一个,不添加辅助线).【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED.∵BF=CE,∴BF+FC=CE+FC,即BC=EF.∵AB∥DE,∴∠B=∠E.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).故答案为:AB=ED.【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.(4分)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是1.5千米.【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k|B的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.【解答】解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣x+6,当t=45时,y=﹣×45+6=1.5.故答案为:1.5.【点评】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.15.(4分)如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC ⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC= 5.【分析】由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.【解答】解:∵BD⊥CD,BD=2,∴S△BCD=BD•CD=3,即CD=3.∵C(2,0),即OC=2,∴OD=OC+CD=2+3=5,∴B(5,2),代入反比例解析式得:k=10,即y=,则S△AOC=5.故答案为:5.【点评】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.16.(4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.三、解答题(本大题共8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分)17.(6分)计算:|﹣2|﹣+23﹣(1﹣π)0.【分析】本题涉及绝对值、零指数幂、乘方、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2﹣3+8﹣1=6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)如图,在▱ABCD中,AC是对角线,BE⊥AC,DF⊥AC,垂足分别为点E,F,求证:AE=CF.【分析】由全等三角形的判定定理AAS证得△ABE≌△CDF,则对应边相等:AE=CF.【解答】证明:如图,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF.又BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°.在△ABE与△CDF中,,∴得△ABE≌△CDF(AAS),∴AE=CF.【点评】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.19.(6分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【分析】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【解答】解:由题意可得:方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.【点评】本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.20.(8分)“五•一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45°方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30°方向,如图所示,根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:≈1.414,≈1.732)【分析】根据题意表示出AD,DC的长,进而得出等式求出答案.【解答】解:如图所示:可得:∠CAD=45°,∠CBD=60°,AB=200m,则设BD=x,故DC=x.∵AD=DC,∴200+x=x,解得:x=100(﹣1)≈73,答:小明还需沿绿道继续直走73米才能到达桥头D处.【点评】本题主要考查了解直角三角形的应用,正确得出AD=DC是解题的关键.21.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.【解答】解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).【点评】本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.22.(10分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.(1)求证:△HBE∽△ABC;(2)若CF=4,BF=5,求AC和EH的长.【分析】(1)根据切线的性质即可证明:∠CAB=∠EHB,由此即可解决问题;(2)连接AF.由△CAF∽△CBA,推出CA2=CF•CB=36,推出CA=6,AB==3,AF==2,由Rt△AEF≌Rt△AEH,推出AF=AH=2,设EF=EH=x.在Rt△EHB 中,可得(5﹣x)2=x2+()2,解方程即可解决问题;【解答】解:(1)∵AC是⊙O的切线,∴CA⊥AB.∵EH⊥AB,∴∠EHB=∠CAB.∵∠EBH=∠CBA,∴△HBE∽△ABC.(2)连接AF.∵AB是直径,∴∠AFB=90°.∵∠C=∠C,∠CAB=∠AFC,∴△CAF∽△CBA,∴CA2=CF•CB=36,∴CA=6,AB==3,AF==2.∵=,∴∠EAF=∠EAH.∵EF⊥AF,EH⊥AB,∴EF=EH.∵AE=AE,∴Rt△AEF≌Rt△AEH,∴AF=AH=2,设EF=EH=x.在Rt△EHB中,(5﹣x)2=x2+()2,∴x=2,∴EH=2.【点评】本题考查了相似三角形的判定和性质、圆周角定理、切线的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.23.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.【解答】解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a ≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+.∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+,∴扩建改造后喷水池水柱的最大高度为米.【点评】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.24.(12分)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的函数表达式;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.【分析】(1)利用待定系数法即可解决问题;(2)①如图1中,作DP∥OB,则∠PDA=∠B.利用平行线分线段成比例定理,计算即可,再根据对称性求出P′;②分两种情形分别求解即可解决问题:如图2中,当OP=OB=10时,作PQ∥OB交CD于Q.如图3中,当OQ=OB时,设Q(m,﹣m+6),构建方程求出点Q坐标即可解决问题;【解答】解:(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=﹣x+6.(2)①如图1中,作DP∥OB,则∠PDA=∠B.∵DP∥OB,∴=,∴=,∴PA=,∴OP=6﹣=,∴P(,0),根据对称性可知,当AP=AP′时,P′(,0),∴满足条件的点P坐标为(,0)或(,0).②如图2中,当OP=OB=10时,作PQ∥OB交CD于Q.∵直线OB的解析式为y=x,∴直线PQ的解析式为y=x+,由,解得,∴Q(﹣4,8),∴PQ==10,∴PQ=OB.∵PQ∥OB,∴四边形OBQP是平行四边形.∵OB=OP,∴四边形OBQP是菱形,此时点M与的Q重合,满足条件,t=0.如图3中,当OQ=OB时,设Q(m,﹣m+6),则有m2+(﹣m+6)2=102,解得m=,∴点Q 的横坐标为或,设点M的横坐标为a,则有:=或=,∴a=或,∴满足条件的t的值为或.【点评】本题考查了一次函数综合题、待定系数法、菱形的判定、平行线分线段成比例定理等知识,解题的关键是学会由分类讨论的思想思考问题,学会构建一次函数,利用方程组确定两个函数的交点坐标,所以中考压轴题.。
浙江省衢州市数学中考卷一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = 1/x2. 在直角坐标系中,点(3,4)关于原点的对称点是()A. (3,4)B. (3,4)C. (4,3)D. (4,3)3. 下列等式中,正确的是()A. (a^3)^2 = a^5B. (a^3)^2 = a^6C. (a^2)^3 = a^5D. (a^2)^3 = a^64. 如果|a| = 5,那么a的值可以是()A. 5B. 5C. 25D. 255. 在三角形ABC中,如果角A是30度,边BC是6cm,那么边AC 的长度是()A. 3cmB. 4cmC. 5cmD. 6cm二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 如果a < b,那么a > b。
()3. 平行线的斜率相等。
()4. 一元二次方程的解一定是实数。
()5. 三角形的内角和总是180度。
()三、填空题(每题1分,共5分)1. 如果f(x) = 2x + 1,那么f(3) = ______。
2. 在直角三角形中,如果一个角是90度,那么这个三角形是______三角形。
3. 两个平行线之间的距离是______。
4. 一元二次方程ax^2 + bx + c = 0的解公式是x = ______。
5. 如果sinθ = 1/2,且θ是锐角,那么θ的度数是______。
四、简答题(每题2分,共10分)1. 简述有理数的定义。
2. 解释什么是函数的单调性。
3. 简述平行线的性质。
4. 什么是一元二次方程的判别式?5. 解释直角三角形的勾股定理。
五、应用题(每题2分,共10分)1. 解方程:2x 5 = 3。
2. 计算下列表达式的值:√(81) + (1/3)^3。
3. 如果一个三角形的两个内角分别是30度和60度,求第三个内角的度数。
2022年浙江省衢州市中考数学测评考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能...是( )2.Rt △ABC 中,∠C= 90°,如图所示,D 为BC 上一点,∠DAC=30°,BD=2,AB=23,则AC 的长是( )A .3B .22C .3D .3223.若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( ) A .a >0 B .a =0 C .a >4 D .a =44.下列说法中,错误的是( )A .同旁内角互补,两直线平行B .两直线平行,内错角相等C .对顶角相等D .同位角相等5.如图,直线a 、b 被c 所截,a ∥b ,已知∠1 =50°,则∠2 等于( )A .30°B .50°C .130D .150°6.现有两个有理数 a 、b ,它们的绝对值相等,则这两个有理数( )A .相等B .相等或互为相反数C .都是零D .互为相反数7.小明测得一周的体温并登记如下表:(单位:℃ )其中星期四的体温被墨汁污染,根据表中数据,可得此目的体温是()A.36.7℃B.36.8℃C.36.9℃D.37.0℃二、填空题8.在一个不透明的袋中装有2个绿球,3个红球和5个黄球,它们除了颜色外都相同,从中随机摸出一个球,摸到红球的概率是.9.如图,小亮在操场上距离杆AB的C处,用测角仪测得旗杆顶端A的仰角为300,已知BC =9米,测角仪的高CD为1.2米,那么旗杆AB的高为米(结果保留根号).10.根据锐角三角函数值求锐角:(1)若cos12α=,则α∠=;(2)若2cosβ=1,则∠β=.11.在□ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则∠B= .12.如图所示,已知:∠l=∠2=∠3,EF⊥AB于点F.求证:CD⊥AB.证明:∵∠1=∠2( ).∴∥ ( ).∴∠ADG= ( ).∵∠l=∠3( ),∴∠ADG+∠1= + .∵EF ⊥AB( ),∴∠B+∠3=180°-90°=90° ( ).∴∠ADG+∠1=90°.∴CD⊥AB( ).13.把方程x2+6x-2=0化为(x+m)2=n(n≥0)的形式为.14.将 P(3,n)的纵坐标缩短12得Q(3,2),则n= .15.2007年10月1日是中华人民共和国成立58周年纪念日,要在某校选择256名身高基本相ABO 同的女同学组成表演方体,在这个问题中我们最值的关注的是该校所有女生身高的(填“平均数”或“中位数”或“众数”). 16.在一个班的40名学生中,14岁的有15人,15岁的有14人,l6岁的有7人,l7岁的有4人,则这个班的学生年龄的中位数是 岁,众数是 岁.17.若甲数为x ,乙数为y ,则“甲数的12与乙数的23差是 6”可列方程为 . 18.四条线段的长分别是5 cm ,6 cm ,8 cm ,13 cm ,则以其中任意三条线段为边可以构成 个三角形.19.、+ =1x. 三、解答题20. 如图,它是实物与其三种视图,在三视图中缺少一些线(包括实线和虚线),请将它们补齐,让其成为一个完整的三种视图.21.在△ABC 中,∠A =105°,∠B = 45°,AB = 2,求 AC 的长.22.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出.....△OAB 的一个位似图形,使两个图形以 O 为位似中心,且所画图形与△OAB 的位似比为2︰1.23.某工程队中标修建某段公路,若每天修建0.5 千米,则需要 48 天才能完成任务.(1)求该工程队修建时间 t(天)与每天修建路程 a(千米/天)间的函数解析式;(2)若要求 40 天完成任务,每天应修建多少千米?24.阅读下面操作过程,回答后面问题:在一次数学实践探究活动中,小强过A 、C 两点画直线AC 把平行四边形ABCD 分割成两个部分(如图(a )),小刚过AB 、AC 的中点画直线EF ,把平行四边形ABCD 也分割成两个部分(如图(b ));(a ) (b ) (c )(1)这两种分割方法中面积之间的关系为:21____S S ,43____S S ;(2)根据这两位同学的分割方法,你认为把平行四边形分割成满足以上面积关系的直线 有 条,请在图(c )的平行四边形中画出一种;(3)由上述实验操作过程,你发现了什么规律?25.