第9讲 离散选择模型
- 格式:ppt
- 大小:1.62 MB
- 文档页数:33
离散选择模型HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第五章离散选择模型在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。
我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。
本章主要介绍以下内容:1、为什么会有离散选择模型。
2、二元离散选择模型的表示。
3、线性概率模型估计的缺陷。
4、Logit模型和Probit模型的建立与应用。
第一节模型的基础与对应的现象一、问题的提出在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。
1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。
例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。
由离散数据建立的模型称为离散选择模型。
2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。
例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。
这种类型的数据成为审查数据。
再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。
这两种数据所建立的模型称为受限被解释变量模型。
有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。
下面是几个离散数据的例子。
例研究家庭是否购买住房。
由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即我们希望研究买房的可能性,即概率(1)P Y =的大小。
离散选择模型步骤离散选择模型是一种决策分析方法,用于在给定的有限选项中选择最佳决策。
它在经济学、管理学、工程学等领域得到广泛应用。
本文将介绍离散选择模型的主要步骤。
1. 确定决策问题:首先,需要明确决策问题的目标和限制条件。
决策问题可以是各种各样的,比如选择投资项目、确定市场定价策略等。
明确问题是为了确保模型的设计和应用是有针对性的。
2. 收集决策信息:在进行决策分析之前,需要收集相关的信息和数据。
这些信息可以来自于市场调研、历史数据、专家意见等。
信息的准确性和全面性对于模型的建立和分析至关重要。
3. 确定决策变量:决策变量是指影响决策结果的因素。
在离散选择模型中,决策变量通常是一组有限的选项。
例如,在选择投资项目时,决策变量可以是不同的项目选项。
4. 制定决策准则:决策准则是指用于评估和比较不同选项的标准。
决策准则可以是单一的,也可以是多个综合考虑的因素。
常见的决策准则包括效益、成本、风险等。
5. 构建数学模型:离散选择模型可以使用多种数学方法进行建模,例如概率论、决策树、多属性决策等。
根据具体情况选择合适的方法,并建立相应的数学模型。
6. 分析决策结果:通过对模型进行求解,得到不同选项的决策结果。
分析决策结果可以包括对每个选项的评估、比较不同选项的优劣等。
还可以进行灵敏度分析,研究模型对参数变化的敏感性。
7. 做出最佳决策:根据分析结果,选择最佳决策。
最佳决策应该是在给定目标和限制条件下,使得决策准则达到最优的选项。
8. 验证和调整模型:一旦做出决策,需要验证模型的有效性,并根据实际情况对模型进行调整。
如果模型的预测结果和实际结果存在较大差异,可能需要重新收集数据或重新制定决策准则。
总结起来,离散选择模型的步骤包括确定决策问题、收集决策信息、确定决策变量、制定决策准则、构建数学模型、分析决策结果、做出最佳决策以及验证和调整模型。
通过这些步骤,可以帮助决策者更好地理解问题、分析选项,并做出科学合理的决策。
离散选择模型§ 1 离散选择回归模型一、离散的变量如果我们用0,1,2,3,4,…说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。
但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。
在专利申请数的问题中,离散变量0,1,2,3和4等数字具有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。
本专题讨论有序尺度变量和名义尺度变量的被解释变量。
二、离散的因变量在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0表示。
离散选择模型 110yes x no⎧=⎨⎩ 如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。
如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。
因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。
因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。
三、线性概率模型现在约定备择对象的0和1两项选择模型中,下标i 表示各不同的经济主体,取值0或l 的因变量表示经济主体的具体选择结果,而影响经济主体进行选择i y离散选择模型2i x (1/i p y =i x 1/)i i x (/)0(0/)i i E y p y +×=x (1/)i i p y x 的自变量。
如果选择响应YES 的概率为,则经济主体选择响应NO 的概率为1(,)p y −=则=1(1/)i i i i p y =×=x x =。
根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型(1/)(/)i i i i i p y x E y x ′===x β011i k ik x i x u βββ=++++L描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。
一.二元离散选择模型1.二元响应模型(Binary response model)我们往往关心响应概率()()()()z G x x G x y x y k k =+++=E ==P βββ...1110,其中x 表示各种影响因素(各种解释变量,包括虚拟变量)。
