n∈N+).
证明:(1)当 n=2 时,左边=2+f(1)=3,右边=2f(2)=3,等式成立. (2)假设 n=k 时,等式成立,即 k+f(1)+…+f(k-1)=kf(k). 那么当 n=k+1 时, k+1+f(1)+…+f(k-1)+f(k)
=1+f(k)+kf(k)=(k+1)f(k)+1
D 当堂检测 ANGTANG JIANCE
点评
理解等式的特点:在等式左边,当 n 取一个值时,对应两项,即2���1���-1 − 21������; 在等式右边,当 n 取一个值时,对应一项.无论 n 取何值,应保证等式左边有 2n 项,而等式右边有 n 项,然后再按数学归纳法的步骤要求给出证明.
(������ + 1) + 1,
所以当 n=k+1 时,不等式成立.
故由(1)(2)知,对一切 n>2(n∈N+),不等式成立.
探究一
探究二
探究三
探究四
(2)假设当 n=k 时等式成立,即
1-12
+
1 3
−
14+…+2���1���-1
−
1 2������
=������+1 1 + ������+1 2+…+21������.
那么,当 n=k+1 时,
左边=1-12
+
1 3
−
14+…+2���1���-1
−
1 2������
根据①②可以断定命题对一切从 n0 开始的正整数 n 都成立. (2)数学归纳法能保证命题对所有的正整数都成立.因为根据①,验证了 当 n=1 时命题成立;根据②可知,当 n=1+1=2 时命题成立.由于当 n=2 时命 题成立,再根据②可知,当 n+1=3 时命题也成立,这样递推下去,就可以知道