如图,在等边△ABC 中,D 是AB 上的动点,以CD 为一边,向上作等边△EDC ,连结AE .(1)求证:AE ∥BC ;(2)如果等边△ABC 的边长为a ,当D 为AB 中点时,你能求AE 的长吗?26.如图,已知 AB∥CD,∠ABE = 130°,∠CDE =152°,求∠BED 度数.27.如图,已知∠1 是它的补角的3 倍,∠2 等于它的补角的13,那么 AB∥CD吗?请说明理由.28.A 口袋中装有2个小球,分别标有数字 1和2;B 口袋中装有3个小球,分别标有数字3、4和 5. 每个小球除数字外都相同. 甲、乙两人玩游戏,从A、B两个口袋中随机地各取出 1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢. 这个游戏对甲、乙双方公平吗?请说明理由.29.如图,把4×4的正方形方格图形分割成两个全等图形,请在下图中,沿虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.30.2a,小数部分为b2()的值.a a b【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.D5.C6.B7.A二、填空题8.3(或0.3)109.33 +1.210.(1)60°;(2)45°11.50°12.已知;DG ;BC ;内错角相等,两直线平行;∠B ;两直线平行,同位角相等;已知;∠B ;∠3;已知;三角形的内角和为l80°;垂直的定义13.(x+3)2=1114.415.众数16.15,1417. 12623x y -=18. 219.x 1,0或x 2,x1-或……(答案不唯一)三、解答题20.21.如图,过A 作 AH ⊥BC 于H ,∵∠B= 45°, AB= 2,AH=BH=2,∠HAC=60°, ∠C=30°,∴222AC AH ==22.略23.(1) 0.54824ta =⨯=,∴24t a = (2)当 t=40 时,代入(1)中得240.640a ==(千米). 24.(1)=,=;(2)无数,图略;(3)经过平行四边形对称中心的任意直线,都可以把平行四边形分成满足条件的图形 25.(1)可以证明△BCD ≌△ACE ,得到∠ABC=∠CAE ,所以∠BCA=∠CAE ,得AE ∥BC(2)2a26.78°27.AB ∥CD ,说明∠1与它的同位角相等28.画数状图:或列表:3 4 5 1(3 ,1)和为4 (4, 1)和为5 (5 ,1 )和为 6 2 (3,2)和为5 (4,2)和为6 (5 ,2)和为7数字之和共有 6种可能情况,其中和为偶数的情况有 3种,和为奇数的情况有 3种. 所以P(和为偶数)=12,P(和为奇数)= 12.所以游戏对甲、乙双方是公平的. 29.30.由题意,得1a =,21b =,于是原式21(121}2⨯+=。
浙江省衢州市2020年中考试卷数学一、选择题1.比0小1的数是()A. 0B. ﹣1C. 1D. ±12.下列几何体中,俯视图是圆的几何体是()A. B.C. D.3.计算(a2)3,正确结果是()A. a5B. a6C. a8D. a94.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A. 13B.14C.16D.185.要使二次根式3x-有意义,x的值可以是()A. 0B. 1C. 2D. 36.不等式组()324321x xx x⎧-≤-⎨>-⎩的解集在数轴上表示正确的是()A.B.C.D.7.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A. 180(1﹣x)2=461B. 180(1+x)2=461C. 368(1﹣x)2=442D. 368(1+x)2=4428.过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A. B.C. D.9.二次函数y=x2图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位10.如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB 的长度为( )A. 2B.21+ C.51+ D.43二、填空题11.一元一次方程2x +1=3的解是x =_____.12.定义a ※b =a (b +1),例如2※3=2×(3+1)=2×4=8.则(x ﹣1)※x 的结果为_____. 13.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.14.小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD 的边长为4dm ,则图2中h 的值为_____dm .15.如图,将一把矩形直尺ABCD 和一块含30°角的三角板EFG 摆放在平面直角坐标系中,AB 在x 轴上,点G 与点A 重合,点F 在AD 上,三角板的直角边EF 交BC 于点M ,反比例函数y =kx(x >0)的图象恰好经过点F ,M .若直尺的宽CD =3,三角板的斜边FG =83,则k =_____.16.图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O ,P 两点固定,连杆PA =PC =140cm ,AB =BC =CQ =QA =60cm ,OQ =50cm ,O ,P 两点间距与OQ 长度相等.当OQ 绕点O转动时,点A ,B ,C 的位置随之改变,点B 恰好在线段MN 上来回运动.当点B 运动至点M 或N 时,点A ,C 重合,点P ,Q ,A ,B 在同一直线上(如图3). (1)点P 到MN 的距离为_____cm .(2)当点P ,O ,A 在同一直线上时,点Q 到MN 的距离为_____cm .三、解答题17.计算:|﹣2|+(13)09 18.先化简,再求值:21211a a a a ÷-+-,其中a =3.19.如图,在5×5的网格中,△ABC 的三个顶点都在格点上. (1)在图1中画出一个以AB 为边的▱ABDE ,使顶点D ,E 在格点上. (2)在图2中画出一条恰好平分△ABC 周长的直线l (至少经过两个格点).20.某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?21.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.22.2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km /h ,游轮行驶的时间记为t (h ),两艘轮船距离杭州的路程s (km )关于t (h )的图象如图2所示(游轮在停靠前后的行驶速度不变). (1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问: ①货轮出发后几小时追上游轮? ②游轮与货轮何时相距12km ?23.如图1,在平面直角坐标系中,△ABC 的顶点A ,C 分別是直线y =﹣83x +4与坐标轴的交点,点B 的坐标为(﹣2,0),点D 是边AC 上的一点,DE ⊥BC 于点E ,点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称,连结DF ,EF .设点D 的横坐标为m ,EF 2为l ,请探究:①线段EF 长度是否有最小值. ②△BEF 能否成直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题. (1)小明利用“几何画板”软件进行观察,测量,得到l 随m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l 与m 可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l 关于m的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值.(3)小明通过观察,推理,发现△BEF 能成为直角三角形,请你求出当△BEF 为直角三角形时m 的值.24.【性质探究】如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,AE 平分∠BAC ,交BC 于点E .作DF ⊥AE 于点H ,分别交AB ,AC 于点F ,G . (1)判断△AFG 的形状并说明理由. (2)求证:BF =2OG . 【迁移应用】(3)记△DGO 的面积为S 1,△DBF 的面积为S 2,当1213S S 时,求AD AB的值. 【拓展延伸】(4)若DF 交射线AB 于点F ,【性质探究】中的其余条件不变,连结EF ,当△BEF 的面积为矩形ABCD 面积的110时,请直接写出tan ∠BAE 的值.数学参考答案与解析一、选择题1.比0小1的数是( )A. 0B. ﹣1C. 1D. ±1【答案】B【解析】【分析】根据题意列式计算即可得出结果.【详解】解:0﹣1=﹣1,即比0小1的数是﹣1.故选:B.【点睛】本题主要考查了有理数的减法,理清题意,正确列出算式是解答本题的关键.2.下列几何体中,俯视图是圆的几何体是()A. B.C. D.【答案】A【解析】【分析】分别找出从图形的上面看所得到的图形即可.【详解】解:A、俯视图是圆,故此选项正确;B、俯视图是正方形,故此选项错误;C、俯视图是长方形,故此选项错误;D、俯视图是长方形,故此选项错误.故选:A.【点睛】本题考查了几何体的俯视图,掌握各立体图形的特点及俯视图的定义是解答此类题的关键.3.计算(a2)3,正确结果是()A. a5B. a6C. a8D. a9【答案】B【解析】由幂的乘方与积的乘方法则可知,(a2)3=a2×3=a6.故选B.4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A. 13B.14C.16D.18【答案】A【解析】【分析】直接利用“Ⅱ”所示区域所占圆周角除以360,进而得出答案.【详解】解:由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:1201= 3603.故选:A.【点睛】此题主要考查了概率公式,正确理解概率的求法是解题关键.5.3x 有意义,x的值可以是()A. 0B. 1C. 2D. 3 【答案】D【解析】【分析】根据二次根式有意义的条件可得x-3≥0,再解即可.【详解】由题意得:x−3⩾0,解得:x⩾3,故选D.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其定义.6.不等式组()324321x xx x⎧-≤-⎨>-⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集,再在数轴上表示出来即可求解.【详解】3(2)4 321?x xx x--⎧⎨>-⎩①②,由①得x≤1;由②得x>﹣1;故不等式组的解集为﹣1<x≤1,在数轴上表示出来为:.故选:C.【点睛】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.7.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A. 180(1﹣x)2=461B. 180(1+x)2=461C. 368(1﹣x)2=442D. 368(1+x)2=442【答案】B【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x,根据“2月份的180万只,4月份的利润将达到461万只”,即可得出方程.【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键.8.过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A. B.C. D.【答案】D【解析】【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点睛】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.9.二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位【答案】C【解析】【分析】求出平移后的抛物线的解析式,利用待定系数法解决问题即可.【详解】解:A、平移后的解析式为y=(x+2)2﹣2,当x=2时,y=14,本选项不符合题意.B、平移后的解析式为y=(x+1)2+2,当x=2时,y=11,本选项不符合题意.C、平移后的解析式为y=(x﹣1)2﹣1,当x=2时,y=0,函数图象经过(2,0),本选项符合题意.D、平移后的解析式为y=(x﹣2)2+1,当x=2时,y=1,本选项不符合题意.故选:C.【点睛】本题考查了二次函数的平移问题,掌握二次函数的平移特征是解题的关键.10.如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A. 2B. 21+C.51+D.43【答案】A【解析】【分析】先判断出∠ADE=45°,进而判断出AE=AD,利用勾股定理即可得出结论.【详解】解:由折叠补全图形如图所示,∵四边形ABCD是矩形,∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,由第一次折叠得:∠DAE=∠A=90°,∠ADE=12∠ADC=45°,∴∠AED=∠ADE=45°,∴AE=AD=1,在Rt△ADE中,根据勾股定理得,DE=2AD=2,由第二次折叠可知,DC DE=∴2AB=故选:A.【点睛】本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.二、填空题11.一元一次方程2x+1=3的解是x=_____.【答案】1【解析】【分析】将方程移项,然后再将系数化为1即可求得一元一次方程的解.【详解】解:将方程移项得,2x=2,系数化为1得,x=1.故答案为:1.【点睛】此题主要考查学生对解一元一次方程这一知识点的理解和掌握,此题比较简单,属于基础题12.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x﹣1)※x的结果为_____.【答案】x2﹣1【解析】【分析】根据规定的运算,直接代值后再根据平方差公式计算即可.【详解】解:根据题意得:(x﹣1)※x=(x﹣1)(x+1)=x2﹣1.故答案为:x2﹣1.【点睛】本题考查了平方差公式,实数的运算,理解题目中的运算方法是解题关键.13.某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,∴x=5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.14.小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为_____dm.【答案】42【解析】【分析】根据七巧板的特征,依次得到②④⑥⑦的高,再相加即可求解.【详解】解:∵正方形ABCD的边长为4dm,∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是2dm,∴图2中h的值为(4+2)dm.