根据不同的函数形式可以分为下面三类模型:线性概率模型(Linear probability model ,LPM )、对数单位模型(logit )、概率单位模型(probit):三种模型估计的系数大约有以下的关系:L PM probit probit it ββββ5.2,6.1log ==2.偏效应(1)如果解释变量是一个连续型变量,那么他对p(x)=p(y=1|x)的偏效应可以通过求下面的偏导数得出来:()()()()dzz dG z g x g x x p j j =+=∂∂,0βββ,偏效应的符号和该解释变量对应的系数的符号一致;两个解释变量偏效应之比等于它们各自的估计系数之比。
(2)如果解释变量是一个离散性变量,则k x 从k c 变化到k c +1时对概率的影响大小为:()()()k k k k c x G c x G ββββββ+++-++++...1 (110110)上面的其他解释变量的取值往往取其平均值。
3.估计方法与约束检验极大似然估计;三种常见的大样本检验:拉格朗日乘数检验、wald 检验、似然比检验。
4.Stata 程序语法(以Probit 为例)probit depvar [indepvars] [weight] [if exp] [in range] [, level(#) nocoef noconstant robust cluster(varname) score(newvar) asis offset(varname) maximize_options ] predict [type] newvarname [if exp] [in range] [, statistic rules asif nooffset ] where statistic isp predicted probability of a positive outcome; the default xb linear predictionstdp standard error of the prediction二.具体的例子1.数据:美国1988年的CPS 数据2.模型:估计成为工会成员的可能性,模型形式如下:参加工会的概率=F(潜在经验potexp 、经验的平方项potexp2、受教育年限grade 、婚否married 、工会化程度high);解释变量:Potexp=年龄-受教育年限-5;grade=完成的受教育年限;married :1表示婚,0未婚;high :1表示高度工会化的行业,否则为0。
mixtures of multinomal logit model离散选择-回复mixtures of multinomial logit model离散选择,作为一种经济学模型,在决策环境中广泛应用。
在本文中,我们将一步一步回答有关这种模型的问题。
第一步,我们需要了解离散选择模型的基本概念。
离散选择模型是一种用于分析个体在面对多个选择时做出决策的经济学模型。
它假设个体根据其特定属性和环境条件对每个选择进行评估,并且选择具有最大效用的选项。
第二步,我们将介绍多项式逻辑回归模型。
在多项式逻辑回归模型中,我们假设个体的选择行为服从多项式分布。
这意味着每个选择的概率是选择的优势函数与共享参数的乘积。
根据选择的概率,我们可以使用最大似然估计来估计模型的参数。
第三步,我们引入混合多项式逻辑回归模型的概念。
在混合多项式逻辑回归模型中,我们假设选择行为背后存在多个子群体,每个子群体具有不同的选择行为模式。
这意味着选择的概率是每个子群体的选择概率与相应的子群体的权重之和。
第四步,我们将讨论如何估计混合多项式逻辑回归模型的参数。
为了估计混合模型的参数,我们可以使用最大似然估计或贝叶斯估计的方法。
最大似然估计的目标是找到使观测样本的似然函数最大化的参数值。
而贝叶斯估计则通过引入先验分布来估计参数,并在观测数据的基础上更新参数的分布。
第五步,我们将探讨混合多项式逻辑回归模型的应用。
混合多项式逻辑回归模型在许多领域都有广泛应用,如市场调研、消费者行为分析和交通选择模型等。
它可以帮助我们理解不同子群体的选择行为,预测个体的选择概率,并为决策制定者提供有关市场营销和政策制定的有用信息。
在最后一步,我们将总结这篇文章。
混合多项式逻辑回归模型是一种强大的分析工具,用于解释和预测离散选择行为。
通过将不同子群体的选择行为模式考虑在内,这种模型能够更好地反映真实的选择行为,并为决策制定者提供更准确和有效的决策支持。
09离散因变量模型⽬录离散因变量模型要考察⼈们做出某种具体选择的情况及其影响因素时,可把这些离散的定性变量作为因变量进⾏分析,把影响因素作为⾃变量,这样建⽴的模型称之为离散选择模型。
如出⾏交通⼯具选择的情况。
还有⼀种是因变量是以离散计数的⽅式描述的,分析⾃变量对计数因变量的影响所建⽴的模型,称之为计数模型。
如发⽣交通事故的次数。
线性概率模型离散选择模型在⼴义线性模型(generalized linear model)的框架下展开,并依赖结果是两个或多个选择将模型分位⼆项选择、多项选择模型和受限因变量模型离散选择模型主要研究选择结果的概率与影响因素之间的关系,即Prob(事件i发⽣) = Prob(Y=i)=F(影响因素)其中,影响因素可能包含做出选择的主体属性和选择⽅案属性。
如选择何种交通⼯具出⾏,既受到选择主体收⼊程度、⽣活习惯等属性的影响,也收到交通⼯具的价格、便捷性等属性的影响。
⽰例:对影响⼿机购买意向的因素进⾏分析购买意向为定性变量,有两种选择:0表⽰不购买,1表⽰购买。
其影响因素可能有性别、年龄、收⼊、职位、⾏业等诸多因素。
设因变量y表⽰是否购买⼿机,则有y= \begin{cases} 0 & 不购买 \\ 1 & 购买 \end{cases}影响y的因素记为x=(x_1,x_2,\cdots, x_n),根据多元回归的思想,可得y = \beta_0 + \beta_1 x_1+\beta_2 x_2+\cdots +\beta_n x_n + \varepsilon其中,(\beta_1,\beta_1,\cdots, \beta_n)^T=\beta表⽰回归模型中的参数即回归系数,则简化为y = \beta_0 + \beta x + \varepsilon在因变量是离散变量的情况下,不能把\beta_i(i=1,2,\cdots,n)理解为保持其他因素不变的情况下对y的边际影响,因为y的取值为1或0。