离散选择模型logit模型实例stata分析.pptx
- 格式:pptx
- 大小:274.25 KB
- 文档页数:2
第八章离散选择模型—Logistic回归基于logistic回归模型的企业信用评价——以材料和机械制造行业上市公司为例一、引言中国市场经济制度的日益健全与完善以及证券债券等金融市场的逐步建立与发展,信用成为经济交往、债务形成的一个重要的基础,信用风险越来越受到市场交易者的关注。
信用风险是指借款人、证券发行人或交易方由于各种原因不愿或无能力履行商业合同而违约,致使债权人、投资者或交易方遭受损失的可能性。
对于上市公司而言,这种违约行为经常表现为拖欠账款、资不抵债以及以发行证券或债券进行圈钱等失信行为。
对这种违约失信的可能性的度量显得十分重要。
怎样分析公司的信用状况,对信贷管理者如何分析企业的信用,对证券投资者如何衡量投资项目的风险和价值以及企业家如何评价自己管理的公司,都有极大的价值。
自上世纪中期以来,国内外以计算违约率(本文计算守信率,守信率=1-违约率)对信用风险进行评价和度量的方法和模型得到了迅速发展。
对企业的信用评价主要是基于综合财务指标特征计算违约风险并用来划分等级。
以综合财务指标为解释变量,运用计量统计方法建立模型,分析信用在金融和学术界成为主流,并且评价效果显著。
特别对于logistic回归模型效果更好,因为该模型没有关于变量分布的假设,也不要求假设指标存在多元正态分布。
最早有Martin(1977)建立logistic回归模型预测公司的破产以及违约的概率。
Madalla(1983)建立logistic回归模型来区分违约和非违约贷款申请人,并确认0.551为两者的分界线。
比如在我国,张后启等(2002),杨朝军等(2002),应用Logistic模型研究上市公司财务危机,得出有效结论等等。
面对我国在深沪两家证券市场上市的一千多家上市公司,由于公司体制和管理机制缺陷,或者自身利益最大化利益驱使,或者多部分有国企改制而来等各种原因,信用风险程度变的更大。
若能够应用一个较简单的计量模型对他们的信用状况进行评价,对债权人选择贷款对象,投资者投资和交易方的选取都有较大帮助。
离散选择模型HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第五章离散选择模型在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。
我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。
本章主要介绍以下内容:1、为什么会有离散选择模型。
2、二元离散选择模型的表示。
3、线性概率模型估计的缺陷。
4、Logit模型和Probit模型的建立与应用。
第一节模型的基础与对应的现象一、问题的提出在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。
1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。
例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。
由离散数据建立的模型称为离散选择模型。
2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。
例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。
这种类型的数据成为审查数据。
再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。
这两种数据所建立的模型称为受限被解释变量模型。
有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。
下面是几个离散数据的例子。
例研究家庭是否购买住房。
由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即我们希望研究买房的可能性,即概率(1)P Y =的大小。
一.二元离散选择模型1.二元响应模型(Binary response model)我们往往关心响应概率()()()()z G x x G x y x y k k =+++=E ==P βββ...1110,其中x 表示各种影响因素(各种解释变量,包括虚拟变量)。
根据不同的函数形式可以分为下面三类模型:线性概率模型(Linear probability model ,LPM )、对数单位模型(logit )、概率单位模型(probit):三种模型估计的系数大约有以下的关系:LPM probit probit it ββββ5.2,6.1log ==2.偏效应(1)如果解释变量是一个连续型变量,那么他对p(x)=p(y=1|x)的偏效应可以通过求下面的偏导数得出来:()()()()dzz dG z g x g x x p j j =+=∂∂,0βββ,偏效应的符号和该解释变量对应的系数的符号一致;两个解释变量偏效应之比等于它们各自的估计系数之比。
(2)如果解释变量是一个离散性变量,则k x 从k c 变化到k c +1时对概率的影响大小为:()()()k k k k c x G c x G ββββββ+++-++++...1 (110110)上面的其他解释变量的取值往往取其平均值。
3.估计方法与约束检验极大似然估计;三种常见的大样本检验:拉格朗日乘数检验、wald 检验、似然比检验。
4.Stata 程序语法(以Probit 为例)probit depvar [indepvars] [weight] [if exp] [in range] [, level(#) nocoef noconstant robust cluster(varname) score(newvar) asis offset(varname) maximize_options ] predict [type] newvarname [if exp] [in range] [, statistic rules asif nooffset ] where statistic isp predicted probability of a positive outcome; the default xb linear predictionstdp standard error of the prediction二.具体的例子1.数据:美国1988年的CPS 数据2.模型:估计成为工会成员的可能性,模型形式如下:参加工会的概率=F(潜在经验potexp 、经验的平方项potexp2、受教育年限grade 、婚否married 、工会化程度high);解释变量:Potexp=年龄-受教育年限-5; grade=完成的受教育年限; married :1表示婚,0未婚;high :1表示高度工会化的行业,否则为0。