故答案为:(4+2).【点睛】本题主要考查正方形的性质,解题的关键是求出②④⑥⑦的高.15.如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=kx(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=83,则k=_____.【答案】403【解析】【分析】通过作辅助线,构造直角三角形,求出MN,FN,进而求出AN、MB,表示出点F、点M的坐标,利用反比例函数k的意义,确定点F的坐标,进而确定k的值即可.【详解】解:过点M作MN⊥AD,垂足为N,则MN=AD=3,在Rt△FMN中,∠MFN=30°,∴FN33∴AN=MB333设OA=x,则OB=x+3,∴F(x,3,M(x+3,3,∴3=(x+33,解得,x=5,∴F(5,3,∴k33故答案为:3【点睛】考查反比例函数的图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.16.图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O 转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为_____cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为_____cm.【答案】 (1). 160 (2). 640 9【解析】【分析】(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.解直角三角形求出PT即可.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.解直角三角形求出HT即可.【详解】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,PQ=PA﹣AQ=14﹣=60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠P=PHOP=PTPM,∵4050=200PT,∴PT=160(cm),∴点P到MN的距离为160cm,故答案为160.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.由题意AT=PT﹣PA=160﹣140=20(cm),OA=PA﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2﹣AH2=OQ2﹣OH2,∴602﹣x2=502﹣(90﹣x)2,解得x=4609,∴HT=AH+AT=6409(cm),∴点Q到MN的距离为6409cm.故答案为6409.【点睛】本题考查解直角三角形应用,等腰三角形的性质,菱形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.三、解答题17.计算:|﹣2|+(13)09【答案】1 【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.【详解】解:原式=2+1﹣3+2×12 =2+1﹣3+1 =1.【点睛】此题主要考查了特殊角的三角函数值,零指数幂,算术平方根,以及实数运算,正确化简各数是解题关键.18.先化简,再求值:21211a a a a ÷-+-,其中a =3. 【答案】1a a -,32【解析】【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.【详解】解:原式=2(1)a a -•(a ﹣1) =1a a -, 当a=3时, 原式=33=312-. 【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.19.如图,在5×5网格中,△ABC 的三个顶点都在格点上.(1)在图1中画出一个以AB 为边▱ABDE ,使顶点D ,E 在格点上.(2)在图2中画出一条恰好平分△ABC 周长的直线l (至少经过两个格点).【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据平行四边形的定义画出图形即可(答案不唯一);(2)利用数形结合的思想解决问题即可.【详解】解:(1)如图平行四边形ABDE即为所求(点D的位置还有6种情形可取),;(2)如图,直线l即为所求.【点睛】本题考查了几何作图,平行四边形的定义,理解题意,按照要求作图是解题关键.20.某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C的频数m的值.(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?【答案】(1)308;(2)18°;(3)7000人,同学们应少玩电子产品,注意用眼保护【解析】【分析】(1)根据统计图中的数据,可以得到本次抽查的人数,从而可以得到m的值;(2)根据(1)中的结果和频数分布表,可以得到组别A的圆心角度数;(3)根据统计图中的数据,可以得到该市25000名九年级学生达到“视力良好”的人数,并提出合理化建议,建议答案不唯一,只要对保护眼睛好即可.【详解】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×25500=18°,即组别A的圆心角度数是18°;(3)25000×25+115500=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.【点睛】本题主要考查了统计图的应用,准确识图,从中找到有用的信息是解题的关键.21.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【答案】(1)见解析;(2)1.4【解析】【分析】(1)利用垂径定理以及圆周角定理解决问题即可;(2)证明△AEC∽△BCA,推出CE ACAC AB=,求出EC即可解决问题.【详解】(1)证明:∵AE=DE,OC是半径,∴AC CD=,∴∠CAD=∠CBA;(2)解:如图:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC AC AB=,∴6 610 CE=,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.【点睛】本题考查了垂径定理,圆周角定理,相似三角形的判定和性质,证明△AEC∽△BCA 是解题关键.22.2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?【答案】(1)从杭州出发前往衢州共用了23h.2h;(2)①货轮出发后8小时追上游轮;②21.6h 或22.4h时游轮与货轮何时相距12km【解析】【分析】(1)根据图中信息解答即可.(2)①求出B,C,D,E的坐标,利用待定系数法求解即可.(3)分两种情形分别构建方程求解即可.【详解】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22,4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km 时,20t ﹣4﹣(50t ﹣700)=12,解得t=21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t=22.4,∴21.6h 或22.4h 时游轮与货轮何时相距12km .【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,熟练运用待定系数法解决问题,属于中考常考题型.23.如图1,在平面直角坐标系中,△ABC 的顶点A ,C 分別是直线y =﹣83x +4与坐标轴的交点,点B 的坐标为(﹣2,0),点D 是边AC 上的一点,DE ⊥BC 于点E ,点F 在边AB 上,且D ,F 两点关于y 轴上的某点成中心对称,连结DF ,EF .设点D 的横坐标为m ,EF 2为l ,请探究:①线段EF 长度是否有最小值.②△BEF 能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题. (1)小明利用“几何画板”软件进行观察,测量,得到l 随m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l 与m 可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l 关于m 的函数表达式及自变量的取值范围,并求出线段EF 长度的最小值.(3)小明通过观察,推理,发现△BEF 能成为直角三角形,请你求出当△BEF 为直角三角形时m 的值.【答案】(1)连线见解析,二次函数;(2)22(3)m =0或m =43【解析】【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK(AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.【详解】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D点与F点关于y轴上的K点成中心对称,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG=DH,∵直线AC的解析式为y=﹣83x+4,∴x=0时,y=4,∴A(0,4),又∵B(﹣2,0),设直线AB的解析式为y=kx+b,∴204k bb⎧-+=⎨=⎩,解得24 kb,∴直线AB的解析式为y=2x+4,过点F作FR⊥x轴于点R,∵D点的橫坐标为m,∴F(﹣m,﹣2m+4),∴ER=2m,FR=﹣2m+4,∵EF2=FR2+ER2,∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,令﹣83x+4=0,得x=32,∴0≤m≤32.∴当m=1时,l的最小值为8,∴EF的最小值为.(3)①∠FBE为定角,不可能为直角.②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.③如图3,∠BFE=90°时,有BF2+EF2=BE2.由(2)得EF2=8m2﹣16m+16,又∵BR=﹣m+2,FR=﹣2m+4,∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,又∵BE2=(m+2)2,∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,化简得,3m2﹣10m+8=0,解得m1=43,m2=2(不合题意,舍去),∴m=43.综合以上可得,当△BEF为直角三角形时,m=0或m=43.【点睛】本题考查了二次函数的综合应用,考查了描点法画函数图象,待定系数法,全等三角形的判定与性质,坐标与图形的性质,二次函数的性质,勾股定理,中心对称的性质,直角三角形的性质等知识.准确分析给出的条件,结合一次函数的图象进行求解,熟练掌握方程思想及分类讨论思想是解题的关键..24.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE 于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当121 3S S 时,求ADAB的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的110时,请直接写出tan∠BAE的值.【答案】(1)等腰三角形,理由见解析;(2)见解析;(3)5;(4)5或105【解析】【分析】(1)如图1中,△AFG是等腰三角形,利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.首先证明OG=OL,再证明BF=2OL 即可解决问题.(3)如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,利用相似三角形的性质解决问题即可.(4)设OG=a,AG=k.分两种情形:①如图4中,连接EF,当点F在线段AB上时,点G在OA上.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.分别求解即可解决问题.【详解】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF ≌△AHG (ASA ),∴AF =AG ,∴△AFG 是等腰三角形.(2)证明:如图2中,过点O 作OL ∥AB 交DF 于L ,则∠AFG =∠OLG .∵AF =AG ,∴∠AFG =∠AGF ,∵∠AGF =∠OGL ,∴∠OGL =∠OLG ,∴OG =OL ,∵OL ∥AB ,∴△DLO ∽△DFB , ∴=OL DO BF BD, ∵四边形ABCD 是矩形,∴BD =2OD ,∴BF =2OL ,∴BF =2OG .(3)解:如图3中,过点D 作DK ⊥AC 于K ,则∠DKA =∠CDA =90°,∵∠DAK =∠CAD ,∴△ADK ∽△ACD , ∴=DK CD AD AC , ∵S 1=12•OG •DK ,S 2=12•BF •AD , 又∵BF =2OG ,121=3S S , ∴2==3DK CD AD AC,设CD =2x ,AC =3x ,则AD = 25x , ∴5==2AD AD AB CD . (4)解:设OG =a ,AG =k .①如图4中,连接EF ,当点F 在线段AB 上时,点G 在OA 上.∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k +2a ,AC =2(k +a ),∴AD 2=AC 2﹣CD 2=[2(k +a )]2﹣(k +2a )2=3k 2+4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF , ∴=BE AE AB AD , ∴=2BE k k a AD+, ∴()2=k k a BE AD+, 由题意:()211022k k a a AD +⨯⨯⨯=AD •(k +2a ), ∴AD 2=10ka ,即10ka =3k 2+4ka ,∴k =2a ,∴AD = 25a ,∴BE = ()2k k a AD += 45a ,AB =4a , ∴tan ∠BAE = 55BE AB =. ②如图5中,当点F 在AB 的延长线上时,点G 在线段OC 上,连接EF .∵AF =AG ,BF =2OG ,∴AF =AG =k ,BF =2a ,∴AB =k ﹣2a ,AC =2(k ﹣a ),∴AD 2=AC 2﹣CD 2=[2(k ﹣a )]2﹣(k ﹣2a )2=3k 2﹣4ka ,∵∠ABE =∠DAF =90°,∠BAE =∠ADF ,∴△ABE ∽△DAF , ∴BE AE AB AD=, ∴2BE k k a AD=-, ∴ ()2k k a BE AD-=, 由题意:()211022k k a a AD -⨯⨯⨯=AD •(k ﹣2a ), ∴AD 2=10ka ,即10ka =3k 2﹣4ka ,∴k = 143a ,∴AD =3a ,∴()245k k a BE a AD -==,AB = 83a ,∴tan ∠BAE =BE AB =,综上所述,tan ∠BAE 的值为. 【点睛】本题是一道综合题,主要涉及到等腰三角形的判定及其性质、全等三角形的判定和性质、三角形中位线定理、相似三角形的判定及其性质、勾股定理的应用等知识点,解题的关键是综合运用所学到的相关知识。
