必修5——5作业
- 格式:doc
- 大小:386.06 KB
- 文档页数:7
2020年高中数学 人教A 版 必修5 课后作业本《等比数列的概念和通项公式》一、选择题1.已知等比数列{a n }中,a 1=32,公比q=-12,则a 6等于( )A .1B .-1C .2 D.122.已知数列a ,a(1-a),a(1-a)2,…是等比数列,则实数a 的取值范围是( )A .a≠1B .a≠0且a≠1C .a≠0D .a≠0或a≠13.在等比数列{a n }中,a 2 016=8a 2 013,则公比q 的值为( )A .2B .3C .4D .84.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .2435.等比数列{a n }各项均为正数,且a 1,12a 3,a 2成等差数列,则a 3+a 4a 4+a 5=( )A .-5+12 B.1-52 C.5-12 D .-5+12或5-126.设{a n }是由正数组成的等比数列,公比q=2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .2157.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84二、填空题8.首项为3的等比数列的第n 项是48,第2n-3项是192,则n=________.9.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.10.若k,2k +2,3k +3是等比数列的前3项,则第四项为________.11.设{a n }为公比q>1的等比数列,若a 2 014和a 2 015是方程4x 2-8x +3=0的两根, 则a 2 016+a 2 017=________.12.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n-1a n a n +1=324,则n=________.三、解答题13.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式.14.在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827.(1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项?15.有四个实数,前三个数依次成等比数列,它们的积为-8;后三个数依次成等差数列,它们的积为-80,求这四个数.16.已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,….(1)证明数列{lg(1+a n)}是等比数列;(2)求{a n}的通项公式.答案解析1.答案为:B ;解析:由题知a 6=a 1q 5=32×⎝ ⎛⎭⎪⎫-125=-1,故选B.2.答案为:B ;解析:由a 1≠0,q≠0,得a≠0,1-a≠0,所以a≠0且a≠1.3.答案为:A ;解析:q 3=a 2 016a 2 013=8,∴q=2.4.答案为:A ;解析:∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q=2.又a 1+a 2=3,∴a 1=1.故a 7=1×26=64.5.答案为:C ;解析:a 1,12a 3,a 2成等差数列,所以a 3=a 1+a 2,从而q 2=1+q ,∵q>0,∴q=5+12,∴a 3+a 4a 4+a 5=1q =5-12.6.答案为:B ;解析:由等比数列的定义,a 1·a 2·a 3=⎝ ⎛⎭⎪⎫a 3q 3,故a 1·a 2·a 3·…·a 30=⎝ ⎛⎭⎪⎫a 3·a 6·a 9·…·a 30q 103.又q=2,故a 3·a 6·a 9·…·a 30=220.7.答案为:B ;解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42.8.答案为:5;解析:设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4,得q=±2.由(±2)n-1=16,得n=5.9.答案为:2n-1解析:由a 1·a 5=16,a 4=8,得a 21q 4=16,a 1q 3=8,所以q 2=4,又a n >0,故q=2,a 1=1,a n =2n-1.10.答案为:- 272;解析:由题意,(2k +2)2=k(3k +3),解得k=-4或k=-1, 又k=-1时,2k +2=3k +3=0,不符合等比数列的定义,所以k=-4,前3项为-4,-6,-9,第四项为-272.11.答案为:18;解析:4x 2-8x +3=0的两根分别为12和32,q>1,从而a 2 014=12,a 2 015=32,∴q=a 2 015a 2 014=3.a 2 016+a 2 017=(a 2 014+a 2 015)·q 2=2×32=18.12.答案为:14;解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12可得q 9=3,又a n-1a n a n +1=a 31q 3n-3=324,因此q 3n-6=81=34=q 36,所以n=14.13.证明:∵S n =2a n +1,∴S n +1=2a n +1+1.∴S n +1-S n =a n +1=(2a n +1+1)-(2a n +1)=2a n +1-2a n . ∴a n +1=2a n .①又∵S 1=a 1=2a 1+1, ∴a 1=-1≠0.由①式可知,a n ≠0,∴由a n +1a n=2知{a n }是等比数列,a n =-2n-1.14.解:(1)∵2a n =3a n +1,∴a n +1a n =23,数列{a n }是公比为23的等比数列,又a 2·a 5=827,所以a 21⎝ ⎛⎭⎪⎫235=⎝ ⎛⎭⎪⎫233,由于各项均为负,故a 1=-32,a n =-⎝ ⎛⎭⎪⎫23n-2.(2)设a n =-1681,则-1681=-⎝ ⎛⎭⎪⎫23n-2,⎝ ⎛⎭⎪⎫23n-2=⎝ ⎛⎭⎪⎫234,n=6,所以-1681是该数列的项,为第6项.15.解:由题意,设这四个数为bq,b ,bq ,a ,则⎩⎪⎨⎪⎧b 3=-8.2bq =a +b ,b 2aq =-80解得⎩⎪⎨⎪⎧a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧a =-8,b =-2,q =52.∴这四个数依次为1,-2,4,10或-45,-2,-5,-8.16.解:(1)证明:由已知得a n +1=a 2n +2a n ,∴a n +1+1=a 2n +2a n +1=(a n +1)2.∵a 1=2,∴a n +1+1=(a n +1)2>0.∴lg(1+a n +1)=2lg(1+a n ),即lg 1+a n +1lg 1+a n=2,且lg(1+a 1)=lg 3.∴{lg(1+a n )}是首项为lg 3,公比为2的等比数列. (2)由(1)知,lg(1+a n )=2n-1·lg 3=lg 312n -,∴1+a n =312n -,∴a n =312n --1.。
2020年高中数学 人教A 版 必修5 课后作业本《等差数列的前n 项和公式》一、选择题1.等差数列{a n }中,d=2,a n =11,S n =35,则a 1等于( )A .5或7B .3或5C .7或-1D .3或-12.已知等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 为( )A .7B .6C .3D .23.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( )A .138B .135C .95D .234.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .155.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .66.S n 是等差数列{a n }的前n 项和,a 3+a 6+a 12为一个常数,则下列也是常数的是( )A .S 17 B .S 15 C .S 13 D .S 77.设等差数列{a n }的前n 项和为S n ,S m-1=-2,S m =0,S m +1=3,则m=( )A .3B .4C .5D .6二、填空题8.已知数列{a n }中,a 1=1,a n =a n-1+(n≥2),则数列{a n }的前9项和等于________.129.等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n=________.10.等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________.11.设S n 是等差数列{a n }的前n 项和,若=,则等于________.a5a359S9S512.设等差数列{a n}的前n项和为S n,已知前6项和为36,最后6项和为180,S n=324(n>6),则数列的项数n=________,a9+a10=________.三、解答题13.在等差数列{a n}中:(1)已知a5+a10=58,a4+a9=50,求S10;(2)已知S7=42,S n=510,a n-3=45,求n.14.在等差数列{a n}中,a10=18,前5项的和S5=-15,(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和的最小值,并指出何时取得最小值.15.等差数列{a n }的前n 项和S n =-n 2+n ,求数列{|a n |}的前n 项和T n .32205216.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列的前n 项{Sn n}和,求T n .答案解析1.答案为:D ;解析:由题意,得Error!即Error!解得Error!或Error!2.答案为:C ;解析:由S 2=4,S 4=20,得2a 1+d=4,4a 1+6d=20,解得d=3.3.答案为:C ;解析:由a 2+a 4=4,a 3+a 5=10,可知d=3,a 1=-4.∴S 10=-40+×3=95.10×924.答案为:B ;解析:由S 5=5a 3=25,∴a 3=5.∴d=a 3-a 2=5-3=2.∴a 7=a 2+5d=3+10=13.5.答案为:B ;解析:当n=1时,a 1=S 1=-8;当n≥2时,a n =S n -S n-1=(n 2-9n)-[(n-1) 2-9(n-1)]=2n-10.综上可得数列{a n }的通项公式a n =2n-10.所以a k =2k-10.令5<2k-10<8,解得k=8.6.答案为:C ;解析:∵a 3+a 6+a 12为常数,∴a 2+a 7+a 12=3a 7为常数,∴a 7为常数.又S 13=13a 7,∴S 13为常数.7.答案为:C ;解析:a m =S m -S m-1=2,a m +1=S m +1-S m =3,∴d=a m +1-a m =1,由S m ==0,知a 1=-a m =-2,a m =-2+(m-1)=2,解得m=5. a1+am m 28.答案为:27;解析:∵n≥2时,a n =a n-1+,且a 1=1,所以数列{a n }是以1为首项,12以为公差的等差数列,所以S 9=9×1+×=9+18=27.129×82129.答案为:17;解析:Error!,∴d=10,a 1=-80.∴S n =-80n +×10=0,n n -1 2∴-80n +5n(n-1)=0,n=17.10.答案为:104;解析:因为a 1+a 13=a 2+a 12=2a 7,又a 2+a 7+a 12=24,所以a 7=8.所以S 13==13×8=104.13 a1+a13 211.答案为:1;解析:由等差数列的性质,===,∴==×=1.a5a32a52a3a1+a9a1+a559S9S592 a1+a9 52a1+a5 955912.答案为:18,36;解析:由题意,可知a 1+a 2+…+a 6=36 ①,a n +a n-1+a n-2+…+a n-5=180 ②,由①+②,得(a 1+a n )+(a 2+a n-1)+…+(a 6+a n-5)=6(a 1+a n )=216,∴a 1+a n =36.又S n ==324,∴18n=324,∴n=18,∴a 1+a 18=36,∴a 9+a 10=a 1+a 18=36.n a1+an 213.解:(1)由已知条件得Error!解得Error!∴S 10=10a 1+d=10×3+×4=210.10× 10-1 210×92(2)S 7==7a 4=42,7 a1+a7 2∴a 4=6.∴S n ====510.n a1+an 2n a4+an -3 2n 6+45 2∴n=20.14.解:(1)设{a n }的首项,公差分别为a 1,d.则Error!解得a 1=-9,d=3,∴a n =3n-12.(2)S n ==(3n 2-21n)=2-,n a1+an 21232(n -72)1478∴当n=3或4时,前n 项的和取得最小值为-18.15.解:a 1=S 1=101,当n≥2时,a n =S n -S n-1=-n 2+n-Error!Error!=-3n +104,a 1=S 1=101也适合上式,322052所以a n =-3n +104,令a n =0,n=34,故n≥35时,a n <0,n≤34时,a n >0,23所以对数列{|a n |},n≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =-n 2+n ,322052当n≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=a 1+a 2+…+a 34-a 35-…-a n=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =n 2-n +3 502,322052所以T n =Error!16.解:设等差数列{a n }的公差为d ,则S n =na 1+n(n-1)d ,12∵S 7=7,S 15=75,∴Error!即Error!解得Error!∴=a 1+(n-1)d=-2+(n-1),Sn n 1212∵-=,Sn +1n +1Sn n 12∴数列是等差数列,其首项为-2,公差为,{Sn n }12∴T n =n×(-2)+×=n 2-n.n· n -1 2121494。
