2019年高中数学 2.1平面向量的实际背景及基本概念学案 新人教A版必修
- 格式:doc
- 大小:126.50 KB
- 文档页数:4
姓名,年级:时间:2.1 平面向量的实际背景及基本概念[教材研读]预习课本P74~76,思考以下问题1.向量是如何定义的?向量与数量有什么区别?2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.零向量与单位向量有什么特殊性?0与0的含义有什么区别? 5.如何判断相等向量或共线向量?向量错误!与向量错误!是相等向量吗?[要点梳理]1.向量的概念和表示方法(1)概念:既有大小,又有方向的量称为向量.(2)向量的表示2.向量的长度(或称模)与特殊向量(1)向量的长度(或模)定义:向量的大小叫做向量的长度(或模).(2)向量的长度表示:向量错误!,a的长度分别记作:|错误!|,|a|。
(3)特殊向量:①长度为0的向量为零向量,记作0;②长度等于1个单位的向量,叫做单位向量.3.向量间的关系(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a =b。
(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.[自我诊断]判断(正确的打“√",错误的打“×”)1.两个向量能比较大小.()2.向量的模是一个正实数.()3.单位向量的模都相等.( )4.向量错误!与向量错误!是相等向量.( )[答案]1。
×2。
× 3.√ 4.×错误!思考:已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有__________,是向量的有__________.提示:②④⑤⑨⑩①③⑥⑦⑧下列说法正确的有__________.(填序号)①若|a|=|b|,则a与b的长度相等且方向相同或相反;②若|a|=|b|,且a与b的方向相同,则a=b;③由于0方向不确定,故0不能与任意向量平行;④向量a与向量b平行,则向量a与b方向相同或相反;⑤起点不同,但方向相同且模相等的向量是相等向量.[思路导引] 利用向量的有关概念逐一判断.[解析] ①不正确.由|a|=|b|只能判断两向量长度相等,不能确定它们方向的关系.②正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.③不正确.依据规定:0与任一向量平行.④不正确.因为向量a与向量b若有一个是零向量,则其方向不定.⑤正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.[答案] ②⑤解决与向量概念有关问题的方法解决与向量概念有关题目的关键是突出向量的核心——方向和长度,如:共线向量的核心是方向相同或相反,长度没有限制;相等向量的核心是方向相同且长度相等;单位向量的核心是方向没有限制,但长度都是一个单位长度;零向量的核心是方向没有限制,长度是0;规定零向量与任一向量共线.只有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.[跟踪训练]下列说法错误的有__________.(填上你认为所有符合的序号)①两个单位向量不可能平行;②两个非零向量平行,则它们所在直线平行;③当两个向量a,b共线且方向相同时,若|a|〉|b|,则a>b.[解析]①错误,单位向量也可以平行;②错误,两个非零向量平行,则它们所在直线还可能重合;③错误,两个向量是不能比较大小的,只有模可以比较大小.[答案] ①②③错误!思考:向量就是有向线段,这种说法对吗?提示:不对,向量与有向线段是两个不同的概念,可以用有向线段表示向量.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)错误!,使|错误!|=4错误!,点A在点O北偏东45°;(2)错误!,使|错误!|=4,点B在点A正东;(3)错误!,使|错误!|=6,点C在点B北偏东30°。
§2.1 平面向量的实际背景及基本概念
一、三维目标
1、知识与技能
(1)了解向量的实际背景,理解平面向量的概念和向量的几何表示;
(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;
并能弄清平行向量、相等向量、共线向量的关系
(3)通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、过程与方法
引导发现法与讨论相结合。
这是向量的第一节课,概念与知识点较多,在对学生进行适当的引导之后,应让学生清清楚楚得明白其概念,这是学生进一步获取向量知识的前提;通过学生主动地参与到课堂教学中,提高学生学习的积极性。
体现了在老师的引导下,学生的的主体地位和作用。
3、情感目标与价值观
通过对向量与数量的比较,培养学生认识客观事物的数学本质的能力,并且意识到数学与现实生活是密不可分的,是源于生活,用于生活的。
二、教学重点及难点
1重点:向量的概念,相等向量的概念,向量的几何表示等
2难点:向量的概念和共线向量的概念。
2. 1平面向量的实际背景及其基本概念导学案【学习目标】1. 通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清楚数量与向量的区别。
2.理解自由向量、相等向量、相反向量、平面向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出某一已知向量的相等向量。
【学习重点】掌握并理解向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。
【学习难点】平行向量、相等向量和共线向量的区别与联系。
【学法指导】通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念以及确定平面向量的两个要素,搞清楚数量与向量的区别。
【知识链接】向量、零向量、单位向量、相等向量、共线向量【学习过程】一.预习自学1.物理学中我们学习了位移、速度、加速度、力等物理量,回顾这与我们学习过的长度、面积、体积、质量等有什么不同之处?而位移、速度、加速度、力这些量又有什么共同点?2.向量的有关概念:(1)向量:既有,又有的量叫做向量。