2020年浙江省衢州市中考数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)比0小1的数是()A.0B.-1C.1D.±12.(3分)下列几何体中,俯视图是圆的几何体是()A.B.C.D.3.(3分)计算(a2)3,正确结果是()A.a5B.a6C.a8D.a94.(3分)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.B.C.D.5.(3分)要使二次根式有意义,则x的值可以为()A.0B.1C.2D.46.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1-x)2=461B.180(1+x)2=461C.368(1-x)2=442D.368(1+x)2=4428.(3分)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是()A.B.C.D.9.(3分)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位10.(3分)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A.B.C.D.二、填空题(本题共有6小题,每小题4分,共24分)11.(4分)一元一次方程2x+1=3的解是x=.12.(4分)定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x-1)※x 的结果为.13.(4分)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是.14.(4分)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD 的边长为4dm,则图2中h的值为dm.15.(4分)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC 于点M,反比例函数y=(x>0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8,则k=.16.(4分)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆P A=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN 上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为cm.三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.请务必写出解答过程)17.(6分)计算:|-2|+()0-+2sin30°.18.(6分)先化简,再求值:÷,其中a=3.19.(6分)如图,在5×5的网格中,△ABC的三个顶点都在格点上.(1)在图1中画出一个以AB为边的▱ABDE,使顶点D,E在格点上.(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点).20.(8分)某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.被抽样的学生视力情况频数表组别视力段频数A 5.1≤x≤5.325B 4.8≤x≤5.0115C 4.4≤x≤4.7mD 4.0≤x≤4.352(1)求组别C(2)求组别A的圆心角度数.(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?21.(8分)如图,△A BC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.22.(10分)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?②游轮与货轮何时相距12km?23.(10分)如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线y=-x+4与坐标轴的交点,点B的坐标为(-2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.②△BEF能否成为直角三角形.小明尝试用“观察-猜想-验证-应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.24.(12分)【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF ⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.【试题答案】一、选择题(本题共有10小题,每小题3分,共30分)1.B【解答】解:0-1=-1,即比0小1的数是-1.2.A【解答】解:A、俯视图是圆,故此选项正确;B、俯视图是正方形,故此选项错误;C、俯视图是长方形,故此选项错误;D、俯视图是长方形,故此选项错误.3.B【解答】解:由幂的乘方法则可知,(a2)3=a2×3=a6.4.A【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是:=.5.D【解答】解:由题意得:x-3≥0,解得:x≥3.6.C【解答】解:,由①得x≤1;由②得x>-1;故不等式组的解集为-1<x≤1,在数轴上表示出来为:.7.B【解答】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461.8.D【解答】解:A、本选项作了角的平分线与等腰三角形,能得到一组内错角相等,从而可证两直线平行,故本选项不符合题意.B、本选项作了一个角等于已知角,根据同位角相等两直线平行,能判断是过点P且与直线l的平行直线,本选项不符合题意.C、由作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、作图只截取了两条线段相等,而无法保证两直线平行的位置关系,本选项符合题意.9.C【解答】解:A、平移后的解析式为y=(x+2)2-2,当x=2时,y=14,本选项不符合题意.B、平移后的解析式为y=(x+1)2+2,当x=2时,y=11,本选项不符合题意.C、平移后的解析式为y=(x-1)2-1,当x=2时,y=0,函数图象经过(2,0),本选项符合题意.D、平移后的解析式为y=(x-2)2+1,当x=2时,y=1,本选项不符合题意.10.A【解答】解:由折叠补全图形如图所示,∵四边形ABCD是矩形,∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,由第一次折叠得:∠DAE=∠A=90°,∠ADE=∠ADC=45°,∴∠AED=∠ADE=45°,∴AE=AD=1,在Rt△ADE中,根据勾股定理得,DE=AD=,由第二次折叠知,CD=DE=,∴AB=.二、填空题(本题共有6小题,每小题4分,共24分)11. 1【解答】解;将方程移项得,2x=2,系数化为1得,x=1.12.x2-1【解答】解:根据题意得:(x-1)※x=(x-1)(x+1)=x2-1.13. 5【解答】解:∵某班五个兴趣小组的人数分别为4,4,5,x,6,已知这组数据的平均数是5,∴x=5×5-4-4-5-6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.14.(4+)【解答】解:∵正方形ABCD的边长为4dm,∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是dm,∴图2中h的值为(4+)dm.15. 40【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=3,在Rt△FMN中,∠MFN=30°,∴FN=MN=3,∴AN=MB=8-3=5,设OA=x,则OB=x+3,∴F(x,8),M(x+3,5),又∵点F、M都在反比例函数的图象上,∴8x=(x+3)×5,解得,x=5,∴F(5,8),∴k=5×8=40.16.【解答】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP=OQ=50cm,PQ=PA-AQ=140-60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,∵OH⊥PQ,∴PH=HQ=40(cm),∵cos∠P==,∴=,∴PT=160(cm),∴点P到MN的距离为160cm,故答案为160.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.由题意AT=PT-PA=160-140=20(cm),OA=PA-OP=140-50=90(cm),OQ=50cm,AQ=60cm,∵QH⊥OA,∴QH2=AQ2-AH2=OQ2-OH2,∴602-x2=502-(90-x)2,解得x=,∴HT=AH+AT=(cm),∴点Q到MN的距离为cm.故答案为.三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题6分,第22~23小题每小题6分,第24小题12分,共66分.请务必写出解答过程)17.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.【解答】解:原式=2+1-3+2×=2+1-3+1=1.18.【分析】直接利用分式的乘除运算法则化简进而代入数据求出答案.【解答】解:原式=•(a-1)=,当a=3时,原式==.19.【分析】(1)根据平行四边形的定义画出图形即可(答案不唯一).(2)利用数形结合的思想解决问题即可.【解答】解:(1)如图平行四边形ABDE即为所求(点D的位置还有6种情形可取).(2)如图,直线l即为所求、20.【分析】(1)根据统计图中的数据,可以得到本次抽查的人数,从而可以得到m的值;(2)根据(1)中的结果和频数分布表,可以得到组别A的圆心角度数;(3)根据统计图中的数据,可以得到该市25000名九年级学生达到“视力良好”的人数,并提出合理化建议,建议答案不唯一,只要对保护眼睛好即可.【解答】解:(1)本次抽查的人数为:115÷23%=500,m=500×61.6%=308,即m的值是308;(2)组别A的圆心角度数是:360°×=18°,即组别A的圆心角度数是18°;(3)25000×=7000(人),答:该市25000名九年级学生达到“视力良好”的有7000人,建议是:同学们应少玩电子产品,注意用眼保护.21.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出=,求出EC即可解决问题.【解答】(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC-EC=5-3.6=1.4.22.【分析】(1)根据图中信息解答即可.(2)①求出B,C,D,E的坐标,利用待定系数法求解即可.②分两种情形分别构建方程求解即可.【解答】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23-(420÷20)=23-21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23-0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=-40,∴s=20t-40(16≤t≤23),同理由D(14,0),E(22.4,420)可得DE的解析式为s=50t-700(14≤t≤22.4),由题意:20t-40=50t-700,解得t=22,∵22-14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t-40-(50t-700)=12,解得t=21.6.相遇之后相距12km时,50t-700-(20t-40)=12,解得t=22.4,∴21.6h或22.4h时游轮与货轮何时相距12km.23.【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK (AAS),由全等三角形的性质得出FG=DH,可求出F(-m,-2m+4),根据勾股定理得出l =EF2=8m2-16m+16=8(m-1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.【解答】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D点与F点关于y轴上的K点成中心对称,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG=DH,∵直线AC的解析式为y=-x+4,∴x=0时,y=4,∴A(0,4),又∵B(-2,0),设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=2x+4,过点F作FR⊥x轴于点R,∵D点的橫坐标为m,∴F(-m,-2m+4),∴ER=2m,FR=-2m+4,∵EF2=FR2+ER2,∴l=EF2=8m2-16m+16=8(m-1)2+8,令-+4=0,得x=,∴0≤m≤.∴当m=1时,l的最小值为8,∴EF的最小值为2.(3)①∠FBE为定角,不可能为直角.②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.③如图3,∠BFE=90°时,有BF2+EF2=BE2.由(2)得EF2=8m2-16m+16,又∵BR=-m+2,FR=-2m+4,∴BF2=BR2+FR2=(-m+2)2+(-2m+4)2=5m2-20m+20,又∵BE2=(m+2)2,∴(5m2-20m+20)+(8m2-16m+16)=(m+2)2,化简得,3m2-10m+8=0,解得m1=,m2=2(不合题意,舍去),∴m=.综合以上可得,当△BEF为直角三角形时,m=0或m=.24.【分析】(1)如图1中,△AFG是等腰三角形.利用全等三角形的性质证明即可.(2)如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.首先证明OG=OL,再证明BF=2OL即可解决问题.(3)如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,利用相似三角形的性质解决问题即可.(4)设OG=a,AG=k.分两种情形:①如图4中,连接EF,当点F在线段AB上时,点G在OA上.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.分别求解即可解决问题.【解答】(1)解:如图1中,△AFG是等腰三角形.理由:∵AE平分∠BAC,∴∠1=∠2,∵DF⊥AE,∴∠AHF=∠AHG=90°,∵AH=AH,∴△AHF≌△AHG(ASA),∴AF=AG,∴△AFG是等腰三角形.(2)证明:如图2中,过点O作OL∥AB交DF于L,则∠AFG=∠OLG.∵AF=AG,∴∠AFG=∠AGF,∵∠AGF=∠OGL,∴∠OGL=∠OLG,∴OG=OL,∵OL∥AB,∴△DLO∽△DFB,∴=,∵四边形ABCD是矩形,∴BD=2OD,∴BF=2OL,∴BF=2OG.(3)解:如图3中,过点D作DK⊥AC于K,则∠DKA=∠CDA=90°,∵∠DAK=∠CAD,∴△ADK∽△ACD,∴=,∵S1=•OG•DK,S2=•BF•AD,又∵BF=2OG,=,∴==,设CD=2x,AC=3x,则AD=x,∴==.(4)解:设OG=a,AG=k.①如图4中,连接EF,当点F在线段AB上时,点G在OA上.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k+2a,AC=2(k+a),∴AD2=AC2-CD2=[2(k+a)]2-(k+2a)2=3k2+4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k+2a),∴AD2=10ka,即10ka=3k2+4ka,∴k=2a,∴AD=2a,∴BE==a,AB=4a,∴tan∠BAE==.②如图5中,当点F在AB的延长线上时,点G在线段OC上,连接EF.∵AF=AG,BF=2OG,∴AF=AG=k,BF=2a,∴AB=k-2a,AC=2(k-a),∴AD2=AC2-CD2=[2(k-a)]2-(k-2a)2=3k2-4ka,∵∠ABE=∠DAF=90°,∠BAE=∠ADF,∴△ABE∽△DAF,∴=,即=,∴=,∴BE=,由题意:10××2a×=AD•(k-2a),∴AD2=10ka,即10ka=3k2-4ka,∴k=a,∴AD=a,∴BE==a,AB=a,∴tan∠BAE==,综上所述,tan∠BAE的值为或.。