课时分层作业(二)Section Ⅱ(建议用时:40分钟)[语言知识练习固基础]Ⅰ.单句语法填空1.The two astronauts will carry out a series of scientific(science) experiments in spaceship.2.What conclusion do you draw from the research?3.The suggestion he had put forward was turned down at the meeting.4.When I opened the door,I found my father sitting in his chair,completely absorbed in the newspaper.5.His son is very naughty and has formed some bad habits.I think he should cure him of them.6.The concern of this book is with air pollution (pollute).7.Please read the instructions (instruct) carefully before using it.8.The talks are continuing,but no announcements(announce) are expected at this time.9.The incident exposed (expose) the weakness of the school's position.10.We consider that you are to blame(blame) for the accident.Ⅱ.完成句子1.从这些事实中我得出他很努力这一结论。
2020年高中数学 人教A 版 必修5 同步作业本《等差数列的性质》一、选择题1.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么由a n +b n 所组成的数列的第37项值为( )A .0B .37C .100D .-372.如果数列{a n }是等差数列,则下列式子一定成立的有( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 53.由公差d≠0的等差数列a 1,a 2,…,a n 组成一个新的数列a 1+a 3,a 2+a 4,a 3+a 5,…下列说法正确的是( )A .新数列不是等差数列B .新数列是公差为d 的等差数列C .新数列是公差为2d 的等差数列D .新数列是公差为3d 的等差数列4.在数列{a n }中,a 3=2,a 7=1,如果数列是等差数列,那么a 11等于( ){1an +1}A. B. C. D .11312235.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A .-2B .-3C .-4D .-56.若方程(x 2-2x +m)(x 2-2x +n)=0的四个根组成一个首项为的等差数列,则|m-n|=( )14A .1 B. C. D.341238二、填空题7.在等差数列{a n }中,a 3,a 10是方程x 2-3x-5=0的根,则a 5+a 8=________.8.数列{a n }满足递推关系a n =3a n-1+3n -1(n∈N *,n ≥2),a 1=5,则使得数列为等差数列{an +m 3n }的实数m 的值为________.9.已知数列{a n }满足a 1=1,若点在直线x-y +1=0上,则a n =___________.(an n ,an +1n +1)10.若数列{a n }为等差数列,a p =q ,a q =p(p≠q),则a p +q =______________.三、解答题11.在等差数列{a n }中,若a 1+a 2+…+a 5=30,a 6+a 7+…+a 10=80,求a 11+a 12+…+a 15.12.已知无穷等差数列{a n },首项a 1=3,公差d=-5,依次取出项的序号被4除余3的项组成数列{b n }.(1)求b 1和b 2;(2)求数列{b n }的通项公式;(3)数列{b n }中的第110项是数列{a n }中的第几项?13.在数列{a n }中,a 1=1,3a n a n-1+a n -a n-1=0(n≥2,n ∈N *).(1)求证:数列是等差数列;{1an}(2)求数列{a n }的通项公式.答案解析1.答案为:C ;解析:设c n =a n +b n ,则c 1=a 1+b 1=25+75=100,c 2=a 2+b 2=100,故d=c 2-c 1=0,故c n =100(n∈N *),从而c 37=100.2.答案为:B ;解析:由等差数列的性质有a 1+a 8=a 4+a 5.3.答案为:C ;解析:因为(a n +1+a n +3)-(a n +a n +2)=(a n +1+a n )+(a n +3-a n +2)=2d ,所以数列a 1+a 3,a 2+a 4,a 3+a 5,…是公差为2d 的等差数列.4.答案为:B ;解析:依题意得+=2·,所以=-=,所以a 11=.1a3+11a11+11a7+11a11+121+112+123125.答案为:C ;解析:设该数列的公差为d ,则由题设条件知:a 6=a 1+5d>0,a 7=a 1+6d<0.又因为a 1=23,所以即-<d<-,又因为d 是整数,所以d=-4.{d >-235,d <-236,)2352366.答案为:C ;解析:设方程的四个根a 1,a 2,a 3,a 4依次成等差数列,则a 1+a 4=a 2+a 3=2,再设此等差数列的公差为d ,则2a 1+3d=2,因为a 1=,所以d=,所以a 2=+=,a 3=+1=,a 4=+=,14121412341454143274所以|m-n|=|a 1a 4-a 2a 3|==.|14×74-34×54|127.答案为:3;解析:由已知得a 3+a 10=3.又数列{a n }为等差数列,所以a 5+a 8=a 3+a 10=3.8.答案为:- ;12解析:a 1=5,a 2=3×5+32-1=23,a 3=3×23+33-1=95,依题意得,,成等差数列,所以2·=+,所以m=-.5+m 323+m 3295+m 3323+m 325+m 395+m 33129.答案为:n 2解析:由题设可得-+1=0,即-=1,所以数列是以1为公差的等差数an n an +1n +1an +1n +1an n {an n}列,且首项为1,故通项公式=n ,所以a n =n 2.an n 10.答案为:0;解析:法一:因为a p =a q +(p-q)d ,所以q=p +(p-q)d ,即q-p=(p-q)d ,因为p≠q,所以d=-1.所以a p +q =a p +(p +q-p)d=q +q×(-1)=0.法二:因为数列{a n }为等差数列,所以点(n ,a n )在一条直线上.不妨设p <q ,记点A(p ,q),B(q ,p),则直线AB 的斜率k==-1,如图所示,由图知OC=p +q ,即点C 的坐标为(p +q ,0)故a p +q =0.p -q q -p11.解:法一:因为1+11=6+6,2+12=7+7,…,5+15=10+10,所以a 1+a 11=2a 6,a 2+a 12=2a 7,…,a 5+a 15=2a 10.所以(a 1+a 2+…+a 5)+(a 11+a 12+…+a 15)=2(a 6+a 7+…+a 10).所以a 11+a 12+…+a 15=2(a 6+a 7+…+a 10)-(a 1+a 2+…+a 5)=2×80-30=130.法二:因为数列{a n }是等差数列,所以a 1+a 2+…+a 5,a 6+a 7+…+a 10,a 11+a 12+…+a 15也成等差数列,即30,80,a 11+a 12+…+a 15成等差数列.所以30+(a 11+a 12+…+a 15)=2×80,所以a 11+a 12+…+a 15=130.12.解:(1)由题意,等差数列{a n }的通项公式为a n =3+(n-1)(-5)=8-5n ,设数列{b n }的第n 项是数列{a n }的第m 项,则需满足m=4n-1,n ∈N *,所以b 1=a 3=8-5×3=-7,b 2=a 7=8-5×7=-27.(2)由(1)知b n +1-b n =a 4(n +1)-1-a 4n-1=4d=-20,所以新数列{b n }也为等差数列,且首项为b 1=-7,公差为d′=-20,所以b n =b 1+(n-1)d′=-7+(n-1)×(-20)=13-20n.(3)因为m=4n-1,n ∈N *,所以当n=110时,m=4×110-1=439,所以数列{b n }中的第110项是数列{a n }中的第439项.13. (1)证明:由3a n a n-1+a n -a n-1=0,得-=3(n≥2).1an 1an -1又因为a 1=1,所以数列是以1为首项,3为公差的等差数列.{1an}(2)解:由(1)可得=1+3(n-1)=3n-2,所以a n =.1an 13n -2又当n=1时,a 1=1,符合上式,所以数列{a n }的通项公式是a n =.13n -2。