(2)向量的模:有向线段AB的长度,表示向量AB 的大小,也叫做向量AB的(或),记作。
(3)零向量:长度为的向量叫做零向量,记作。
(4)单位向量:长度等于的向量叫做单位向量。
(5)相等向量:且的向量叫做相等向量。
(6)平行向量(共线向量):方向的非零向量叫做平行向量,也叫做共线向量,向量 a 平行于b ,记作,规定:零向量与平行。
3.向量的表示方法:(1)用有向线段的几何表示法:①有向线段:带有素、的线段叫做有向线段,它包含三要、。
○2 向量的几何表示法:以 A 为、B 为的有向线段记为AB,如果有向线段AB表示一个向量,通常我们就说向量AB 。
(2)字母表示:可用字母表示向量,手写时通常写成带箭头的小写字母。
4、通过上上面的学习你知道向量和数量有何不同?向量和有向线段有何关系?二 . 课堂检测1.判断正误:(1)向量必须用有向线段表示(2)表示一个向量的有向线段是唯一的()()(3)若向量a与b同向,且| a | | b |,则(4)单位向量都相等a b(())(5)向量AB与CD是共线向量,则 A、B、C、D四点必在一条直线上(6)共线的向量,起点不同,则终点一定不同()()(7)四边形 ABCD是平行四边形当且仅当2.非零向量AB的长度怎样表示?非零向量ABBADC()的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?二.新知探究例 1.如图,设 O是正六边形ABCDEF的中心,分别写出图中与OA 、OB 、OC 相等的向量。
2.1《平面向量的实际背景及基本概念》导学案【学习目标】1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2.通过对向量的学习,初步认识现实生活中的向量和数量的本质区别.3.通过对向量与数量的识别能力的训练,培养认识客观事物的数学本质的能力.【导入新课】情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了. 分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量. 引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?新授课阶段(一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1.数量与向量有何区别?2.如何表示向量?3.有向线段和线段有何区别和联系?分别可以表示向量的什么?4.长度为零的向量叫什么向量?长度为1的向量叫什么向量?5.满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6.有一组向量,它们的方向相同或相反,这组向量有什么关系?7.如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各向量的终点之间有什么关系?注意:1.数量与向量的区别:2.向量的表示方法: A B C D A(起点) B (终点)a①用表示;②用(黑体,印刷用)等表示;③;④ .3.有向线段:具有方向的线段就叫做有向线段,三个要素:.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4.零向量、单位向量概念:①叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.②,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5.平行向量定义:①叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6.相等向量定义:叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点........无关...7.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段.....的起点无关).......说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.例1 书本86页例1.例2 判断:(1)平行向量是否一定方向相同?()(2)不相等的向量是否一定不平行?()(3)与零向量相等的向量必定是什么向量?()(4)与任意向量都平行的向量是什么向量?()(5)若两个向量在同一直线上,则这两个向量一定是什么向量?()(6)两个非零向量相等的当且仅当什么?()(7)共线向量一定在同一直线上吗?()例3 下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行解析:例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC 相等的向量.变式一:与向量长度相等的向量有多少个?变式二:是否存在与向量长度相等、方向相反的向量?变式三:与向量共线的向量有哪些?变式训练:1.判断下列命题是否正确,若不正确,请简述理由.①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形当且仅当AB=DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB、AC在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC与BC共线,虽起点不同,但其终点却相同.课堂小结1、描述向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的简单类比.3、向量的图示,要标上箭头和始点、终点.作业课本88页习题2.1第3、5题拓展提升1.下列各量中不是向量的是()A.浮力B.风速C.位移D.密度2.下列说法中错误..的是()A.零向量是没有方向的B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()A.