浙江省衢州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣2的倒数是()A .﹣B .C.﹣2 D.22.如图是由四个相同的小立方体搭成的几何体,它的主视图是()A .B .C .D .3.下列计算正确的是()A.2a+b=2ab B.(﹣a)2=a2 C.a6÷a2=a3D.a3•a2=a64.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()3435363738尺码(码)人数251021A.35码,35码B.35码,36码C.36码,35码D.36码,36码5.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°6.二元一次方程组的解是()A .B .C .D .7.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④8.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B.2C.4 D.49.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.10.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.πB.10π C.24+4πD.24+5π二、填空题(本题共有6小题,每小题4分,共24分)11.二次根式中字母a的取值范围是.12.化简:=.13.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是.14.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是.15.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ 的最小值是.16.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方形作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚3次后点B的对应点的坐标是,翻滚次后AB中点M经过的路径长为.三、解答题(本题共有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.计算: +(π﹣1)0×|﹣2|﹣tan60°.18.解下列一元一次不等式组:.19.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.20.根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求第一产业生产总值(精确到1亿元)(2)比的国民生产总值增加了百分之几?(精确到1%)(3)若要使的国民生产总值达到1573亿元,求至我市国民生产总值的平均增长率(精确到1%)21.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.22.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A、B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=﹣x 2+1的勾股点的坐标.(2)如图2,已知抛物线C :y=ax 2+bx (a ≠0)与x 轴交于A ,B 两点,点P (1,)是抛物线C 的勾股点,求抛物线C 的函数表达式.(3)在(2)的条件下,点Q 在抛物线C 上,求满足条件S △ABQ =S △ABP 的Q 点(异于点P )的坐标. 23.问题背景如图1,在正方形ABCD 的内部,作∠DAE=∠ABF=∠BCG=∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形. 类比探究如图2,在正△ABC 的内部,作∠BAD=∠CBE=∠ACF ,AD ,BE ,CF 两两相交于D ,E ,F 三点(D ,E ,F 三点不重合)(1)△ABD ,△BCE ,△CAF 是否全等?如果是,请选择其中一对进行证明. (2)△DEF 是否为正三角形?请说明理由.(3)进一步探究发现,△ABD 的三边存在一定的等量关系,设BD=a ,AD=b ,AB=c ,请探索a ,b ,c 满足的等量关系.24.在直角坐标系中,过原点O 及点A (8,0),C (0,6)作矩形OABC 、连结OB ,点D 为OB 的中点,点E 是线段AB 上的动点,连结DE ,作DF ⊥DE ,交OA 于点F ,连结EF .已知点E 从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】17:倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】主视图是从正面看所得到的图形,从左往右分2列,正方形的个数分别是:2,1;依此即可求解.【解答】解:如图是由四个相同的小立方体搭成的几何体,它的主视图是.故选:D.3.下列计算正确的是()A.2a+b=2ab B.(﹣a)2=a2 C.a6÷a2=a3D.a3•a2=a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)2a与b不是同类项,故不能合并,故A不正确;(C)原式=a4,故C不正确;(D)原式=a5,故D不正确;故选(B)4.据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()3435363738尺码(码)人数251021A.35码,35码B.35码,36码C.36码,35码D.36码,36码【考点】W5:众数;W4:中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.故选D.5.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°【考点】K8:三角形的外角性质;JA:平行线的性质.【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠E=70°﹣40°=30°.故选:A.6.二元一次方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【分析】用加减消元法解方程组即可.【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选B.7.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.8.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B.2C.4 D.4【考点】G5:反比例函数系数k的几何意义;KG:线段垂直平分线的性质.【分析】设A(a,),可求出B(2a,),由于对角线垂直,计算对角线长积的一半即可.【解答】解:设A(a,),可求出B(2a,),∵AC⊥BD,=AC•BD=×2a×=4,∴S四边形ABCD故选C.9.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF 中利用勾股定理得到关于x的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,则FD=6﹣x=.故选:B.10.运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD 、EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )A .πB .10πC .24+4πD .24+5π【考点】MO :扇形面积的计算;M5:圆周角定理.【分析】作直径CG ,连接OD 、OE 、OF 、DG ,则根据圆周角定理求得DG 的长,证明DG=EF ,则S 扇形ODG =S 扇形OEF ,然后根据三角形的面积公式证明S △OCD =S△ACD,S △OEF =S △AEF ,则S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆,即可求解.【解答】解:作直径CG ,连接OD 、OE 、OF 、DG . ∵CG 是圆的直径, ∴∠CDG=90°,则DG===8,又∵EF=8, ∴DG=EF , ∴=,∴S 扇形ODG =S 扇形OEF , ∵AB ∥CD ∥EF ,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=π×52=π.故选A .二、填空题(本题共有6小题,每小题4分,共24分)11.二次根式中字母a的取值范围是a≥2.【考点】72:二次根式有意义的条件.【分析】由二次根式中的被开方数是非负数,可得出a﹣2≥0,解之即可得出结论.【解答】解:根据题意得:a﹣2≥0,解得:a≥2.故答案为:a≥2.12.化简:=1.【考点】6B:分式的加减法.【分析】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.【解答】解:原式==1.13.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是.【考点】X4:概率公式.【分析】由一个不透明的箱子里共有1个白球,2个红球,共3个球,它们除颜色外均相同,直接利用概率公式求解即可求得答案.【解答】解:∵一个不透明的箱子里有1个白球,2个红球,共有3个球,∴从箱子中随机摸出一个球是红球的概率是;故答案为:.14.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+6.【考点】4G:平方差公式的几何背景.【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.【解答】解:拼成的长方形的面积=(a+3)2﹣32,=(a+3+3)(a+3﹣3),=a(a+6),∵拼成的长方形一边长为a,∴另一边长是a+6.故答案为:a+6.15.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ 的最小值是2.【考点】MC:切线的性质;F5:一次函数的性质.【分析】连接AP,PQ,当AP最小时,PQ最小,当AP⊥直线y=﹣x+3时,PQ最小,根据两点间的距离公式得到AP=3,根据勾股定理即可得到结论.【解答】解:连接AP,PQ,当AP最小时,PQ最小,∴当AP⊥直线y=﹣x+3时,PQ最小,∵A的坐标为(﹣1,0),y=﹣x+3可化为3x+4y﹣12=0,∴AP==3,∴PQ==2.16.如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方形作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚3次后点B的对应点的坐标是(5,),翻滚次后AB中点M经过的路径长为(+896)π.【考点】O4:轨迹;D2:规律型:点的坐标.【分析】如图作B3E⊥x轴于E,易知OE=5,B3E=,观察图象可知3三次一个循环,一个循环点M的运动路径为++=()π,由÷3=672…1,可知翻滚次后AB中点M经过的路径长为672•()π+π=(+896)π.【解答】解:如图作B3E⊥x轴于E,易知OE=5,B3E=,∴B3(5,),观察图象可知3三次一个循环,一个循环点M的运动路径为++=()π,∵÷3=672…1,∴翻滚次后AB中点M经过的路径长为672•()π+π=(+896)π.故答案为(+896)π.三、解答题(本题共有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分,请务必写出解答过程)17.计算: +(π﹣1)0×|﹣2|﹣tan60°.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】按照实数的运算法则依次计算,注意:tan60°=,(π﹣1)0=1.【解答】解:原式=2+1×2﹣=2+.18.解下列一元一次不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x≤2,得:x≤4,解不等式3x+2>x,得:x>﹣1,则不等式组的解集为﹣1<x≤4.19.如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交半圆O于点F.已知CE=12,BE=9.(1)求证:△COD∽△CBE.(2)求半圆O的半径r的长.【考点】S9:相似三角形的判定与性质;MC:切线的性质.【分析】(1)由切线的性质和垂直的定义得出∠E=90°=∠CDO,再由∠C=∠C,得出△COD∽△CBE.(2)由勾股定理求出BC==15,由相似三角形的性质得出比例式,即可得出答案.【解答】(1)证明:∵CD切半圆O于点D,∴CD⊥OD,∴∠CDO=90°,∵BE⊥CD,∴∠E=90°=∠CDO,又∵∠C=∠C,∴△COD∽△CBE.(2)解:在Rt△BEC中,CE=12,BE=9,∴BC==15,∵△COD∽△CBE.∴,即,解得:r=.20.根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求第一产业生产总值(精确到1亿元)(2)比的国民生产总值增加了百分之几?