必修5 Unit 5 课下作业(一~三)课下作业(一)考点过关针对练Ⅰ.单词拼写1.Cut the lemon in half and squeeze (榨;挤) the juice out into the bowl.2.These men made themselves famous for their courage and bravery (勇敢).3.They have earned lots of money, so I firmly (坚定地) believe that the business is a success.4.The heavy stress from the study was unbearable (难以忍受的), so Li Lin got depressed and decided to give up.5.The skin, whose functions are very complex, is our body's largest organ which acts as a barrier (屏障) against disease and the sun's harmful rays.6.One of the station staff saw he was in difficulty and came to his aid (援助).7.The moment he graduated from college, he applied (申请) to be sent to the northwest of China.8.The difficulty is temporary (暂时的).Once it's overcome, the project will go smoothly.9.Nowadays the purpose of school is to treat (对待) every student as an individual and to motivate them to reach their potential.10.The doctor said that my eyes would be a little swollen (肿胀的), so I needed to rest at home for a few days.Ⅱ.语境语法填空1.As is known to us, it is vital ❶to_know (know) some knowledge of first aid as danger lies everywhere and accidents happen from time to time.For example, we can get ❷cut (cut) by a ❸variety (various) of things.When your hand bleeds, treat it in time.If the cut is not serious, press it ❹firmly (firm) and soon it will stop ❺bleeding (bleed).If the cut is deep, first tie a bandage around it and then ask a doctor to apply some medicine ❻to it.2.One day, Tom was driving his car to his company ❶when he saw a girl injured in a traffic accident. To make matters worse, the girl was bleeding.Jumping out of the car, Tom gave her first aid and then put her ❷in place, waiting for the ambulance. As a result, his knowledge of first aid made a ❸difference (differ) to the girl.3.One day Mike ❶was_studying (study) in his room when he heard a scream from the kitchen. He rushed out and found his mother got burned while ❷cooking (cook). Mike remembered what he had learned at school. First, he took off the clothes that his mother was wearing near the burns. Then, he put clean cloth in the cold water, ❸squeezed (squeeze) water out and placed it on the burned area over ❹and over again until the pain was not so bad. At last, he put his hands ❺on a dry and clean bandage and went to a doctor with his mother.Ⅲ.语境改错1.文中共有5处错误,每句中最多有两处,请找出并改正。
Module2 课时小作业Ⅰ.语音知识1.standardA.|′stəndaːd|B.|′stændəd|C.|stændaːd| D.|′staːndəd|2.compareA.|kəm′pɛə| B.|kəm′peə|C.|kʌm′pɛə| D.|kʌm′peə|3.switchA.|′swik| B.|′swa itʃ|C.|′swiːtʃ| D.|′switʃ|4.volunteerA.|′ vɔlən′tiə| B.|vʌlən′tiə|C.|vʌluːn′t iə| D.|vɔlən′tiː|5.combinationA.|kɔm′bi′ neiʃn| B.|′kɔmbi′ neiʃn|C.|′ kɔmbi′neiʃn| D.|′ kɔmbinei′ʃn|Ⅱ.情景对话—Hello.I’m calling about the apartment you advertised.—Yes.__1__—I’m interest ed in a one-bedroom apartment.Do you have any available? —__2__When do you need it?—Sometime around next week.What can you tell me about this apartment? —__3__The monthly rent is $650,with a $300 security deposit.—__4__May I come over tomorrow to take a look?—Sure.What time would you like to come?—__5__—Good.May I have your name,please?—My name is Blanca.—Blanca.I’ll see you tomorrow.A.No,I have another oneB.Well,it’s a onebedroom apartment.C.It’s kind of youD.How about 10 a.m.?E.Yes.I have one.F.What kinds of apartments do you prefer?G.Sounds good.Ⅲ.单项填空1.—I want a room for ten people to have a get-together.—Luckily there is one________.A.available B.qualifiedC.standard D.impressive2.The trade union intended to call on the workers to go on strike________the government’s limitation on exports.A.in memory of B.in honour ofC.in response to D.in need of3.The agent was about to sign his name to the document_____________,to our surprise,a stranger broke in to prevent him.A.while B.whenC.as D.until4.The air is badly polluted because some factories don’t__________the rules to protect the environment.A.appreciate B.regardC.honour D.respect5.Much notice has been________the problems with the home-staying children in China.A.paid to B.kept onC.taken of D.made up6.I took it for________that he would try to help me out of the difficulty,but he didn’t at all.A.sure B.certainC.granted D.possible7.(2009年江苏锡山模拟)Please leave your phone number______we can get intouch with you in case of emergency.A.so that B.on condition thatC.for fear that D.so long as8.—Do you think our team will beat theirs?—Our team have better players,so I ________our team will win.A.want B.preferC.wish D.expect9.On a________cold win ter morning,his________body was found in a lonely forest.A.frozen;freezing B.freezing;frozenC.frozen;frozen D.freezing;freezing10.After he retired from office,Rogers________painting for a while,but soon lost interest.A.took up B.saved upC.kept up D.drew up11.The headteacher,________with what the student said,nodded with a smile. A.tiring B.tiredC.satisfying D.satisfied12.The shopowner would sell the MP4 for 800 yuan,but my elder brother________only 600 yuan.A.asked B.chargedC.sold D.offered13.Your suggestion sounds fine________,but would it work________?A.in practice;in theory B.in theory;in practiceC.in advance;in theory D.in general;in practice14.We have seen that method________some other conditions and it does work. A.applied to B.applying forC.applies to D.apply for15.(2009年泰安模拟) Only those who have the patience to do simple things perfectly will________the skill to do difficult things easily.A.demand B.acquireC.accomplish D.achieveⅣ.阅读理解A(2010年郑州第一次检测) Willa Cather once said,“When people ask me whether writing has been a hard or easy road,I always answer with the famous saying: The end is nothing;the road is all.That is what I mean when I say writing has been a pleasure.I have never used the computer with the thought that one more task had to be done.”Like most writers,Willa Cather did n ot write books for the money that they brought her,but rather for the pleasure that came in their writing.Her works were,like her,simple and full of the vigor of her days in Nebraska,where she grew from child to young womanhood and where she developed a deep love for the treeless land of the great plain with its wild flowers,wheat fields and rivers.“It’s a rather strange thing about the flat country,” she wrote later.