一条线段B.一段圆弧C.圆上一群孤立点D.一个单位圆4.已知非零向量b a //,若非零向量a c //,则c 与b 必定 .5.已知a 、b 是两非零向量,且a 与b 不共线,若非零向量c 与a 共线,则c 与b 必定 .6.设在平面上给定了一个四边形ABCD ,点K 、L 、M 、N 分别是AB 、BC 、CD 、DA 的中点,则_______,||=________=参考答案1、数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ① 有向线段② 字母a、b③有向线段的起点与终点字母:AB ;④向量的模,记作|AB |.3.起点、方向、长度.4.零向量、单位向量概念:①长度为0的向量②长度为1个单位长度的向量5.平行向量定义:①方向相同或相反的非零向量6.相等向量定义:长度相等且方向相同的向量例1 书本86页例1.例2(1) (不一定)(2) (不一定)(3) (零向量)(4) (零向量)(5) (平行向量)(6) (长度相等且方向相同)(7) (不一定)例3解:由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题A(起点) B (终点)a来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4变式一: (11个)变式二: (存在)变式三: (FE DO CB ,,)变式训练解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB 、AC 在同一直线上. ②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.拓展提升1.D2.A3.D4.平行5.不共线6. ||NM ,NM。
第二章平面向量本章内容介绍向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念. (让学生对整章有个初步的、全面的了解.)第2课时§2.2.1 向量的加法运算及其几何意义教学目标:1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.学法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、设置情景:1、复习:向量的定义以及有关概念强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置OAaaa bb b2、 情景设置:(1)某人从A 到B ,再从B 按原方向到C , 则两次的位移和:=+(2)若上题改为从A 到B ,再从B 按反方向到C , 则两次的位移和:=+ (3)某车从A 到B ,再从B 改变方向到C , 则两次的位移和:=+(4)船速为,水速为,则两速度和:AC =+二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,=b,则向量叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|+|=||+||,当与反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||.A B CA BCA BCA BCa +b a +baa b babb aa(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.例一、已知向量、,求作向量+作法:在平面内取一点,作= =,则+=. 4.加法的交换律和平行四边形法则问题:上题中+的结果与+是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)2)向量加法的交换律:+=+ 5.向量加法的结合律:(+) +=+ (+)证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(+) +=+ (+)从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行. 三、应用举例:例二(P94—95)略 练习:P95 四、小结1、向量加法的几何意义; 2、交换律和结合律;3、注意:|a +b | ≤ |a | + |b |,当且仅当方向相同时取等号. 五、课后作业:P103第2、3题 六、板书设计(略) 七、备用习题1、一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为h km /4,求水流的速度.2、一艘船距对岸,以h km /32的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km ,求河水的流速.3、一艘船从A 点出发以1v 的速度向垂直于对岸的方向行驶,同时河水的流速为2v ,船的实际航行的速度的大小为h km /4,方向与水流间的夹角是60︒,求1v 和2v .4、一艘船以5km/h 的速度在行驶,同时河水的流速为2km/h ,则船的实际航行速度大小最大是km/h ,最小是km/h5、已知两个力F 1,F 2的夹角是直角,且已知它们的合力F 与F 1的夹角是60︒,|F|=10N 求F 1和F 2的大小.6、用向量加法证明:两条对角线互相平分的四边形是平行四边形。