(精确到1%)(3)若要使的国民生产总值达到1573亿元,求至我市国民生产总值的平均增长率(精确到1%)【考点】AD:一元二次方程的应用;VB:扇形统计图;VC:条形统计图.【分析】(1)第一产业生产总值=国民生产总值×第一产业国民生产总值所占百分率列式计算即可求解;(2)先求出比的国民生产总值增加了多少,再除以的国民生产总值即可求解;(3)设至我市国民生产总值的平均增长率为x,那么我市国民生产总值为1300(1+x)亿元,我市国民生产总值为1300(1+x)(1+x)亿元,然后根据的国民生产总值要达到1573亿元即可列出方程,解方程就可以求出年平均增长率.【解答】解:(1)1300×7.1%≈92(亿元).答:第一产业生产总值大约是92亿元;(2)÷1204×100%=96÷1204×100%≈8%.答:比的国民生产总值大约增加了8%;(3)设至我市国民生产总值的年平均增长率为x,依题意得1300(1+x)2=1573,∴1+x=±1.21,∴x=10%或x=﹣2.1(不符合题意,故舍去).答:至我市国民生产总值的年平均增长率约为10%.21.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k 2,即k 2=30, ∴y 2=30x (x ≥0);(2)当y 1=y 2时,15x +80=30x , 解得x=;当y 1>y 2时,15x +80>30x , 解得x <;当y 1<y 2时,15x +80>30x , 解得x >;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.22.定义:如图1,抛物线y=ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,点P 在该抛物线上(P 点与A 、B 两点不重合),如果△ABP 的三边满足AP 2+BP 2=AB 2,则称点P 为抛物线y=ax 2+bx +c (a ≠0)的勾股点.(1)直接写出抛物线y=﹣x 2+1的勾股点的坐标.(2)如图2,已知抛物线C :y=ax 2+bx (a ≠0)与x 轴交于A ,B 两点,点P (1,)是抛物线C 的勾股点,求抛物线C 的函数表达式.(3)在(2)的条件下,点Q 在抛物线C 上,求满足条件S △ABQ =S △ABP 的Q 点(异于点P )的坐标.【考点】HA :抛物线与x 轴的交点;H8:待定系数法求二次函数解析式. 【分析】(1)根据抛物线勾股点的定义即可得;(2)作PG⊥x轴,由点P坐标求得AG=1、PG=、PA=2,由tan∠PAB==知∠PAG=60°,从而求得AB=4,即B(4,0),待定系数法求解可得;=S△ABP且两三角形同底,可知点Q到x轴的距离为,据此求解(3)由S△ABQ可得.【解答】解:(1)抛物线y=﹣x2+1的勾股点的坐标为(0,1);(2)抛物线y=ax2+bx过原点,即点A(0,0),如图,作PG⊥x轴于点G,∵点P的坐标为(1,),∴AG=1、PG=,PA===2,∵tan∠PAB==,∴∠PAG=60°,在Rt△PAB中,AB===4,∴点B坐标为(4,0),设y=ax(x﹣4),将点P(1,)代入得:a=﹣,∴y=﹣x(x﹣4)=﹣x2+x;=S△ABP知点Q的纵坐标为,(3)①当点Q在x轴上方时,由S△ABQ则有﹣x2+x=,解得:x1=3,x2=1(不符合题意,舍去),∴点Q的坐标为(3,);=S△ABP知点Q的纵坐标为﹣,②当点Q在x轴下方时,由S△ABQ则有﹣x2+x=﹣,解得:x1=2+,x2=2﹣,∴点Q的坐标为(2+,﹣)或(2﹣,﹣);综上,满足条件的点Q有3个:(3,)或(2+,﹣)或(2﹣,﹣).23.问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH 是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.【考点】LO:四边形综合题.【分析】(1)由正三角形的性质得出∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;(2)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,由勾股定理即可得出结论.【解答】解:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠2,∠BCE=∠ACB﹣∠3,∠2=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图1,当t=3时,求DF的长.(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.(3)连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【考点】LO:四边形综合题.【分析】(1)当t=3时,点E为AB的中点,由三角形中位线定理得出DE∥OA,DE=OA=4,再由矩形的性质证出DE⊥AB,得出∠OAB=∠DEA=90°,证出四边形DFAE是矩形,得出DF=AE=3即可;(2)作DM⊥OA于M,DN⊥AB于N,证明四边形DMAN是矩形,得出∠MDN=90°,DM∥AB,DN∥OA,由平行线得出比例式,=,由三角形中位线定理得出DM=AB=3,DN=OA=4,证明△DMF∽△DNE,得出=,再由三角函数定义即可得出答案;(3)作作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),求出AF=4+MF=﹣t+,得出G(,t),求出直线AD的解析式为y=﹣x+6,把G(,t)代入即可求出t的值;②当点E越过中点之后,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),求出AF=4﹣MF=﹣t+,得出G(,t),代入直线AD的解析式y=﹣x+6求出t的值即可.【解答】解:(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴,=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=AB=3,DN=OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴=,∵∠EDF=90°,∴tan∠DEF==;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=(3﹣t),∴AF=4+MF=﹣t+,∵点G为EF的三等分点,∴G(,t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:,解得:,∴直线AD的解析式为y=﹣x+6,把G(,t)代入得:t=;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=(t﹣3),∴AF=4﹣MF=﹣t+,∵点G为EF的三等分点,∴G(,t),代入直线AD的解析式y=﹣x+6得:t=;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或6月16日。
浙江省衢州市中考数学测评考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,若正方形A 1B 1D 1C 1内接于正方形ABCD 的内切圆,则AB B A 11的值为( ) A .21 B .22 C .41 D .42 2.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A .21B .31C .41D .51 3.如图,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走.按照这种方式,小华第四次走到场地边缘E 处时,∠AOE =56º,则α的度数是( )A .52ºB .60ºC .72ºD .76º 4.如图,下列说法中。
正确的是( )A .∠1与∠4是同位角B .∠l 与∠3是同位角C .∠2与∠4是同位角D .∠2与∠3是同位角5.将△ABC 的三个顶点的横坐标都乘-l ,纵坐标保持不变,则所得图形( )A .与原图形关于x 轴对称B .与原图形关于k 轴对称C .与原图形关于原点对称D .向x 轴的负方向平移了一个单位 6.下列图形中,不是轴对称图形的是( ) A .线段B .角C .直角三角形D .等腰三角形 7.如图,已知 AB ∥CD ,∠A = 70°,则∠1 的度数为( )A . 70°B . 100°C .110°D . 130°D C B A NM8.作△ABC 的高AD ,中线AE ,角平分线AF ,三者中有可能画在△ABC 外的是( )A .中线AEB .高ADC .角平分线AFD .都有可能9.某课外小组分组开展活动,若每组 7 人,则余下 3 人;若每组8人,则少5人,设课外小组的人数为 x 人和分成的组数为y 组,根据题意可列方程组( )A . 7385y x y x =+⎧⎨+=⎩B . 385y x x y =+⎧⎨=+⎩C . 7385y x y x =-⎧⎨=+⎩D . 7385y x y x =+⎧⎨=+⎩ 10.一道含有 A ,B ,C ,D 四个选项,某同学不会做,随手写了 A ,B ,C ,D 四个签,抽签决定选项,他恰好选对的概率是( )A .12 B .14 C .1 D .1311.如图,点A 、B 、C 、D 为直线MN 上的四点,图中分别以这四点为端点的线段有( )A .3条B .4条C .5条D .6条12.如图,∠AOB=∠COD=90°,则∠AOC=∠B0D ,这是根据 ( )A .同角的余角相等B .直角都相等C .同角的补角相等D .互为余角的两个角相等13.某市出租车的收费标准是:起步价7元(即行驶距离不超过3 km 都需付7元车费),超过3 km 以后,每增加l km ,加收2.4元(不足l km 按1 km 计).某人乘这种出租车从甲地到乙地共付车费19元,设此人从甲地到乙地的路程是x (km ),那么x 的最大值是 ( )A .11B .8C .7D .5 14.如果一个多项式的次数是5,那么这个多项式的各项次数( ) A . 都小于 5B .都大于 5C .都不小于 5D .都不大于5 15.在 1.414、2-2π32、23113这些实数中,无理数有( ) A . 4个 B .3个 C .2个 D .1个二、填空题16.已知⊙O 的半径3r =,圆外一点P 到圆心距离 PO=2,则该圆的两条切线 PA 、PB 所夹的角的度数为 . 17.小明站在一个路口观察过往车辆,统计了半小时内各种车辆通过的数量,并制成了统计图,请你写出从图中获得的两条信息:(1) ;(2) .18.按图示程序计算,若输入的 x 值为32则输出的结果为 .19.( )2= 16, ( )3 = 64.20.已知,|x|=5,y=3,则=-y x .21.甲数的绝对值是乙数绝对值的 2倍,在数轴上,甲、乙两数都在原点的同侧,并且两点间的距离等于3,那么甲数与乙数的和是 .三、解答题22.如图,∠PAQ 是直角,⊙O 与 AP 相切于点 T ,与 AQ 交于B 、C 两点.(1)BT 是否平分∠OBA ?说明你的理由.(2)若已知 AT=4,弦 BC=6,试求⊙O 的半径R.23.如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面(BD )刚好接触,20AB CD ==cm ,200BD =cm ,且AB CD ,与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?24.如图,求∠A+∠B+∠C+∠D+∠E+∠F 的度数.25. 计算:22(12)(21)---26.在直角坐标中,画出以A(0,0),B(3,4),C(3,-4)为顶点的△ABC ,并判断△ABC 的形状.27. 在Rt ABC ∆中,∠=C 90,AC =3,BC =4,若以C 为圆心,R 为半径的圆与斜边AB 只有一个公共点,求R 的取值范围. A C B D28.解下列方程:(1)x x 321=- (2)24322x x x -+=++29.如图,某农场修建一座小型水库,需要一种空心混凝土管道,它的规格是:内直径d=5 cm ,外直径 D=75 cm ,长L=300cm .利用分解因式计算,浇制一节这样的管道需要多少立方米的混凝土? (π取 3. 14,结果保留两个有效数字)30.如图,在小正方形组成的“L”形图中,请你用三种方法分别在图中添画一个小正方形使它成为轴对称图形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.D5.B6.C7.C8.B9.C10.B11.D12.A13.B14.D15.A二、填空题16.120°17.例如:(1)经过的小汽车最少 (2)经过的自行车最多18.119.24±,420.2或-821.9±三、解答题22.(1) BT 平分∠OBA.理由如下:连结 OT,则 OT⊥AP.∵∠PAQ=90°,∴∠PAQ+∠OTA=180°∴OT∥AQ,∴∠OTB=∠ABT,又∠OTB=∠OBT,∴∠ABT=∠0BT,∴BT 平分∠0BA (2)作 OE⊥BC于E 点,则 BE=3,四边形 AEOT 是矩形,∴ OE=AT=4,∴5R==23.解:过圆心O 作OE ⊥AC,垂足为D ,连结AO. 设圆O 的半径为R,在Rt △AOE 中,AE=2AC =2BD =100, OE=R —AB=R —20.∵AE 2+OE 2=OA 2 ,∴1002+( R —20)2=R 2解得R=260cm .这个圆弧形门的最高点离地面的高度为2R=520cm 答:这个圆弧形门的最高点离地面的高度为520cm . 24.360°25.26.作图略,△ABC 为等腰三角形27.R =24.或34<≤R .28.(1)3=x ;(2)无解.29.0.85m 330.图略。