“It takes hold of you or it leaves you perfectly cold.A great many people find it very dull;they like a church tower,an old factory,a waterfall,the country all made to look like a German Christmas card ...But when I come to the open plain,something happens.I’ m home.I breathe differently.”1.Willa Cather wrote because she found writing________.A.simple and livelyB.opened up a road to successC.neither too hard nor too easyD.interesting and enjoyable2.What was the place like where Cather grew up?A.It was cold,plain and without a church.B.It was vast,open and flat.C.It was like a German Christmas card.D.It was a colorful world of wild flowers.3.When she said “It takes hold of you or it leaves you perfectly cold.”,Willa Cather meant that________.A.you either love the place or hate itB.you decide either to stay or to leaveC.some find the place warm;others find it coldD.some find the place peaceful;others find it wild4.What happens when Cather comes to the open plain?A.She breathes differently from others.B.She wants to make the place her home.C.She feels completely comfortable.D.She finds the place similar to her home.B(2010年福建四地六校联考) Every country tends to accept its own way of life as being the normal one and to praise or criticize others,as they are similar to or different from it.And unfortunately,our picture of the people and the way of life of other countries is often a distorted (扭曲的) one.Here is a great argument in favor of foreign travel and learning foreign languages.It is only by traveling in a country and getting to know its inhabitants and their language that one can find out what a coun try and its people are really like.And how different the knowledge one gains this way frequently turns out to be from the second-hand information gathered from other sources! How often we find that the foreigners whom we thought to be such different people from ourselves are not very different at all!Differences between peoples do,of course,exist and,one hopes,will always continue to do so.The world will be a dull place indeed when all the different nationalities behave exactly alike,and some people might say that we are rapidly approaching this state of affairs.With the much greater rapidity (快速) and ease of travel,there might seem to be some truth in this at least as far as Europe is concerned.However this may be,at least the greater ease of travel today has revealed (展示) to more people than ever before that the Englishman or Frenchman or German is not:some different kind of animal from themselves.5.Every country criticizes ways of life in other countries becau se they are_____.A.distorted B.normalC.similar to each other D.different from its own6.One who travels in a foreign country and learns its language will________. A.find out why its people are differentB.argue in favor of this country and the languageC.know the country and its people betterD.like its inhabitants and their language7.The knowledge one gains by traveling in a foreign country is often________. A.from second-hand informationB.gathered from other sources rather than its inhabitantsC.gained from the arguments about the countryD.different from what one had before the travel8.In this passage,th e author wants to say________.A.differences between peoples will gradually disappear because of the ease of travelB.differences between peoples do exist even though different nationalities behave exactly alikeC.differences between peoples will continue to exist and the world will be a dull placeD.differences between peoples will not exist as one hopes参考答案Ⅰ.语音知识1.B 2.B 3.D 4.A 5.CⅡ.情景对话1.F 2.E 3.B 4.G 5.DⅢ.单项填空1.A available可利用的,常跟在修饰词的后面;其他三项“qualified合格的;standard标准的;impressive印象深刻的”作定语常放在修饰词之前,且与题意不符。
2020年高中数学 人教A 版 必修5 课后作业本《等比数列的前n 项和公式》一、选择题1.等比数列{a n }中,a n =2n ,则它的前n 项和S n =( )A .2n -1B .2n -2C .2n +1-1D .2n +1-22.在等比数列{a n }中,若a 1=1,a 4=,则该数列的前10项和S 10=( )18A .2-B .2-C .2-D .2-128129121012113.等比数列{a n }中,已知前4项之和为1,前8项和为17,则此等比数列的公比q 为( )A .2 B .-2 C .2或-2 D .2或-14.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为,54则S 5=( )A .35B .33C .31D .295.等比数列{a n }中,a 3=3S 2+2,a 4=3S 3+2,则公比q 等于( )A .2 B. C .4 D.12146.已知等比数列{a n }的前n 项和S n =2n -1,则a +a +…+a 等于( )2122n A .(2n-1)2 B.(2n -1) C .4n -1 D.(4n -1)13137.设S n 是等比数列{a n }的前n 项和,若=3,则=( )S4S2S6S4A .2 B. C. D .1或273310二、填空题8.若数列{a n }满足a 1=1,a n +1=2a n ,n=1,2,3,…,则a 1+a 2+…+a n =________.9.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________.10.等比数列的前n 项和S n =m·3n +2,则m=________.11.已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于________.12.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n+a1=2a n,且a1,a2+1,a3成等差数列,则a1+a5=________.三、解答题13.在等差数列{a n}中,a4=10,且a3,a6,a10成等比数列,求数列{a n}前20项的和S20.14.已知数列{a n}的前n项和S n=2n-n2,a n=log5b n,其中b n>0,求数列{b n}的前n项和T n.15.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=,求λ.313216.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n=1,2,…,求数列{b n }的前n 项和T n .答案解析1.答案为:D ;解析:a 1=2,q=2,∴S n ==2n +1-2.2× 1-2n1-22.答案为:B ;解析:设等比数列{a n }的公比为q ,由a 1=1,a 4=,得q 3=,解得q=,181812于是S 10===2-.a1 1-q10 1-q 1- 12 101-121293.答案为:C ;解析:S 4==1,①S 8==17,②;②÷①得1+q 4=17,a1· 1-q41-qa1· 1-q81-qq 4=16.q=±2.4.答案为:C ;解析:设数列{a n }的公比为q ,∵a 2·a 3=a ·q 3=a 1·a 4=2a 1,∴a 4=2.21又∵a 4+2a 7=a 4+2a 4q 3=2+4q 3=2×,∴q=.∴a 1==16.S 5==31.5412a4q3a1· 1-q51-q5.答案为:C ;解析:a 3=3S 2+2,a 4=3S 3+2,等式两边分别相减得a 4-a 3=3a 3,即a 4=4a 3,∴q=4.6.答案为:D ;解析:根据前n 项和S n =2n -1,可求出a n =2n-1,由等比数列的性质可得{a }仍为等比数2n 列,且首项为a ,公比为q 2,∴a +a +…+a =1+22+24+…+22n-2=(4n -1).212122n 137.答案为:B ;解析:设S 2=k ,则S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴==,S6S47k 3k 73故选B.8.答案为:2n -1;解析:由=2,∴{a n }是以a 1=1,q=2的等比数列,故S n ==2n -1.an +1an 1× 1-2n1-29.答案为:;13解析:∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3,即4(a 1+a 1q)=a 1+3(a 1+a 1q +a 1q 2),∴4(1+q)=1+3(1+q +q 2),解之得q=.1310.