离散被解释变量数据计量经济学模型二元选择模型Models
- 格式:ppt
- 大小:782.00 KB
- 文档页数:5
一.二元离散选择模型1.二元响应模型(Binary response model)我们往往关心响应概率()()()()z G x x G x y x y k k =+++=E ==P βββ...1110,其中x 表示各种影响因素(各种解释变量,包括虚拟变量)。
根据不同的函数形式可以分为下面三类模型:线性概率模型(Linear probability model ,LPM )、对数单位模型(logit )、概率单位模型(probit):三种模型估计的系数大约有以下的关系:L PM probit probit it ββββ5.2,6.1log ==2.偏效应(1)如果解释变量是一个连续型变量,那么他对p(x)=p(y=1|x)的偏效应可以通过求下面的偏导数得出来:()()()()dzz dG z g x g x x p j j =+=∂∂,0βββ,偏效应的符号和该解释变量对应的系数的符号一致;两个解释变量偏效应之比等于它们各自的估计系数之比。
(2)如果解释变量是一个离散性变量,则k x 从k c 变化到k c +1时对概率的影响大小为:()()()k k k k c x G c x G ββββββ+++-++++...1 (110110)上面的其他解释变量的取值往往取其平均值。
3.估计方法与约束检验极大似然估计;三种常见的大样本检验:拉格朗日乘数检验、wald 检验、似然比检验。
4.Stata 程序语法(以Probit 为例)probit depvar [indepvars] [weight] [if exp] [in range] [, level(#) nocoef noconstant robust cluster(varname) score(newvar) asis offset(varname) maximize_options ] predict [type] newvarname [if exp] [in range] [, statistic rules asif nooffset ] where statistic isp predicted probability of a positive outcome; the default xb linear predictionstdp standard error of the prediction二.具体的例子1.数据:美国1988年的CPS 数据2.模型:估计成为工会成员的可能性,模型形式如下:参加工会的概率=F(潜在经验potexp 、经验的平方项potexp2、受教育年限grade 、婚否married 、工会化程度high);解释变量:Potexp=年龄-受教育年限-5;grade=完成的受教育年限;married :1表示婚,0未婚;high :1表示高度工会化的行业,否则为0。
对y i 取期望,E (y i ) = :- + X i(2)\ P ( y i = 1) = P i wP( y i = 0) = 1 - p i 则E(y i ) = 1 (P i ) + 0 (1 - P i ) = P i由(2)和(3)式有(y i 的样本值是0或1,而预测值是概率。
)以P i = - 0.2 + 0.05 X i 为例,说明X i 每增加一个单位,则采用第一种选择的概率增加 现在分析Tobit 模型误差的分布。
由 Tobit 模型(1)有,⑶⑷0.05。
R1 ―口 - “ , u = y i - a - P X i = *住严-取,y i =1y i =0E(U i ) = (1- : - : X i ) P i + (- : - : X i ) (1 - P i ) = P i - : - : X i 由(4)式,有二元选择摸型如果回归模型的解释变量中含有定性变量,则可以用虚拟变量处理之。
在实际经济问题中,被解释变量 也可能是 定性变量。
如通过一系列解释变量的观测值观察人们对某项动议的 态度,某件事情的成功和失败等。
当被解释变量为定性变量时怎样建立模型呢?这就是要介 绍的二元选择模型或多元选择模型,统称离散选择模型。
这里主要介绍 Tobit (线性概率)模型,Probit (概率单位)模型和 Logit 模型。
1. Tobit (线性概率)模型 Tobit 模型的形式如下,其中U i 为随机误差项,X i 为定量解释变量。
y i 为二元选择变量。
此模型由 年提出,因此得名。
如利息税、机动车的费改税问题等。
设James Tobin 1958(若是第一种选择)1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2330340350360370380E(U i ) = p i -圧-!::i X i = 0因为y i 只能取0, 1两个值,所以,E(u i 2) = (1- : - - X i )2 p i + (- : - - X i )2 (1 - p)=(1- :- - X i )2 (: +1:, X i ) + (:- +1「X i )2(1 -:■ - !::; X i ), (依据 ⑷式)=(1- : -:X i ) ( :- + : X i ) = p i (1 - p i ),(依据⑷式)=E(y i ) [1- E(y i )]上两式说明,误差项的期望为零,方差具有异方差。
第八章离散因变量模型离散(分类)因变量模型(Models with Discrete /Categorical Dependent Variables)分为二元选择模型(Binary Choice Models)和多类别选择(反应)模型(Multicategory Choice /Polytomous Response Models)。
在多类别选择模型中,根据因变量的反应类别(response category)是否排序,又分为无序选择模型(Multinominal Choice Models)和有序选择模型(Ordered Choice Models)(也称有序因变量模型Ordered Dependent Variable Models、有序类别模型Ordered Category Models等)一、二元选择模型设因变量1、线性概率模型(LPM模型)如果采用线性模型,给定,设某事件发生的概率为P i,则有所以称之为线性概率模型。
不足之处:1、不能满足对自变量的任意取值都有。
2、3、所以线性概率模型不是标准线性模型。
给定,为使,可对建立某个分布函数,使的取值在(0,1)。
2、Logit模型(Dichotomous/ Binary Logit Model)Logit模型是离散(分类)因变量模型的常用形式,它采用的是逻辑概率分布函数(Cumulative Logistic Probability Function)(e为自然对数的底),逻辑曲线如图4-1所示。
其中,二元Logit模型是掌握多类别Logit模型的基础。
图4-1 逻辑曲线(Logit Curve)以二元选择问题为例,设因变量有0和1两个选择,由自变量来决定选择的结果。
为了使二元选择问题的研究成为可能,首先建立随机效用模型:令表示个体i选择=1的效用,表示个体i选择=0的效用,显然当时,选择结果为1,反之为0。
将两个效用相减,即得随机效用模型:,记为(4-1)当时,,则个体i选择=1的概率为:若的概率分布为Logistic分布,则有即(4-2)式(4-2)即为最常用的二元选择模型——Logit模型。
计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。
在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。
下面将对这四种模型进行详细介绍。
第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。
线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。
在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。
线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。
第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。
时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。
时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。
时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。
第三种模型是面板数据模型,也称为横截面时间序列数据模型。
面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。
面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。
面板数据模型的常用方法包括固定效应模型、随机效应模型等。
面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。
第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。
离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。
离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。
离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。
综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。