2022年浙江省衢州市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知外婆家在小明家的正东方,学校在外婆家的北偏西40°,外婆家到学校与小明家到学校的距离相等,则学校在小明家的()A.南偏东50°B.南偏东40°C.北偏东50°D.北偏东40°∠的三角函数值与梯子的倾斜程2.如图,梯子(长度不变)跟地面所成的锐角为A,关于A度之间,叙述正确的是()A.sin A的值越大,梯子越陡B.cos A的值越大,梯子越陡∠的函数值无关C.tan A的值越小,梯子越陡D.陡缓程度与A3.如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为()A.6.4米B. 8米C.9.6米D. 11.2米4.如图,△ABC 中,AC=8,AB = 12,BC = 10,E 是AC中点,∠AED =∠B,则△ADE 与△ACB 的周长之比为()A.1:2 B.1:3 C.2:3 D.2:5B5.下列说法正确的是()A.汽车沿一条公路从A 地驶往 B地,所需的时间 t与平均速度v 成正比例B.圆的面积S与圆的半径R成反比例C.当矩形的周长为定值时,矩形的长与宽成反比例D.当电器两端的电压V为 220 V 时,电器的功率 P(W)与电阻 R( )成反比例(功电压的平方)功率=电阻6.已知Rt△ABC斜边上的中线是2,则这个三角形两直角边的平方和是()A.2 B.4 C.8 D.167.如图,在△ABC中,∠1是△ABC的一个外角,D是AC上一点,连结BD,下列判断角的大小关系错误的是()A.∠l>∠2 B.∠l>∠5 C.∠l>∠3 D.∠5>∠48.如果6(6)x x x x ⋅-=-,那么x 满足( ) A .0x ≥ B .6x ≥ C .06x ≤≤ D . x 为一切实数9.某种奶制品的包装盒上注明“蛋白质≥2.9%”,它的含义是( )A .蛋白质的含量是2.9%B .蛋白质的含量高于2. 9%C .蛋白质的含量不低于 2. 9%D .蛋白质的含量不高于 2. 9% 10. 用加减法解方程组479(1)2715(2)x y x y +=⎧⎨-+=-⎩时,①一②得( ) A .66x =- B .224x =C .26x =-D .624x = 11.下列算式正确的是( ) A .-30=1 B .(-3)-1=31C .3-1= -31D .(π-2)0=112.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过l00元但不超过300元一律九折;③一次性购物超过300元一律八折,王波两次购物分别付款80元、252元.若王波一次性购买与上两次相同的商品,则应付款 ( )A .288元B .288元或316元C .332元D .332元或363元二、填空题13.布袋里有 2个白球和 1 个红球,从布袋里取两次球,每次取 1 个,取出后放回,则两次取出的都是白球的概率是 .14.如图,点 A .B 、C 在⊙O 上,已知 ∠AOC=140°,则∠ABC= .度.15.如图,在等腰梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点0,有下列四个结论:①AC=BD ,②梯形ABCD 是轴对称图形,③∠ADB=∠DAC ,④△AOD ≌△AB0,其中正确的是 .16.已知数据2,3,4,5,6,x 的平均数是4,则x 的值是 .17.如图,D 、E 为AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=500,则∠BDF= . 18.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 .19.等腰三角形的周长是l0,腰比底边长2,则腰长为 .20.有三个连续自然数,中间一个是x ,则它们的积是 .21.在一次抽奖活动中,印发奖券 1000张,其中一等奖(记为a )20张,二等奖(记为b )80张,三等奖(记c )200张,其他没有奖(记为d ),如果任意摸一张,把摸到奖券的可能性事件按从大到小的顺序排列起来是 .22.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.23.计算:2133m m m--=-- . 三、解答题24.已知,如图,□ABCD 中,AE:EB=1:2.(1)求△AEF 与△CDF 的周长之比;(2)如果6AEF S ∆=cm 2,求CDF S ∆.25.如图,正方形 ABCD 中,E 是DC 中点,FC=14BC ,求证:AE ⊥EF.26.现将进货为 40元的商品按50元售出时,就能卖出 500件. 已知这批商品在50元的基础上每件涨价 1 元,其销售量将减少10件. 为了赚取 8000元利润,售价应定为多少?这时应进货多少件?27.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上.28.如图,在△ABC 中,AB=AC,∠A =30°,BD是△ABC 的高,求∠CBD 的度数.29.已知 Rt△ABC中,∠B=90°.(1)根据要求作图(尺规作图,仅留作图痕迹,不写画法):①作∠BAC的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连接ED;(2)在(1)的基础上写出一对全等三角形:△≌△,并说明理由.30.有一块直径为2a+b的圆形木板,挖去直径分别为2a和b的两个圆,问剩下的木板面积是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.C4.B5.D6.D7.D8.B9.C10.D11.D12.B二、填空题13.4914. 11015.①②③16.417.80018.3y x = 19.420.3x x -21.d , c , b , a22.323.-1三、解答题24.(1)∵□ABCD,∠DCA=∠CAB,∠CDE=∠DEA.∴△AEF ∽△CDF,∵AE:EB=1:2,∴AEF :1:3CDF C C ∆∆=(2)∴9S 54CCDF AEF S ∆∆==cm 2.25.∵CE=DE ,FC=14BC ,∴12FC EC DE AD ==, 又∵∠D=∠C ,∴△ADE ∽△ECF.∴∠FEC=∠DAE.∴∠AED+∠FEC =∠AED+∠EAD= 90°,∴AE ⊥EF.26.设售价定为x 元,由题意得(40)[50010(50)]8000x x -⋅--=,160x =,280x =, ∴当售价定为 60元/件时,应进货400件;当售价定为 80元/件时,应进货200件 27.(1)21y x =+ (2)点P(-1,1)不在这个一次函数的图象上28.15°29.略30.πab .。
浙江省衢州市中考数学真题及答案E一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是( )A.3B.-3C.1 3D.-1 3解析:-3的相反数是3.答案:A2.一个几何体零件如图所示,则它的俯视图是( )A.B.C.D.解析:这个几何体零件的俯视图是一个正中间有一个小正方形的矩形,所以它的俯视图是选项C中的图形.答案:C3. 下列运算正确的是( )A.a3+a3=2a6B.(x2)3=x5C.2a6÷a3=2a2D.x3·x2=x5解析:A、应为a3+a3=2a3,故本选项错误;B、应为(x2)3=x6,故本选项错误;C、应为2a6÷a3=2a3,故本选项错误;D、x3·x2=x5正确.答案:D4.如图,在平行四边形ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于( )A.8cmB.6cmC.4cmD.2cm解析:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC-BE=4cm.答案:C5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是( )A.7B.6C.5D.4解析:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5, ∴x=5×7-4-4-5-6-6-7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.答案:C.6.下列四个函数图象中,当x>0时,y随x的增大而减小的是( )A.B.C.D.解析:当x>0时,y随x的增大而减小的是.答案:B7.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是( )A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径解析:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a 为半径花弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆心角是直角.答案:B8.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于( )3B.6米3D.3米解析:∵四边形ABCD为菱形,∴AC ⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD 为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt △AOB 中,根据勾股定理得:OA=2263-=33(米),则AC=2OA=63米.答案:A 9.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm 长的绑绳EF,tan α=52,则“人字梯”的顶端离地面的高度AD 是( )A.144cmB.180cmC.240cmD.360cm解析:如图:根据题意可知:△AFO ∽△ABD,OF=12EF=30cm,∴OF AF DC AC =,∴30 2.56DC =,∴CD=72cm, ∵tan α=52,∴AD DC =52,∴AD=52×72=180cm. 答案:B10.如图,已知△ABC,AB=BC,以AB 为直径的圆交AC 于点D,过点D 的⊙O 的切线交BC 于点E.若CD=5,CE=4,则⊙O 的半径是( )A.3B.4C.256D.258 解析:如图1,连接OD 、BD,∵DE ⊥BC,CD=5,CE=4,∴2254 ∵AB 是⊙O 的直径,∴∠ADB=90°,∵S △BCD =BD ·CD ÷2=BC ·DE ÷2,∴5BD=3BC,∴BD=35BC, ∵BD 2+CD 2=BC 2,∴(35BC)2+52=BC 2,解得BC=254, ∵AB=BC,∴AB=254,∴⊙O 的半径是;254÷2=258. 答案:D.二、填空题(本题有6小题,每小题4分,共24分)11.从小明、小聪、小惠和小颖四人中随机选取1人参加学校组织的敬老活动,则小明被选中的概率是 .解析:∵从小明、小聪、小惠和小颖四人中随机选取1人参加学校组织的敬老活动,∴小明被选中的概率是:14.答案:1 412.如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于米.解析:∵EF⊥AC,BC⊥AC,∴EF∥BC,∵E是AB的中点,∴F为AC的中点,∴BC=2EF,∵EF=0.6米,∴BC=1.2米,答案:1.213.写出一个解集为x>1的一元一次不等式 .解析:移项,得x-1>0(答案不唯一).答案:x-1>0.14.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 m.解析:如图:∵AB=1.2m,OE ⊥AB,OA=1m,∴AE=0.8m,∵水管水面上升了0.2m,∴AF=0.8-0.2=0.6m,∴CF=2222106C OF -=-.=0.8m,∴CD=1.6m.答案:1.615.已知,正六边形ABCDEF 在直角坐标系内的位置如图所示,A(-2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B 的坐标是 .解析:∵正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°, ∴每6次翻转为一个循环组循环,∵2015÷6=335余5, ∴经过2015次翻转为第336循环组的第5次翻转,点B 在开始时点C 的位置,∵A(-2,0),∴AB=2,∴翻转前进的距离=2×2015=4030,如图,过点B 作BG ⊥x 于G,则∠BAG=60°,所以,AG=2×12=1,BG=233所以,OG=4030+1=4031,所以,点B 的坐标为3答案:(4031,3)16.如图,已知直线y=-34x+3分别交x轴、y轴于点A、B,P是抛物线y=-12x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=-34x+3于点Q,则当PQ=BQ时,a的值是 .解析:设点P的坐标为(a,-12a2+2a+5),则点Q为(a,-34a+3),点B为(0,3),当点P在点Q上方时2234a a⎛⎫⎪⎝⎭+54a,PQ=-12a2+2a+5-(-34a+3)=-12a2+114a+2,∵PQ=BQ,∴54a=-12a2+114a+2,整理得:a2-3a-4=0,解得:a=-1或a=4,当点P在点Q下方时2234a a⎛⎫⎪⎝⎭+54a,PQ=-34a+3-(-12a2+2a+5)=12a2-114a-2,∵PQ=BQ,∴54a=12a2-114a-2,整理得:a2-8a-4=0,解得:5或5.综上所述,a的值为:55答案:55三、解答题(本题有8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分。
浙江省衢州市2013年初中毕业生学业考试数学试题考生须知:1.全卷共有三大题,24小题,共6页.满分为120分,考试时间为120分钟.2.答题前,请用黑色字迹的钢笔或签字笔将姓名、准考证号分别填写在“答题纸”的相应位置上,不要漏写.3.全卷分为卷I (选择题)和卷II (非选择题)两部分,全部在“答题纸”上作答,做在试题卷上无效.卷I 的答案必须用2B 铅笔填涂;卷II 的答案必须用黑色字迹的钢笔或签字笔写在“答题纸”相应位置上.本次考试不允许使用计算器.画图先用2B 铅笔,确定无误后用钢笔或签字笔描黑.4.参考公式:二次函数2y ax bx c =++(0a ≠)图象的顶点坐标是(2b a -,ab ac 442-);一组数据123n x x x x L ,,,,的方差:222221231=[()()()()]n S x x x x x x x x n-+-+-++-L (其中x 是这组数据的平均数).卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本大题共有10小题,每小题3分,共30分.请选出各题中一个符合题意的选项,不选、多选、错选均不给分.) 1.比1小2的数是( ▲ ) A .3 B .1 C . 1- D .2-2. 下列计算正确的是( ▲ ) A .325a b ab += B .44a a a ⋅=C .623a a a ÷=D .3262()a b a b -=3. 衢州新闻网2月16日讯,2013年春节“黄金周”全市接待游客总数为833100人次.将数833100用科学记数法表示应为( ▲ )A .60.833110⨯B .583.3110⨯C . 58.33110⨯D . 48.33110⨯4. 下面简单几何体的左视图是( ▲ )30°第6题第8题A B5. 若函数xm y 2+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A . 2m <- B .0m <C .2m >-D .0m >6. 如图,将一个有45°角的三角板的直角顶点放在一张宽为3cm 的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板最大边的长为( ▲ )A .3cmB . 6cmC . 32cmD . 62cm 7.组员甲 乙 丙 丁 戊 方差平均成绩 得分8179■8082■80那么被遮盖的两个数据依次是( ▲ ) A .80,2B .802C .78,2D . 7828. 如图,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30︒,再往大树的方向前进4 m ,测得仰角为60︒,已知小敏同学身高(AB )为1.6m ,则这棵树的高度为( ▲ )(结果精确到0.1m ,3≈1.73).A . 3.5mB . 3.6 mC . 4.3mD . 5.1m9. 抛物线2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为214y x =--(),则b 、c 的值为( ▲ )A .26b c ==-,B .20b c ==,C .6,8b c =-=D .62b c =-=,10.