答案为:-2;解析:设等比数列为{a n },则a 1=S 1=3m +2,S 2=a 1+a 2=9m +2⇒a 2=6m ,S 3=a 1+a 2+a 3=27m +2⇒a 3=18m ,又a =a 1·a 3⇒(6m) 2=(3m +2)·18m ⇒m=-2或m=0(舍去).∴m=-2.211.答案为:2n -1;解析:由题意,Error!,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3==8,所以q=2,a4a1因而数列{a n }的前n 项和S n ===2n -1.a1 1-qn 1-q 1-2n1-212.答案为:34;解析:由S n +a 1=2a n ,得a n =S n -S n-1=2a n -2a n-1(n≥2),即a n =2a n-1(n≥2).从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,所以a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n ,所以a 1+a 5=2+25=34.13.解:设数列{a n }的公差为d ,则a 3=a 4-d=10-d ,a 6=a 4+2d=10+2d ,a 10=a 4+6d=10+6d ,由a 3,a 6,a 10成等比数列,得a 3a 10=a ,26即(10-d)(10+6d)=(10+2d)2.整理,得10d 2-10d=0.解得d=0或d=1.当d=0时,S 20=20a 4=200;当d=1时,a 1=a 4-3d=10-3×1=7,于是S 20=20a 1+d=20×7+190=330.20×19214.解:当n≥2时,a n =S n -S n-1=(2n-n 2)-[2(n-1)-(n-1)2]=-2n +3,当n=1时,a 1=S 1=2×1-12=1也适合上式,∴{a n }的通项公式a n =-2n +3(n ∈N *).又a n =log 5b n ,∴log 5b n =-2n +3,于是b n =5-2n +3,b n +1=5-2n +1,∴==5-2=.bn +1bn 5-2n +15-2n +3125因此{b n }是公比为的等比数列,且b 1=5-2+3=5,125于是{b n }的前n 项和T n ==.5[1-(125)n ]1-12512524[1-(125)n ]15.解:(1)证明:由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=,a 1≠0.11-λ由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以=.an +1an λλ-1因此{a n }是首项为,公比为的等比数列,于是a n =n-1.11-λλλ-111-λ(λλ-1)(2)由(1)得S n =1-n .(λλ-1)由S 5=得1-5=,即5=.3132(λλ-1)3132(λλ-1)132解得λ=-1.16.解:(1)由已知得Error!解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=,a 3=2q ,2q又S 3=7,可知+2+2q=7,即2q 2-5q +2=0.解得q 1=2,q 2=.2q 12由题意得q>1,∴q=2,∴a 1=1.故数列{a n }的通项为a n =2n-1.(2)由于b n =ln a 3n +1,n=1,2,…,由(1)得a 3n +1=23n ,∴b n =ln 23n =3nln 2.又b n +1-b n =3ln 2,∴{b n }是等差数列,∴T n =b 1+b 2+…+b n ==·ln 2.n b1+bn 23n n +12故T n =ln 2.3n n +1 2。
第5课 以工匠精神雕琢时代品质基础积累练进阶训练第一层一、基础清单化预练1.读准字音。
(1)单音字①炫.彩酷( ) ②雕琢.( ) ③挑剔.( ) ④精湛.( ) ⑤造诣.( ) ⑥雍.容( ) ⑦推崇.( ) ⑧出类拔萃.( ) (2)多音字①他得了冠.( )军后,讲起话来就有点冠.( )冕堂皇了。
②他很倔强.( ),从不服输,在赛前加强.( )了训练,但竞赛时没发挥好,牵强( )过了关。
2.辨明字形。
①⎩⎪⎨⎪⎧cu ò( )刀cu ò( )折 ②⎩⎪⎨⎪⎧墓志m ín ɡ( )m ín ɡ( )称③⎩⎪⎨⎪⎧浮z ào ( )枯z ào ( ) ④⎩⎪⎨⎪⎧荟cu ì( )精cu ì( ) 3.推断加点成语运用正误。
(1)开展群众路途教化实践活动,深化基层真抓实干才是硬道理,少些来回比划的雕虫..小技..,少做些表面文章。
( ) (2)性格内向的人,有的喜爱离群索居....,由于少有挚友来往,他们在生活中经常是茕茕孑立,形影相吊。
( )(3)在世界杯足球赛上,南美队的超群技艺,欧洲队的粗犷、威猛,非洲队的灵活、快速,无不表现得炉火纯青....。
( ) (4)面对这次犯下的大错,他还抱着无所谓的看法,采纳装聋作哑、一推六二五的手段,拒不认错,物我两忘....。
( ) 二、语基习题化细练4.依次填入下列横线处的词语,最恰当的一组是( )大国博弈,正从陆地走向海洋。
正如“两弹一星”给予中国大国地位一样,具备与海权相匹配的实力,穿越东海南海的激流暗礁,不欺人的中国才能不被人欺。
这穷兵黩武,防卫反击。
A.只能才会不仅是更是B.不仅而且不仅是更是C.因为所以不是而是D.只有才能不是而是5.下列各句中,没有语病的一句是( )A.良好的企业家精神主要是由企业家的创新精神、工匠精神及其责随意识。
实现企业的全面发展,离不开“企业家精神”的充分发挥。
课时作业9 等差数列的性质及简单应用[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.在等差数列{a n }中,a 10=30,a 20=50,则a 40等于( )A .40B .70C .80D .90解析:方法一:因为a 20=a 10+10d ,所以50=30+10d ,所以d =2,a 40=a 20+20d =50+20×2=90.方法二:因为2a 20=a 10+a 30,所以2×50=30+a 30,所以a 30=70,又因为2a 30=a 20+a 40,所以2×70=50+a 40,所以a 40=90.答案:D2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则a 4+a 10等于( )A .3B .4C .5D .12解析:a 3+a 5=2a 4,a 7+a 10+a 13=3a 10,∴由题设知6(a 4+a 10)=24,∴a 4+a 10=4.答案:B3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( ) A .-1 B .0C.14D.12解析:a 2+a 4=2a 3=2,又a 2a 4=34,且a 4>a 2, 解得a 2=12,a 4=32,∴d =12,∴a 1=0. 答案:B4.在等差数列{a n }中,已知a 5+a 10=12,则3a 7+a 9=( )A .12B .18C .24D .30解析:由已知得:a 5+a 10=2a 1+13d =12,所以3a 7+a 9=3(a 1+6d )+a 1+8d =4a 1+26d =2(a 5+a 10)=24.答案:C5.下面是关于公差d >0的等差数列{a n }的四个说法.p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎪⎫a n n 是递增数列; p 4:数列{a n +3nd }是递增数列.其中正确的是( )A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 4解析:因为a n =a 1+(n -1)d ,d >0,所以a n -a n -1=d >0,命题p 1正确.na n =na 1+n (n -1)d ,所以na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小和a 1的取值情况有关.故数列{na n }不一定递增,命题p 2不正确.对于p 3:a n n =a 1n +n -1n d , 所以a n n -a n -1n -1=-a 1+d n (n -1), 当d -a 1>0,即d >a 1时,数列⎩⎨⎧⎭⎬⎫a n n 递增, 但d >a 1不一定成立,则p 3不正确.对于p 4:设b n =a n +3nd ,则b n +1-b n =a n +1-a n +3d =4d >0.所以数列{a n +3nd }是递增数列,p 4正确.综上,正确的命题为p 1,p 4.答案:D二、填空题(每小题5分,共15分)6.设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 解析:∵数列{a n },{b n }都是等差数列,∴数列{a n +b n }也构成等差数列,∴2(a 3+b 3)=(a 1+b 1)+(a 5+b 5),∴2×21=7+a 5+b 5,∴a 5+b 5=35.答案:357.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=________.解析:本题考查等差数列的性质及通项公式.∵a 1+a 3+a 5=3a 3=105,∴a 3=35.∵a 2+a 4+a 6=3a 4=99,∴a 4=33,∴公差d =a 4-a 3=-2.∴a 20=a 4+16d =33+16×(-2)=1.答案:18.已知{a n }为等差数列,a 5+a 7=4,a 6+a 8=-2,则该数列的正数项共有________项. 解析:∵a 5+a 7=2a 6=4,a 6+a 8=2a 7=-2,∴a 6=2,a 7=-1,∴d =a 7-a 6=-3,∴a n =a 6+(n -6)d =2+(n -6)×(-3)=-3n +20.令a n ≥0,解得n ≤203,即n =1,2,3,…,6,故该数列的正数项共有6项. 答案:6三、解答题(每小题10分,共20分)9.已知成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数. 解析:设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题意得⎩⎪⎨⎪⎧ (a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,即⎩⎪⎨⎪⎧ 4a =26,a 2-d 2=40,解得⎩⎪⎨⎪⎧ a =132,d =32或⎩⎪⎨⎪⎧ a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.10.首项为a 1,公差d 为正整数的等差数列{a n }满足下列两个条件:(1)a 3+a 5+a 7=93;(2)满足a n >100的n 的最小值是15.试求公差d 和首项a 1的值.解析:因为a 3+a 5+a 7=93,所以3a 5=93,所以a 5=31,所以a n =a 5+(n -5)d >100,所以n >69d+5. 因为n 的最小值是15,所以14≤69d+5<15, 所以6910<d ≤723, 又d 为正整数,所以d =7,a 1=a 5-4d =3.[能力提升](20分钟,40分)11.已知{a n }是公差为正数的等差数列,a 1+a 2+a 3=15,a 1·a 2·a 3=80,则a 11+a 12+a 13的值为( )A .105B .120C .90D .75解析:由等差数列的性质得a 1+a 2+a 3=3a 2=15,所以a 2=5,又因为a 1·a 2·a 3=80,所以a 1·a 3=16,所以(a 2-d )(a 2+d )=16,即(5-d )(5+d )=16,所以d 2=9,又因为d >0,所以d =3.所以a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+10×3)=105.答案:A12.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________.解析:由已知a 2n +1-a 2n =4,所以{a 2n }是等差数列,且首项a 21=1,公差d =4,所以a 2n =1+(n -1)·4=4n -3.又a n >0,所以a n =4n -3. 答案:4n -313.若关于x 的方程x 2-x +m =0和x 2-x +n =0(m ,n ∈R 且m ≠n )的四个根组成首项为14的等差数列,求m +n 的值.解析:设x 2-x +m =0的两根为x 1,x 2, x 2-x +n =0的两根为x 3,x 4,则x 1+x 2=x 3+x 4=1.不妨设数列的首项为x 1,则数列的第4项为x 2,所以x 1=14,x 2=34,公差d =34-143=16. 所以中间两项分别是512,712. 所以x 1x 2=316,x 3x 4=512×712. 所以m +n =316+512×712=3172.14.一个等差数列的首项是8,公差是3;另一个等差数列的首项是12,公差是4,这两个数列有公共项吗?如果有,求出最小的公共项,并指出它分别是两个数列的第几项.解析:首项是8,公差是3的等差数列的通项公式为a n =3n +5;首项是12,公差是4的等差数列的通项公式为b m =4m +8.根据公共项的意义,就是两项相等,令a n =b m ,即n =4m 3+1,该方程有正整数解时,m =3k ,k 为正整数,令k =1,得m =3,则n =5. 因此这两个数列有最小的公共项为20,分别是第一个数列的第5项,第二个数列的第3项.。
