(离散选择模型)
- 格式:ppt
- 大小:2.35 MB
- 文档页数:68
Logit模型,也翻译为“评估模型”,“分类评估模型”和“Logistic 回归”,是离散选择模型之一,是最早的离散选择模型和使用最广泛的模型。
它是社会学,生物统计学,诊所,定量心理学,计量经济学和市场营销中用于统计经验分析的常用方法。
Logit模型是最早的离散选择模型,也是目前使用最广泛的模型。
Logit模型是由Luce(1959)根据IIA的特征首次推导的。
Marschark(1960)证明了Logit模型与最大效用理论之间的一致性。
Marley(1965)研究了模型形式与效用不确定性分布之间的关系,并证明了极值分布可用于推导Logit模型。
McFadden(1974)反过来证明,采用Logit形式的模型效用的不确定性必须服从极值分布。
从那时起,Logit模型已在心理学,社会学,经济学和交通运输领域得到广泛应用,并衍生和开发了其他离散选择模型,形成了完整的离散选择模型系统,例如Probit模型,NL模型,混合Logit型号等。
该模型假设单个n对选择分支j的效用包括两部分:效用确定性项和随机项:
Logit模型得到广泛应用的原因主要是由于其概率表达的显着特征,以及该模型的快速求解速度和便捷的应用。
当模型选择集不改变时,而仅当每个变量的级别改变时(例如旅行时间改变),在新环境中解
决每个选择分支的选择概率很方便。
根据Logit模型的IIA特征,选择分支的减少或增加不会影响其他选择中选择概率的比率。
因此,需要删除的选择分支可以直接从模型中删除,或者可以将新添加的选择分支添加到模型中以进行直接预测。
Logit模型的应用便利性是其他模型所不具备的,这也是该模型被广泛使用的主要原因之一。
离散选择模型HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第五章离散选择模型在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。
我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。
本章主要介绍以下内容:1、为什么会有离散选择模型。
2、二元离散选择模型的表示。
3、线性概率模型估计的缺陷。
4、Logit模型和Probit模型的建立与应用。
第一节模型的基础与对应的现象一、问题的提出在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。
1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。
例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。
由离散数据建立的模型称为离散选择模型。
2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。
例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。
这种类型的数据成为审查数据。
再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。
这两种数据所建立的模型称为受限被解释变量模型。
有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。
下面是几个离散数据的例子。
例研究家庭是否购买住房。
由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即我们希望研究买房的可能性,即概率(1)P Y =的大小。
第五周:离散选择模型分析技术——每周一讲多变量分析离散选择模型(Discrete Choice Model),也叫做基于选择的结合分析模型(Choice-Based Conjoint Analysis,CBC),是一种非常有效且实用的市场研究技术。
该模型是在实验设计的基础上,通过模拟所要研究产品/服务的市场竞争环境,来测量消费者的购买行为,从而获知消费者如何在不同产品/服务属性水平和价格条件下进行选择。
这种技术可广泛应用于新产品开发、市场占有率分析、品牌竞争分析、市场细分和价格策略等市场营销领域。
同时离散选择模型也是一种处理离散的、非线性的定性数据的复杂高级多元统计分析技术,它采用Multinomial Logit Model进行数据统计分析。
根据Sawtootch公司调查显示:在市场研究中,CBC方法正在快速增长,应用比传统的结合分析(联合分析)应用更多!离散选择模型主要用于测量消费者在实际或模拟的市场竞争环境下如何在不同产品/服务中进行选择。
通常是在正交实验设计的基础上,构造一定数量的产品/服务选择集(Choice Set),每个选择集包括多个产品/服务的轮廓(Profile),每一个轮廓是由能够描述产品/服务重要特征的属性(Attributes)以及赋予每一个属性的不同水平(Level)组合构成。
例如消费者购买手机的重要属性和水平可能包括:品牌(A,B,C)、价格(1500元,1750万元,2000元)、功能(短信,短信语音,图片短信)等,离散选择模型是测量消费者在给出不同的产品价格、功能条件下是选择购买品牌A,还是品牌B或者品牌C,还是什么都不选择。
离散选择模型的一个重要的假定是:消费者是根据构成产品/服务的多个属性来进行理解和作选择判断;另一个基本假定是:消费者的选择行为要比偏好行为更接近现实情况。
它与传统的全轮廓结合分析(Full Profiles Conjoint Analysis)都是在全轮廓的基础上采用分解的方法测量消费者对某一轮廓(产品)的选择与偏好,对构成该轮廓的多个属性和水平的选择与偏好,用效用值(Utilities)来描述。
离散选择模型步骤离散选择模型是一种决策分析方法,用于在给定的有限选项中选择最佳决策。
它在经济学、管理学、工程学等领域得到广泛应用。
本文将介绍离散选择模型的主要步骤。
1. 确定决策问题:首先,需要明确决策问题的目标和限制条件。
决策问题可以是各种各样的,比如选择投资项目、确定市场定价策略等。
明确问题是为了确保模型的设计和应用是有针对性的。
2. 收集决策信息:在进行决策分析之前,需要收集相关的信息和数据。
这些信息可以来自于市场调研、历史数据、专家意见等。
信息的准确性和全面性对于模型的建立和分析至关重要。
3. 确定决策变量:决策变量是指影响决策结果的因素。
在离散选择模型中,决策变量通常是一组有限的选项。
例如,在选择投资项目时,决策变量可以是不同的项目选项。
4. 制定决策准则:决策准则是指用于评估和比较不同选项的标准。
决策准则可以是单一的,也可以是多个综合考虑的因素。
常见的决策准则包括效益、成本、风险等。
5. 构建数学模型:离散选择模型可以使用多种数学方法进行建模,例如概率论、决策树、多属性决策等。
根据具体情况选择合适的方法,并建立相应的数学模型。
6. 分析决策结果:通过对模型进行求解,得到不同选项的决策结果。
分析决策结果可以包括对每个选项的评估、比较不同选项的优劣等。
还可以进行灵敏度分析,研究模型对参数变化的敏感性。
7. 做出最佳决策:根据分析结果,选择最佳决策。
最佳决策应该是在给定目标和限制条件下,使得决策准则达到最优的选项。
8. 验证和调整模型:一旦做出决策,需要验证模型的有效性,并根据实际情况对模型进行调整。
如果模型的预测结果和实际结果存在较大差异,可能需要重新收集数据或重新制定决策准则。
总结起来,离散选择模型的步骤包括确定决策问题、收集决策信息、确定决策变量、制定决策准则、构建数学模型、分析决策结果、做出最佳决策以及验证和调整模型。
通过这些步骤,可以帮助决策者更好地理解问题、分析选项,并做出科学合理的决策。