2019年高中数学 2.1平面向量的实际背景及基本概念学案新人教A版必修4一、学习内容、要求及建议(1)理解向量、零向量、单位向量、相等向量及共线向量等概念;(2)掌握向量的表示方法;(3)能在图形中辨认共线向量与相等向量,能用有向线段表示已知向量.2. 预习提纲(1)复习物理中位移、速度、力和几何中有向线段等概念,理解平面向量的含义.(2)阅读课本P57-58,思考下列内容:①向量的定义:既有大小又有方向的量叫做向量.②向量的表示:向量常用一条有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.符号表示以A为起点,B为终点的向量.向量也可以用小写字母,,等表示.③向量的模:向量的大小称为向量的长度或向量的模,记作||.④向量的其他概念及表示方法.3. 典型例题(1) 向量的有关概念例1 给出下列命题:①若=,则;②若<,则;③若=,则∥;④若∥,则=;⑤若=0,则=0;⑥若=,则=.其中正确命题的序号是.分析:解答本题可借助于相等向量、共线向量的概念等基本知识逐一进行判断.解:由相等向量定义可知,若=,则,的模相等,方向相同,故①不正确,⑥正确.<知模的大小,而不能确定方向,故②不正确.共线向量是指方向相同或相反的向量,相等向量一定共线,共线向量不一定相等,故③正确,④不正确.零向量与数字0是两个不同的概念,零向量不等于数字0,故⑤不正确.所以答案为③⑥.点评:此类题目关键是理解、区分向量的有关概念,从向量的长度与方向两方面认识向量,可举特例选择.(2) 共线向量与相等向量方向相同或相反的的非零向量为平行向量,零向量与任意向量平行.在图形中要能识别共线向量与相等向量.例2如图:EF是△ABC的中位线,AD是△ABC的BC边上的中线,以A、B、C、D、E、F为端点的有向线段表示的向量中(1)与向量共线的向量有哪几个?请分别写出这些向量;(2)与向量的模一定相等的向量有哪几个?请写出这些向量;(3)写出与向量相等的向量.分析:根据共线向量与相等向量的定义即可解决.解:(1)与共线的向量有7个,它们分别是CB,,,,,;,FEDCBCBDEFDB(2)与向量的模一定相等的向量有5个,它们分别是;(3)如图,==.(3) 向量的应用例3若且,判断四边形ABCD的形状.分析:先由得出四边形为平行四边形,再由得出结论.解:由知∥且=,所以四边形ABCD为平行四边形,又因为,所以四边形ABCD为菱形.点评:隐含∥与=两方面,一般,判断四边形的形状需要判断对边与邻边的关系.4. 自我检测(1) 判断下列说法是否正确:①若两个向量相等,则它们的起点和终点重合;②若、都是单位向量,则;③物理学中的作用力与反作用力是一对共线向量;④不相等的向量一定不平行;⑤若平行,平行,则平行;⑥零向量没有方向;⑦零向量与任何向量都平行;⑧零向量的方向是任意的;⑨向量与向量是共线向量,则点A、B、C、D必在同一条直线上;⑩有向线段就是向量,向量就是有向线段.(2) 思考讨论:①所有的单位向量都相等吗?②∥与∥一样吗?③向量、能不能用不等号将它们连接起来?即能表示为>或<吗?三、课后巩固练习A组1.给出下列命题:①向量的长度与向量的长度相等;②若向量与向量平行,则与的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有共同终点的向量,一定是共线向量.其中,正确命题的个数是.2.以下各物理量:速度、位移、力、功,不能称之为向量的是.3.向量的长度记作_____;的模是_____,是单位向量,则的值是____.4.与非零向量()平行的向量中,不相等的单位向量有_____个.5.已知、为不共线的非零向量,且存在向量,使∥,∥, 则=_______.6.在直角坐标系中,已知=2,则点P 构成的图形是_______.7.如图在正六边形ABCDEF 中,O为中心,(1)与相等的向量有 ;(2)与共线的向量有 ;(3)与的模相等且反向的向量有 .8.直角坐标系中,点A ,B 的坐标分别为(1,3),(5,2),试画出两个与向量不相等且又共线的向量.B 组9.在直角坐标系中,画出向量:=5,的方向与x 轴正向的夹角是30°,与y 轴正方向的夹角是120°.10. 如图,D 、E 、F 分别是△ABC 各边上的中点,四边形BCMF 是平行四边形.分别写出:(1)与共线的向量;(2)与共线的向量;(3)与相等的向量;(4)与相等的向量.11. 一架飞机从A 点向西北飞行200km 到达B 点,再从B 点向东飞行km 到达C 点,再从C 点向东偏南30°飞行了km 到达D 点.问D 点在A 点的什么方向,距A 点有多远?12.右图是中国象棋的半个棋盘,“马走日”是象棋中马的走法,如图,马可从A 跳到A 1,也可跳到A 2,用向量表示马走了“一步”,试在图中画出马在B ,C处走“一步”的所有情况.13.如图,在平面直角坐标系中,一单位圆的圆心的初始位置在(0,1),此时圆上一点的位置在(0,0),圆在轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为 .知识点题号 注意点 向量的实际背景结合向量相等的概念,在一些几何图形中,能找到相等的向量,理清平行向量、共线向量、相反向量、相等向量的概念平面向量的基本概念和几何表示向量相等的含义 四、五、拓展视野向量的由来向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.课本上讨论的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型.从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.22246 56E6 囦 21353 5369 卩23755 5CCB 峋21522 5412 吒22331 573B 圻33855 843F 萿21969 55D1 嗑26349 66ED 曭33771 83EB 菫720183 4ED7 仗31176 79C8 秈 37958 9446 鑆。
向量的几何表示教学设计1.教学内容解析本节课是《普通高中课程标准实验教科书数学4》(人教A 版)第二章第一节“平面向量的实际背景及基本概念”第一课时。
平面向量的实际背景及基本概念是向量知识体系中的起始内容,起着为其他知识学习奠基的重要作用。
一方面,它能为其他向量知识的学习奠基,通过了解向量的实际背景,理解向量的含义及几何表示等内容,奠定学生学习向量的线性运算、平面向量的基本定理及坐标表示和平面向量数量积的知识基础;另一方面,它能为学习新的数学对象奠基,学生通过认识向量,形成向量相关概念的过程,可以获得认识其他数学对象的基本方法和途径,可以为学习和研究其他数学对象奠定方法基础。
所以,平面向量的实际背景及基本概念作为向量的起始课及概念型课,其教学必须要有“交代问题背景、引入基本概念、渗透研究方法、构建研究蓝图”的大气。
由于是第一课时,所以笔者重点在于章引言,向量概念的引入,向量的表示,零向量、单位向量和平行向量的教学,不讲相等向量和共线向量。