第一部分自主练习寒假作业⑤One’s meat is another’s poison. 己所不欲,勿施于人。
◇M美文品鉴Give it a shot! 试试看work one’s butt off 很努力地(做一件事)brush off 不理;漠视bound to 必定all set 都准备妥当jazz (sth.) up 让(一件事)变得有趣些My hands are tied. 我无能为力maxed out 累惨了jerk one’s chain 烦(某)人If you Snooze, You Lose! 如果你不注意,就错过良机了。
have a cow (俚语)非常生气knock it off! 住手!(不要再做某事)◇J基础演练I. 单词拼写1.The report seeks to r_____ the rise in crime to an increase in unemployment.2.Women in our country enjoy e_____ rights with men.3. In production, we ______ (要求) not only quantity but also quality.4. Too many job hunters make the ______ (典型的) mistake of thinking only about what’s in it for them.5. The money was collected for a ______ (具体的) purpose.II. 单句语法填空1. I used to get high marks in English, ________ now I'm having a lot of trouble with my listening.2. Children usually pick ______ foreign languages very quickly.3.I hope you will keep ______ mind what I am saying.4. I have already learned the new ______ (express) in Unit 2.5.Your ______ (spell) should be paid attention to.III. 单句写作1. A cultural celebration usually refers to _________.文化庆祝活动通常指的是庆祝某个特定民族或地方传统的活动。
Modu le 1Ⅰ.单句语法填空1.He,along with his classmates,always ______(confuse)Lisa with her sister—they are so alike.2.Leaves are found on all kinds of trees,but they differ greatly ______ size and shape.3.It was the remarks he ______(make) at the conference that left me wondering about his real purpose.4.Shelly had prepared carefully for her biology examination so that she could be sure of passing it ______ her first attempt.5.You can't imagine what difficulty we had ______ (walk) home in the snowstorm.6.They are in great need of help and your support will make a difference ______ them.7.My sister was against my suggestion while my brother was ______ favour of it.8.Thanks ______ Cilium's tireless efforts,the concert achieved huge success.9.Recently a survey ______(compare) prices of the same goods in two different supermarkets has caused a heated debate among citizens.10.Everyone in the village is very friendly.It doesn't matter ______ you have lived there for a short or a long time.Ⅱ.用所给短语的适当形式填空make an attempt,have...in common,thanks to,refer to,get around,lead to1.If you meet with any new words,you had better______the dictionary.2.After several months' hard training,he______to pass the driving test.3.______your help,I accomplished my task on time.4.The two cultures______a lot______.5.When we stayed in the city of Qingdao,I______the downtown.6.Heart failure______her father's death.Ⅲ.完成句子1.他毫不费力的解出了那道难题。
高中数学必修5课后习题答案(共10篇)高中数学必修5课后习题答案(一): 人教版高一数学必修5课后习题答案课本必修5,P91练习2,P93习题A组3和B组3,全部都是线性规划问题, 生产甲乙两种适销产品,每件销售收入分别为3000元,2023元。
甲乙产品都需要A、B两种设备上加工,每台A、B设备上加工1件甲设备工时分别为1h,2h,加工乙设备工时2h,1h,A、B两种设备每月有效使用台时数分别为400h和500h,如何安排生产可使收入最大?2.电视台应某企业之约播放两套电视剧,其中,连续剧甲每次播放时间为80分钟,其中广告时间为1分钟,收视观众为60万;连续剧乙每次播放时间为40分钟,广告时间1分钟,收视观众20万。
已知和电视台协议,要求电视台每周至少播放6分钟广告,二电视台每周只能为该企业提供不多于320分钟的节目时间。
如果你是电视台制片人,电视台每周应播映两套连续剧各多少次,才能获得更高的收视率?P91练习 2 答案:解设每月生产甲商品x件,生产乙商品y件,每月收入z元,目标函数z=3X+2y,需要满足的条件是:x+2y≤400 2X+y≤500 x≥0 y≥0作图略作直线z=3x+2y,当直线经过A点时,z 取最大值解方程组{x+2y=400 2x+y=500 可取点A 《200,100》所以z的最大值为800高中数学必修5课后习题答案(二): 高一人教版数学必修5课后习题答案知道下列各项·写出同项公式1,√2/2,1/2,√2/4 1/4关于数列问题1,√2/2=1*√2/2,1/2=1*(√2/2)^2,√2/4=1*(√2/2)^31/4=1*(√2/2)^4……所以是以首项为1,公比为√2/2的等比数列An=(√2/2)^(n-1)高中数学必修5课后习题答案(三): 高中数学必修5课后习题1.1A组第一第二题答案要有步骤解三角形A=70° B=30° c=20cm b=26cm c=15cm C=23° a=15cm,b=10cm,A=60° b=40cm,c=20cm,C=25°1.180°--70° --30° =80°所以角C=80°然后用正弦定理2.还是正弦定理3.还是正弦定理4.还是正弦定理很简单的正弦定理a比上sinA=b比上sinB=c比上sinCa是边长,A是角高中数学必修5课后习题答案(四): 数学必修五课后习题答案数学必修五第五页(也可能是第四页)课后习题答案,要有解题过程,大神们呐,帮帮我吧参考书里没有解题过程!2在三角形ABC中,已知下列条件,解三角形(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°画图题2个题做法基本一样比如第1小题,先根据已知角度画出已知角B,然后以角点B为圆心,以20为半径画圆弧,和B的某一线相交一点C,再以该点为圆心,以11cm为半径画圆弧,和B角的另一角边相交,这样得到A点,到此,三角形就画好了.高中数学必修5课后习题答案(五): 数学必修5练习x^2-(2m+1)x+m^2+m分析x -(2m+1)x+m +m高中数学必修5课后习题答案(六): 高一数学必修5解三角形正弦定理课后练习B组第一题(1) a=2RsinA,b=2RsinB,c=2RsinC; (2) sinA :sinB :sinC = a :b :c;高中数学必修5课后习题答案(七): 高二数学必修5答案,人民教育出版社的,习题2—3A的练习题,P51页,急用,我的同学瞧不起我,我非要做个全对不可,可我数学一点都不好,我不想就这样被同学踩在脚底下,希望谁有答案,帮忙写一下,拜托了,我先拿30分,不够的话,再说.看看这个,参考参考.高中数学必修5课后习题答案(八): 高中数学必修5第三章不等式复习参考题答案【高中数学必修5课后习题答案】有本书叫《中学教材全解》,是陕西出版社的金星教育那上面有详细的解答准确度很高同时发几个网址,看有没有你需要的高中数学必修5复习题及答案(A组)人教版高中数学必修模块(1-5)全部精品课件集高中数学必修5课后习题答案(九): 高一数学作业本必修5的题目..11.(1)已知x>0,y>0.且(1/x)+(9/y)=1.求x+y的最大值.(2)已知x【高中数学必修5课后习题答案】11.(1) (1/x+1/y)*(x+y)=1+9+9x/y+y/x=10+9x/y+y/x9x/y+y/x>=2√9x/y*y/x1/x+9/y>=16(2)y=4x-5+1/(4x-5)+3>=2√(4x-5)*1/(4x-5)+3>=5(3)跟第一题是一样的,就是除以xy,答案是18高中数学必修5课后习题答案(十): 人教版数学必修5习题2.2B组1答案求高中数学必修5的40页B组第一题的答案.(1)从表看出,基本是一个等差数列,d=2023,a2023=a2023+8d=0.26x10^5,在加上原有的9x10^5,答案为:9.26x10^5.(2)2023年底,小于8x10^5hm略。
3.4 基本不等式基础巩固一、选择题1.a 、b 、c 是互不相等的正数,且a 2+c 2=2bc ,则下列关系中可能成立的是( ) A .a >b >c B .c >a >b C .b >a >cD .a >c >b2.设{a n }是正数等差数列,{b n }是正数等比数列,且a 1=b 1,a 21=b 21,则( ) A .a 11=b 11 B .a 11>b 11 C .a 11<b 11D .a 11≥b 113.若正数x 、y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A .245B .285C .5D .64.已知a >1,b >1,且lg a +lg b =6,则lg a ·lg b 的最大值为( ) A .6 B .9 C .12D .185.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与平均到每件产品的仓储费用之和最小,每批应生产产品( ) A .60件 B .80件二、填空题6.已知2x +3y=2(x >0,y >0),则xy 的最小值是________.7.若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________.一、选择题1.若a 、b 、c 、d 、x 、y 是正实数,且P =ab +cd ,Q =ax +cy ·b x +dy,则有( ) A .P =Q B .P ≥Q C .P ≤QD .P >Q2.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值13.已知y >x >0,且x +y =1,那么( ) A .x <x +y 2<y <2xyB .2xy <x <x +y2<yC .x <x +y 2<2xy <yD .x <2xy <x +y2<y4.设a 、b 是正实数,给出以下不等式:①ab >2ab a +b ;②a >|a -b |-b ;③a 2+b 2>4ab -3b 2;④ab +2ab >2,其中恒成立的序号为( )A .①③B .①④C .②③D .②④二、填空题5.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为每平方米120元和80元,那么水池的最低总造价为__________元.6.已知在△ABC 中,∠ACB =90°,BC =3,AC =4,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是________. 三、解答题7.若x >0,y >0,x +y =1,求证:(1+1x )·(1+1y )≥9.8.已知a 、b 、c ∈R +,求证:a 2b +b 2c +c 2a≥a +b +c .。