一、概述logit 模型是一种经典的统计回归模型,用于解决二分类问题。
它可以帮助我们预测一个变量的可能取值是0还是1,适用于很多实际问题中的预测和决策。
二、logit 模型基本原理1. logit 函数logit 模型使用的是 logit 函数,其数学表达式为:logit(p) = log(p / (1-p))其中 p 是事件发生的概率,logit(p) 是 p 的 logit 值。
logit 函数的作用是将概率转换为一个无限制的实数范围内,方便进行回归分析。
2. logit 模型的建立logit 模型假设因变量 Y 的对数几率是自变量 X 的线性函数,数学表达式为:logit(p) = β0 + β1X1 + ... + βnXn其中β0, β1, ... , βn 是回归系数,X1, ... , Xn 是自变量。
通过最大似然估计等方法,可以求得回归系数的估计值。
三、logit 模型的参数估计1. 最大似然估计logit 模型的参数估计通常使用最大似然估计方法。
最大似然估计是一种常用的参数估计方法,其目标是使得观测到的样本数据出现的概率最大化。
通过最大似然估计,可以求得logit模型中回归系数的估计值。
2. 参数估计的解释logit 模型中的回归系数估计值代表了自变量对因变量的影响程度。
回归系数的正负和大小可以表明自变量对因变量的影响方向和程度,而回归系数的显著性检验可以帮助判断自变量的影响是否显著。
四、logit 模型的应用1. 二分类预测logit 模型最常见的应用是进行二分类预测。
通过建立logit模型,可以预测一个事件发生的概率,并将其转化为一个0-1之间的取值,从而进行分类判断。
2. 风险评估在金融、医疗等领域,logit 模型也被应用于风险评估。
通过logit模型,可以判断个体发生某一事件的概率,从而进行风险评估和决策。
五、logit 模型的优缺点1. 优点logit 模型具有良好的解释性,可以通过回归系数解释自变量对因变量的影响。
第八章离散选择模型—Logistic回归基于logistic回归模型的企业信用评价——以材料和机械制造行业上市公司为例一、引言中国市场经济制度的日益健全与完善以及证券债券等金融市场的逐步建立与发展,信用成为经济交往、债务形成的一个重要的基础,信用风险越来越受到市场交易者的关注。
信用风险是指借款人、证券发行人或交易方由于各种原因不愿或无能力履行商业合同而违约,致使债权人、投资者或交易方遭受损失的可能性。
对于上市公司而言,这种违约行为经常表现为拖欠账款、资不抵债以及以发行证券或债券进行圈钱等失信行为。
对这种违约失信的可能性的度量显得十分重要。
怎样分析公司的信用状况,对信贷管理者如何分析企业的信用,对证券投资者如何衡量投资项目的风险和价值以及企业家如何评价自己管理的公司,都有极大的价值。
自上世纪中期以来,国内外以计算违约率(本文计算守信率,守信率=1-违约率)对信用风险进行评价和度量的方法和模型得到了迅速发展。
对企业的信用评价主要是基于综合财务指标特征计算违约风险并用来划分等级。
以综合财务指标为解释变量,运用计量统计方法建立模型,分析信用在金融和学术界成为主流,并且评价效果显著。
特别对于logistic回归模型效果更好,因为该模型没有关于变量分布的假设,也不要求假设指标存在多元正态分布。
最早有Martin(1977)建立logistic回归模型预测公司的破产以及违约的概率。
Madalla(1983)建立logistic回归模型来区分违约和非违约贷款申请人,并确认0.551为两者的分界线。
比如在我国,张后启等(2002),杨朝军等(2002),应用Logistic模型研究上市公司财务危机,得出有效结论等等。
面对我国在深沪两家证券市场上市的一千多家上市公司,由于公司体制和管理机制缺陷,或者自身利益最大化利益驱使,或者多部分有国企改制而来等各种原因,信用风险程度变的更大。
若能够应用一个较简单的计量模型对他们的信用状况进行评价,对债权人选择贷款对象,投资者投资和交易方的选取都有较大帮助。
使用STATA分析离散因变量模型高级计量经济专题习题课2使用STATA分析离散因变量模型我们主要考察以下三个变量:1) distress:“热动力损坏事故”的数量。
2) temp:“在发射时候的温度”,用华氏表示。
3) date:由1960年1月1日(一个任意的开始时间)以后的日期数量来表示。
日期由mdy来生成。
Generate date=mdy(month, day, year)Label variable date “Date (day since 1/1/60) 这里的变量”distress” 是一个有标记的数值变量。
Tabulate distress在一般的情况下,这个命令将显示出标签,但是我们同样可以使用nolabel来显示数字,以0代表“none”,1代表“1或2”,以及2代表“3以上”。
Tabulate distress, nolabel我们可以使用下列代码创建一个新的虚拟变量any,以0代表没有distress,1代表有一次或多次危险事故。
Generate any=distressReplace any=1 if distress==2Label variable any “Any thermal distress”为了看到这些命令的效果,键入:Tabulate distress anyLogistic回归建立的模型是是一个{0,1}解释变量如何依赖于一个或多个x变量。
Logit命令的格式与regress类似,都是首先列出因变量。
Logit any date, coefLogit 的递归估计过程最大化对数似然函数,这些都在输出内容的开始进行显示。
在第0次递归中,对数似然函数描述了模型只对一个常数项进行回归。
最后的对数似然函数描述了对于最终模型的拟合。
L=-18.13116+.0020907date其中L的含义是:L=ln(P(any=1)/P(any=0))总体的检验的原假设是所有的除了常数项以外的系数都为0,它的定义为:其中的是初始递归(只有常数项的模型)的对数似然函数值,而是最后一次递归的对数似然函数值,这里,-2[-15.394543-(-12.991096)]=4.81 由回归结果可以看到这里的P值为0.0283,所以date变量具有比较显著的效果。