2.教学目标设置课堂教学目标如下.(1)从如何由A点确定B点的位置,速度既有大小和方向抽象出向量的概念并与数量区分;(2)经历从实数的表示到“带箭头的线段”,从有向线段到向量的几何表示,掌握向量的几何表示、符号表示,模的表示,感受类比的思想,体会数学的实用性、表达的简洁美;(3)理解从大小看:零向量、单位向量,从方向看:平行向量;(4)体会认识新的数学概念基本思路:1.归纳共性;2.抽象定义;3.符号表示;4.认识特殊;5.研究一般;进而提高提出问题、研究问题的能力;3.学生学情分析(1)在物理学中,已经知道速度,力,位移等是既有大小又有方向的物理量(矢量);(2)如何作力的图示;(3)已经经历并了解实数的形成过程;(4)对实际生活中的一些常见的量,能识别它们是否具有大小、方向;(5)在以前的学习中,能运用类比的思想发现问题、提出问题,进而解决问题。
但是,高一学生在思维辨析方面还比较薄弱,教师要适度加以引导,指导学生进行辨析。
2019年高中数学 2.1平面向量的实际背景及基本概念学案 新人教A 版必
修
一、预习目标 通过阅读教材初步了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
二、预习内容
(一)、情景设置:
如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追
到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
(二)、新课预习:
1、向量的概念:我们把既有大小又有方向的量叫向量
2、请同学阅读课本后回答:
1) 数量与向量有何区别?
2) 如何表示向量?
3) 有向线段和线段有何区别和联系?分别可以表示向量的什么?
4) 长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5) 满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6) 有一组向量,它们的方向相同或相反,这组向量有什么关系?
7) 如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各向量的终点之间有什么关系?
三、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
课内探究学案
一、学习目标
1、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
二、学习过程 A B C D
1、数量与向量的区别?
2.向量的表示方法?
①
②
③ ④向量的大小――长度称为向量的模,记作 。
3.有向线段:具有方向的线段就叫做有向线段,三个要素: 。
向量与有向线段的区别:
4、零向量、单位向量概念:
① 叫零向量,记作0. 0的方向是任意的.
注意0与0的含义与书写区别.
② 叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
① 叫平行向量;②我们规定0与 任意向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
6、 叫相等向量。
说明:(1)向量a与b相等,记作a=b;
(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..
向线段的起点无关........
. 7、共线向量与平行向量关系:
平行向量就是共线向量,这是因为 (与有向线段的起点无关)............ 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 三、理解和巩固:
例1 书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?
(2)不相等的向量是否一定不平行?
(3)与零向量相等的向量必定是什么向量?
(4)与任意向量都平行的向量是什么向量?
(5)若两个向量在同一直线上,则这两个向量一定是什么向量? A(起点) B (终点)
a
(6)两个非零向量相等的当且仅当什么?
(7)共线向量一定在同一直线上吗?
例3、下列命题正确的是(
A.a与b共线,b与c共线,则a与c
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.
D.有相同起点的两个非零向量不平行
例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?
变式二:是否存在与向量长度相等、方向相反的向量?
变式三:与向量OA共线的向量有哪些?
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.
①向量AB与CD是共线向量,则A、B、C、D
④四边形ABCD是平行四边形当且仅当AB=
⑤一个向量方向不确定当且仅当模为0
⑥共线的向量,若起点不同,则终点一定不同.
2.书本88页练习
课后练习与提高
1.下列各量中不是向量的是()
A.浮力
B.风速
C.位移
D.密度
2.下列说法中错误
..的是()
A.零向量是没有方向的
B.零向量的长度为0
C.零向量与任一向量平行
D.零向量的方向是任意的
3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()
A.一条线段
B.一段圆弧
C.圆上一群孤立点
D.一个单位圆
4.已知非零向量//,若非零向量//,则与必定 .
5.已知、是两非零向量,且与不共线,若非零向量与共线,则与必定 . 6. 设在平面上给定了一个四边形ABCD,点K、L、M、N分别是AB、BC、CD、DA的中点,则
=
|=________
_______,
|
课堂练习答案:
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.
④、⑤正确.
⑥不正确.如图AC与BC共线,虽起点不同,但其终点却相同.
课后练习与提高参考答案:
|,
1.D
2.A
3.D
4.平行
5.不共线
6. |。