2020年高中数学 人教A 版 必修5 课后作业本《等差数列的前n 项和公式的性质及应用》一、选择题1.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .112.数列{a n }为等差数列,若a 1=1,d=2,S k +2-S k =24,则k=( )A .8B .7C .6D .53.记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6=( ) A .16 B .24 C .36 D . 484.设{a n }是等差数列,若a 2=3,a 7=13,则数列{a n }的前8项和为( )A .128B .80C .64D .565.数列{a n }是等差数列,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( )A .160B .180C .200D .2206.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项7.等差数列{a n }的前n 项和为S n ,已知a m-1+a m +1-a 2m =0,S 2m-1=38,则m=( )A .38B .20C .10D .9二、填空题8.有两个等差数列{a n },{b n },它们的前n 项和分别为S n 和T n .若S n T n =2n +1n +2,则a 8b 7等于________.9.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是________.10.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________.11.已知等差数列{a n },{b n }的前n 项和分别为A n ,B n ,且满足A n B n =2n n +3,则a 1+a 2+a 12b 2+b 4+b 9=________.12.数列{a n }的通项公式a n =ncos nπ2,其前n 项和为S n ,则S 2 016等于________.三、解答题13.设正项数列{a n }的前n 项和为S n ,并且对于任意n ∈N *,a n 与1的等差中项等于S n ,求数列{a n }的通项公式.14.已知等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.15.某电站沿一条公路竖立电线杆,相邻两根电线杆的距离都是50 m ,最远一根电线杆距离电站1 550 m ,一汽车每次从电站运出3根电线杆供应施工.若该汽车往返运输总行程为17 500 m ,共竖立多少根电线杆?第一根电线杆距离电站多少米?16.已知数列{a n },a n ∈N *,S n 是其前n 项和,S n =18(a n +2)2. (1)求证{a n }是等差数列;(2)设b n =12a n -30,求数列{b n }的前n 项和的最小值.答案解析1.答案为:A ;解析:a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5a 1+a 52=5a 3=5.2.答案为:D ;解析:∵S k +2-S k =a k +1+a k +2=a 1+kd +a 1+(k +1)d =2a 1+(2k +1)d=2×1+(2k +1)×2=4k+4=24,∴k=5.3.答案为:D ;解析:设数列{a n }的公差为d ,则S n =n 2+n n -12d , ∴S 4=2+6d=20,∴d=3,∴S 6=3+15d=48.4.答案为:C ;解析:设数列{a n }的前n 项和为S n ,则S 8=8a 1+a 82=8a 2+a 72=8×3+132=64.5.答案为:B ;解析:∵{a n }是等差数列,∴a 1+a 20=a 2+a 19=a 3+a 18.又a 1+a 2+a 3=-24,a 18+a 19+a 20=78,∴a 1+a 20+a 2+a 19+a 3+a 18=54.∴3(a 1+a 20)=54.∴a 1+a 20=18.∴S 20=20a 1+a 202=180.6.答案为:A ;解析:∵a 1+a 2+a 3=34,① a n +a n-1+a n-2=146,②又∵a 1+a n =a 2+a n-1=a 3+a n-2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③ S n =a 1+a n ·n 2=390.④ 将③代入④中得n=13.7.答案为:C ;解析:由等差数列的性质,得a m-1+a m +1=2a m ,∴2a m =a 2m .由题意得a m ≠0,∴a m =2.又S 2m-1=2m -1a 1+a 2m -12=2a m 2m -12=2(2m-1)=38,∴m=10.8.答案为:3115; 解析:由{a n },{b n }是等差数列,S n T n =2n +1n +2,不妨设S n =kn(2n +1),T n =kn(n +2)(k≠0), 则a n =3k +4k(n-1)=4kn-k ,b n =3k +2k(n-1)=2kn +k.所以a 8b 7=32k -k 14k +k =3115.9.答案为:20;解析:由已知得3a 3=105,3a 4=99,∴a 3=35,a 4=33,∴d=-2,a n =a 4+(n-4)(-2)=41-2n ,由⎩⎪⎨⎪⎧a n ≥0a n +1<0,得n=20.10.答案为:3;解析:S 奇=a 1+a 3+a 5+a 7+a 9=15,S 偶=a 2+a 4+a 6+a 8+a 10=30,∴S 偶-S 奇=5d=15,∴d=3.11.答案为:32; 解析:a 1+a 2+a 12b 2+b 4+b 9=3a 1+12d 13b 1+12d 2=a 5b 5=a 1+a 92b 1+b 92=9×a 1+a 929×b 1+b 92=A 9B 9=2×99+3=32.12.答案为:1 008;解析:由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 016=504×2=1 008.13.解:由题意知,S n =a n +12,得:S n =a n +124, ∴a 1=S 1=1,又∵a n +1=S n +1-S n =14[(a n +1+1)2-(a n +1)2], ∴(a n +1-1)2-(a n +1)2=0.即(a n +1+a n )(a n +1-a n -2)=0,∵a n >0,∴a n +1-a n =2,∴{a n }是以1为首项,2为公差的等差数列.∴a n =2n-1.14.解:(1)设等差数列{}a n 的公差为d ,则a n =a 1+(n-1)d.由a 1=1,a 3=-3可得1+2d=-3,解得d=-2.从而a n =1+(n-1)×(-2)=3-2n.(2)由(1)可知a n =3-2n.所以S n =n[1+3-2n ]2=2n-n 2. 进而由S k =-35可得2k-k 2=-35,即k 2-2k-35=0.解得k=7或k=-5.又k ∈N *,故k=7为所求结果.15.解:由题意知汽车逐趟(由近及远)往返运输行程组成一个等差数列,记为{a n },则a n =1 550×2=3 100,d=50×3×2=300,S n =17 500.由等差数列的通项公式及前n 项和公式,得⎩⎪⎨⎪⎧ a 1+n -1×300=3 100, ①na 1+n n -12×300=17 500. ②由①得a 1=3 400-300n.代入②得n(3 400-300n)+150n(n-1)-17 500=0,整理得3n 2-65n +350=0,解得n=10或n=353(舍去), 所以a 1=3 400-300×10=400.故汽车拉了10趟,共拉电线杆3×10=30(根),最近的一趟往返行程400 m ,第一根电线杆距离电站12×400-100=100(m). 所以共竖立了30根电线杆,第一根电线杆距离电站100 m.16.解:(1)证明:当n=1时,a 1=S 1=18(a 1+2)2,解得a 1=2. 当n≥2时,a n =S n -S n-1=18(a n +2)2-18(a n-1+2)2, 即8a n =(a n +2)2-(a n-1+2)2,整理得,(a n -2)2-(a n-1+2)2=0,即(a n +a n-1)(a n -a n-1-4)=0.∵a n ∈N *,∴a n +a n-1>0,∴a n -a n-1-4=0,即a n -a n-1=4(n≥2).故{a n }是以2为首项,4为公差的等差数列.(2)设{b n }的前n 项和为T n ,∵b n =12a n -30,且由(1)知a n =2+(n-1)×4=4n -2, ∴b n =12(4n-2)-30=2n-31, 故数列{b n }是单调递增的等差数列.令2n-31=0,得n=1512, ∵n ∈N *,∴当n≤15时,b n <0;当n≥16时,b n >0,即b 1<b 2<…<b 15<0<b 16<b 17<…,当n=15时,T n 取得最小值,最小值为T 15=-29-12×15=-225.。
其次章 章末检测 (A )一、选择题(本大题共12小题,每小题5分,共60分)1.{a n }是首项为1,公差为3的等差数列,假如a n =2 011,则序号n 等于( ) A .667 B .668 C .669 D .671 答案 D解析 由2 011=1+3(n -1)解得n =671.2.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ) A .15 B .30 C .31 D .64 答案 A解析 在等差数列{a n }中,a 7+a 9=a 4+a 12,∴a 12=16-1=15.3.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 答案 B解析 由a 5=a 2q 3得q =3.∴a 1=a 2q =3,S 4=a 1(1-q 4)1-q =3(1-34)1-3=120.4.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( ) A .160 B .180 C .200 D .220 答案 B解析 ∵(a 1+a 2+a 3)+(a 18+a 19+a 20) =(a 1+a 20)+(a 2+a 19)+(a 3+a 18) =3(a 1+a 20)=-24+78=54, ∴a 1+a 20=18.∴S 20=20(a 1+a 20)2=180.5.数列{a n }中,a n =3n -7 (n ∈N +),数列{b n }满足b 1=13,b n -1=27b n (n ≥2且n ∈N +),若a n +log k b n 为常数,则满足条件的k 值( )A .唯一存在,且为13B .唯一存在,且为3C .存在且不唯一D .不肯定存在 答案 B解析 依题意,b n =b 1·⎝⎛⎭⎫127n -1=13·⎝⎛⎭⎫133n -3=⎝⎛⎭⎫133n -2,∴a n +log k b n =3n -7+log k ⎝⎛⎭⎫133n -2=3n -7+(3n -2)log k 13=⎝⎛⎭⎫3+3log k 13n -7-2log k 13, ∵a n +log k b n 是常数,∴3+3log k 13=0,即log k 3=1,∴k =3.6.等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( ) A .8 B .-8 C .±8 D .