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A D C B A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是( ▲ )A .B .C .D .正面 DAxy48816124Oxy41216884O A.B.xy41216884O第10题xy41216884OA DCA 1 C 1B 1 D 1 A 2 B 2C 2D 2 A 3 C 3 B 3 D 3 … 第16题 O CA B 第14题 6cm 10cm3cm 12cm 第13题卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹的钢笔或签字笔将答案写在“答题纸”相应位置上.二、填空题(本大题共有6小题,每小题4分,共24分.凡需填空的位置均有“ ▲ ”标记.) 11.不等式组2031x x x-≥⎧⎨+>⎩的解集是 ▲ .12. 化简:224442x x xx x ++-=-- ▲ .13. 小芳同学有两根长度为4cm 、10cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是 ▲ . 14. 如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧(AB ⌒ )对应的圆心角(∠AOB )为120°,OC 的长为2cm,则三角板和量角器重叠部分的面积为 ▲ .15. 某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种..x 棵橘子树,果园橘子总个数为y 个,则果园里增种 ▲ 棵橘子树,橘子总个数最多.16.如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连结菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连结四边形 A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连结四边 形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去…….则四边形A 2B 2C 2D 2的周长是 ▲ ;四边 形A 2013B 2013C 2013D 2013的周长是 ▲ .2002803103804305005650100200300400500600亿元2005 2006 2007 2008 2009 2010 2011 2012衢州市2005-2012年固定资产投资统计图 图1 18.23251210.7122.5813.1616.280510152025302005 2006 2007 2008 2009 2010 2011 2012衢州市2005-2012年固定资产投资增长速度统计图图2第21题%?CE OBA D第20题 第18题 yO第19题AB4y x =-+xk y 2=三、简答题(本大题共有8小题,共66分.务必写出解答过程.) 17.(本题6分)3422(75)÷-⨯-+18.(本题6分)如图,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1) 用含a 、b 、x 的代数式表示纸片剩余部分的面积; (2) 当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.19.(本题6分)如图,函数14y x =-+的图象与函数xk y 22=(0x )的图象 交于A (a ,1)、B (1,b )两点. (1)求函数2y 的表达式;(2)观察图象,比较当0>x 时,1y 与2y 的大小. 20.(本题8分)如图,已知AB 是⊙O 的直径,BC ⊥AB ,连结OC ,弦AD ∥OC ,直线CD 交BA 的延长线于点E .(1)求证:直线CD 是⊙O 的切线; (2)若DE =2BC ,求AD :OC 的值.21. (本题8分)据《2012年衢州市国民经济和社会发展统计公报》(2013年2月5日发布),衢州市固定资产投资的相关数据统计图如下:根据以上信息,解答下列问题:图1 图3图2第22题(1)求2012年的固定资产投资增长速度(年增长速度即年增长率);(2)求2005-2012年固定资产投资增长速度这组数据的中位数;(3)求2006年的固定资产投资金额,并补全条形图;(4)如果按照2012年的增长速度,请预测2013年衢州市的固定资产投资金额可达到多少亿元(精确到1亿元)?22.(本题10分)提出问题(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN. 求证:∠ABC=∠ACN.类比探究(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.拓展延伸(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC. 连结CN. 试探究∠ABC与∠ACN的数量关系,并说明理由.23.(本题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14第23题人.已知检票的前a 分钟只开放了两个检票口.某一天候车室排队等候检票的人数y (人)与检票时间x (分钟)的关系如图所示. (1)求a 的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?24.(本题12分)在平面直角坐标系x Oy 中,过原点O 及点A (0,2) 、C (6,0)作矩形OABC ,∠AOC 的平分线交AB 于点D .点P 从点O 个单位长度的速度沿射线OD 方向移动;同时点Q 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向移动.设移动时间为t 秒. (1)当点P 移动到点D 时,求出此时t 的值; (2)当t 为何值时,△PQB 为直角三角形;(3)已知过O 、P 、Q 三点的抛物线解析式为21()y x t t t=--+(0t >).问是否存在某一时刻t ,将△PQB 绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t 的值;若不存在,请说明理由.第24题浙江省2013年初中毕业生学业考试(衢州卷)数学参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分.)11.x ≥2;12.22x - ;13.25 ;14.163π;15.10 ;16.20(1分3分).三、(本大题共8小题,第17、18、19小题各6分,第20、21小题各8分,第22、23小题各10分,第24小题12分,共66分.)17.解:(1322(75)÷-⨯-+=2-8÷2×(-2)…………………4分 ( 各个部分化简正确,各1分,共4分) =2+8……………………………………………………………5分 =10…………………………………………………………… 6分18.解:(1)面积=24ab x -………………………………………………………3分(2)根据题意可得:224=4ab x x -(或214=122x ab =),……………4分整理得:28=24x ,解得x =…………………………………… 5分∵0x >. …………………………6分19.解:(1)把点A 坐标代入14y x =-+ ,得3a =………………………1分第20题∴23k = ∴ 23y x=………………………………………3分 (2)∴由图象可知,当01x <<或3x >时,12y y < ………………………4分当=1x 或=3x 时,12=y y …………………………5分 当13x <<时,12y y > 20.(1)证明:连结DO .∵AD //OC ,∴∠DAO =∠COB ,∠ADO =∠COD .………………1分又∵OA =OD ,∴∠DAO =∠ADO ,∴∠COD =∠COB .…2分又∵CO =CO ,OD =OB ,∴△COD ≌△COB ………3分 ∴∠CDO =∠CBO =90°.又∵点D 在⊙O 上,∴CD 是⊙O 的切线.……4分 (2)解:∵△COD ≌△COB .∴CD =CB .…………………………5分 ∵DE =2BC ∴ED =2CD . ………6分 ∵ AD //OC ,∴△EDA ∽△ECO .…………………………7分∴23AD DE OC CE ==.…………………………8分21.解:(1)56550013%500-= …………………………2分(列式、计算各1分)(2)13.16%+16.28%=14.72%2……4分(列式、计算各1分,%未加扣1分)(3)设2006年的固定资产投资金额为x 亿元,则有:28012%x x -=(或20025%200x -=⨯),解得250x =……6分(列式、计算各1分)条形图(略). ………………………… 7分(4)5651+13%=638.45638⨯≈()(亿元)………………………… 8分 答:2012年的固定资产投资增长速度为13%;2005-2012年固定资产投资增长速度这组数据的中位数是14.72%;2006年的投资额是250亿元;预测2013年可达638亿元. 22.(1)证明:∵等边△ABC ,等边△AMN∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°∴∠BAM =∠CAN …………………………1分 ∴△BAM ≌△CAN (SAS ) …………………………2分 ∴∠ABC =∠ACN …………………………3分 (2)解:结论∠ABC =∠ACN 仍成立 . ………………………4分 理由如下:∵等边△ABC ,等边△AMN ∴AB =AC , AM =AN , ∠BAC =∠MAN =60°∴∠BAM =∠CAN ∴△BAM ≌△CAN ………………………5分 ∴∠ABC =∠ACN ………………………6分图1图3图2 第22题 (3)解:∠ABC =∠ACN ………………………7分 理由如下:∵BA =BC , MA =MN ,顶角∠ABC =∠AMN∴底角∠BAC =∠MAN ∴△ABC ∽△AMN , …………………8分 ∴AB AC AMAN= 又∠BAM =∠BAC-∠MAC ,∠CAN =∠MAN-∠MAC∴∠BAM =∠CAN ∴△BAM ∽△CAN ……………9分 ∴∠ABC =∠ACN ………………………10分23.(1)由图象知,64016214520a a +-⨯=,……………………2分所以10a =; ……3分(2)解法1:设过(10,520)和(30,0)的直线解析式为y kx b =+,得10520300k b k b +=⎧⎨+=⎩, ………………………4分解得26780k b =-⎧⎨=⎩, ………………………5分 因此26780y x =-+,当20x =时,260y =,即检票到第20分钟时,候车室排队等候检票的旅客有260人. ……………………6分解法2:由图象可知,从检票开始后第10分钟到第30分钟,候车室排队检票人数每分钟减少26人, …………………5分 所以检票到第20分钟时,候车室排队等候检票的旅客有520-26×10=260人. …………6分解法3:设10分钟后开放m 个检票口,由题意得,520+16×20-14m ×20=0, ………4分 解得m =3,………………………5分 所以检票到第20分钟时,候车室排队等候检票的旅客有520+16×10-3×10×14=260人. 6分 (3)设需同时开放n 个检票口,则由题意知141501615n ⨯+⨯≥64, ……………………8分 解得4421n ≥, ∵n 为整数,∴5n =, ……………………9分 答:至少需要同时开放5个检票口. ………10分(说明:若通过列方程解得4421n =,并得到正确答案5的,得3分;若列出方程并解得4421n =,但未能得到正确答案的,得2分;若只列出方程,得1分) 24. 解:(1)∵矩形OABC , ∴∠AOC =∠OAB =90°∵OD 平分∠AOC ∴∠AOD=∠DOQ =45°……………………………………1分 ∴在Rt △AOD 中,∠ADO =45° ∴AO =AD =2, OD = ……2分∴2t ==……………………………3分(2)要使△PQB 为直角三角形,显然只有∠PQB =90°或∠PBQ=90°. 解法1:如图1,作PG ⊥OC 于点G ,在Rt △POG 中, ∵∠POQ =45°,∴ ∠OPG =45° ∵OP ,∴OG =PG =t , ∴点P (t ,,t )又∵Q (2t ,0),B (6,2),根据勾股定理可得:2226-+2-PB t t =()(),2226-2+2BQ t =(),2222=2-+2PQ t t t t =()………4分 ①若∠PQB =90°,则有222PQ BQ PB +=, 即:222222[(62)2](6)(2)t t t t +-+=-+-, 整理得:2480t t -=,解得10t =(舍去),22t =∴2t = ………6分 ②若∠PBQ =90°,则有222PB BQ PQ +=, ∴22222[(6)(2)][(62)2]=2t t t t -+-+-+,整理得210200t t -+=,解得5t =∴当t=2或t =5t =时,△PQB 为直角三角形. .… 8分 解法2:①如图2,当∠PQB =90°时,易知∠OPQ =90°,∴BQ ∥OD ∴∠BQC =∠POQ =45°可得Q C=BC =2 ∴OQ =4 ∴2t =4 ∴t=2 ……………5分 ②如图3,当∠PBQ =90°时,若点Q 在OC 上, 作PN ⊥x 轴于点N ,交AB 于点M ,则易证∠PBM =∠CBQ ∴△PMB ∽△QCB ∴PM QCMB CB=,∴CB PM QC MB ⋅=⋅,∴()()()22626t t t -=--, 化简得210200t t -+=,解得5t = ……… 6分∴5t =③如图4,当∠PBQ =90°时,若点Q 在OC 的延长线上,作PN ⊥x 轴于点N ,交AB 延长线于点M ,则易证∠BPM =∠MBQ =∠BQC ∴△PMB ∽△QCB ∴PM QCMB CB=,∴CB PM QC MB ⋅=⋅, ∴()()()22266t t t -=--,化简得210200t t -+=,解得5t = ∴t = ……………… 8分(3)存在这样的t 值,理由如下:将△PQB 绕某点旋转180°,三个对应顶点恰好都落在抛物线上,则旋转中心为PQ 中点,此时四边形'PBQB 为平行四边形. ………………9分∵PO =PQ ,由P (t ,t ),Q (2t ,0),知旋转中心坐标可表示为(31,22t t )………………10分∵点B 坐标为(6,2), ∴点'B 的坐标为(3t -6,t -2), .………………11分 代入21()y x t t t =--+,得: 2213180t t -+=,解得129,22t t == ……12分 (另解:第二种情况也可以直接由下面方法求解:当点P 与点D 重合时,PB =4,OQ =4,又PB ∥OQ ,∴四边形PBQO 为平行四边形,此时绕PQ 中点旋转180°,点B 的对应点恰好落在O 处,点'B 即点O .由(1)知,此时t =2. (说明:解得此t 值,可得2分.)。