以上都不对 答案 A解析 ∵a 2+a 6=34,a 2·a 6=64,∴a 24=64,∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8.7.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q 等于( ) A .1或2 B .1或-2 C .-1或2 D .-1或-2 答案 C解析 依题意有2a 4=a 6-a 5, 即2a 4=a 4q 2-a 4q ,而a 4≠0, ∴q 2-q -2=0,(q -2)(q +1)=0.∴q =-1或q =2.8.设等比数列{a n }的前n 项和为S n ,若S 10∶S 5=1∶2,则S 15∶S 5等于( ) A .3∶4 B .2∶3 C .1∶2 D .1∶3 答案 A解析 明显等比数列{a n }的公比q ≠1,则由S 10S 5=1-q 101-q 5=1+q 5=12⇒q 5=-12, 故S 15S 5=1-q 151-q 5=1-(q 5)31-q 5=1-⎝⎛⎭⎫-1231-⎝⎛⎭⎫-12=34. 9.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于( )A.1514B.1213C.1316D.1516 答案 C解析 由于a 23=a 1·a 9,所以(a 1+2d )2=a 1·(a 1+8d ).所以a 1=d .所以a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =1316.10.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 答案 B解析 ∵(a 2-a 1)+(a 4-a 3)+(a 6-a 5)=3d , ∴99-105=3d .∴d =-2.又∵a 1+a 3+a 5=3a 1+6d =105,∴a 1=39.∴S n =na 1+n (n -1)2d =-n 2+40n =-(n -20)2+400.∴当n =20时,S n 有最大值.11.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X ) 答案 D解析 由题意知S n =X ,S 2n =Y ,S 3n =Z .。
1.1正弦定理和余弦定理(数学5必修)1.2应用举例1.3实习作业[基础训练A 组]一、选择题(六个小题,每题5分,共30分)1.在△ABC 中,若0030,6,90===B a C ,则b c -等于()A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是()A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角A 、B 均为锐角,且,sin cos B A >则△ABC 的形状是()A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长=()A .2B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于()A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是()A .090B .0120C .0135D .0150二、填空题(五个小题,每题6分,共30分)1. 在Rt △ABC 中,C=090,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C=7∶8∶13,则C=_____________。
5.在△ABC 中,,26-=AB ∠C=300,则AC+BC 的最大值是________。
三、解答题(四个小题,每题10分,共40分)1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
课时作业(五)1.若等差数列{a n }的前3项和S 3=9且a 1=1,则a 2等于( ) A .3 B .4 C .5 D .6答案 A解析 设公差为d ,S 3=3a 1+3×22d =3+3×22d =9,解得d =2,则a 2=a 1+d =3.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C解析 由⎩⎪⎨⎪⎧3(a 1+4)2=6,a 1+2d =4,解得d =2. 3.已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( ) A .30 B .45 C .90 D .186答案 C解析 ∵a 2=6,a 5=15, ∴d =a 5-a 25-2=15-63=3.∴a n =a 2+(n -2)d =3n. ∴b n =a 2n =6n.∴{b n }的前5项和为5(b 1+b 5)2=5(6+30)2=90.4.(2015·聊城七校联考)在等差数列{a n }中,a 1+a 4=10,a 2-a 3n 为( ) A .8+n -n 2B .9n -n 2C .5n -n 2D.9n -n 22答案 B解析 ∵a 2-a 3=2,∴公差d =a 3-a 2=-2. 又a 1+a 4=a 1+(a 1+3d)=2a 1-6=10, ∴a 1=8,∴S n =-n 2+9n.5.等差数列{a n }中,a 9=3,那么它的前17项的和S 17=( ) A .51 B .34 C .102 D .不能确定答案 A解析 S 17=17a 9=17×3=51.6.已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A .64 B .100 C .110 D .120答案 C解析 由a 1+a 2=4,a 7+a 8=28,得d =2.所以S 10=10(a 1+a 10)2=10(a 1+a 2+8d )2=10×(4+8×2)2=100,故选B.7.已知等差数列的公差为-57,其中某连续7项的和为0,则这7项中的第1项是( )A .137B .217C .267D .347答案 B解析 记某连续7项为a 1,a 2,a 3,a 4,a 5,a 6,a 7;则 a 1+a 2+a 3+a 4+a 5+a 6+a 7=7a 4=0,∴a 4=0. ∴a 1=a 4-3d =0-3·(-57)=157.8.等差数列{a n }中,前n 项和S n =an 2+(a -1)·n+(a +2),则a n 等于( )A .-4n +1B .2an -1C .-2an +1D .-4n -1答案 D解析 ∵{a n }为等差数列,且S n =an 2+(a -1)·n+(a +2),∴a +2=0,a =-2,∴S n =-2n 2-3n. ∴a n =-4n -1.9.{a n }是等差数列,首项a 1>0,a 2 003+a 2 0042 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4 005B .4 006C .4 007D .4 008答案 B解析 ∵S n =n (a 1+a n )2,∴S 4 006=4 006(a 1+a 4 006)2=2 003(a 2 003+a 2 004)>0.又S 4 007=4 007(a 1+a 4 007)2=4 007·a 2 004<0.∴选B.10.等差数列{a n }的前n 项和为S n .已知a m -1+a m +1-a m 2=0,S 2m -1=38,则m =( ) A .38 B .20 C .10 D .9答案 C解析 由条件得2a m =a m -1+a m +1=a m 2,从而有a m2m -1=a 1+a 2m -12×(2m -1)=38且2a m =a 1+a 2m-1,得(2m -1)a m =m ≠0,则有2m -1=19,m =10.11.等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 8=________. 答案 48解析 设公差为d ,由题意得⎩⎪⎨⎪⎧a 1+d =1,a 1+2d =3,解得a 1=-1,d 8=8a 1+8×72d =8×(-1)+8×72×2=48.12.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 答案 13解析 设等差数列{a n }的首项为a 1,公差为d ,则由6S 5-5S 3=5,得6(a 1+3d)=2,所以a 4=13.13.在等差数列{a n }中,若公差d =1,S 2n =100,则a 12-a 22+a 32-a 42+…+a 2n -12-a 2n 2=________. 答案 -100解析 原式=(a 1+a 2)(a 1-a 2)+(a 3+a 4)(a 3-a 4)+…+(a 2n -1+a 2n )(a 2n -1-a 2n ) =(a 1+a 2+a 3+…+a 2n -1+a 2n )·(-1) =-S 2n =-100.14.已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 和a n ;(2)a 1=1,a n =-512,S n =-1 022,求公差d. 解析 (1)因为S n =n·32+n (n -1)2·(-12)=-15,整理,得n 2-7n -60=0. 解得n =12或n =-5(舍去). 所以a 12=32+(12-1)×(-12)=-4.(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,n =a 1+(n -1)d ,即-512=1+(4-1)d ,解得d =-171.15.设等差数列的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.解析 (1)依题意⎩⎪⎨⎪⎧S12=12a 1+12×112d>0,S13=13a 1+13×122d<0,即⎩⎪⎨⎪⎧2a 1+11d>0, ①a 1+6d<0. ② 由a 3=12,得a 1+2d =12.③将③分别代入①②,得⎩⎪⎨⎪⎧24+7d>0,3+d<0,解得-247<d<-3.(2)S 6的值最大,理由如下:由d<0可知数列{a n }是递减数列,因此若在1≤n≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得a 6>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大. 16.设等差数列{a n }的首项a 1及公差d 都为整数,前n 项和为S n . (1)若a 11=0,S 14=98,求数列{a n }的通项公式;(2)若a 1≥6,a 11>0,S 14≤77,求所有可能的数列{a n }的通项公式. 解析 (1)由S 14=98,得2a 1+13d =14. 又a 11=a 1+10d =0,故解得d =-2,a 1=20.因此,{a n }的通项公式是a n =22-2n(n∈N *). (2)由⎩⎪⎨⎪⎧S 14≤77,a 11>0,a 1≥6,得⎩⎪⎨⎪⎧2a 1+13d≤11,a 1+10d>0,a 1≥6, 即⎩⎪⎨⎪⎧2a 1+13d≤11, ①-2a 1-20d<0, ②-2a 1≤-12. ③由①+②,得-7d<11,即d>-117.由①+③,得13d≤-1,即d≤-113.于是-117<d ≤-113.又d∈Z,故d =-1. ④将④代入①②得10<a 1≤12. 又a 1∈Z ,故a 1=11或a 1=12.所以,所有可能的数列{a n }的通项公式是a n =12-n 和a n =13-n(n∈N *).。
新课标高中数学必修1-5基础知识练习100题1、若M 、N 是两个集合,则下列关系中成立的是( )A .∅MB .M N M ⊆)(C .N N M ⊆)(D .N )(N M2、若a>b ,R c ∈,则下列命题中成立的是( ) A .bc ac > B .1>b a C .22bc ac ≥ D .ba 11< 3、直线x+2y+3=0的斜率和在y 轴上的截距分别是( )A .21-和-3 B .21和-3 C .21-和23 D .21-和23- 4、不等式21<-x 的解集是( )A .x<3B .x>-1C .x<-1或x>3D .-1<x<3 5、下列等式中,成立的是( )A .)2cos()2sin(x x -=-ππ B .x x sin )2sin(-=+π C .x x sin )2sin(=+π D .x x cos )cos(=+π6、互相平行的三条直线,可以确定的平面个数是( ) A .3或1 B .3 C .2 D .17、函数11)(+-=x x x f 的定义域是( ) A .x<-1或x ≥1 B .x<-1且x ≥1 C .x ≥1 D .-1≤x ≤18、在四棱柱ABCD —A 1B 1C 1D 1中,各棱所在直线与棱AA 1所在直线成异面直线的有( ) A .7条 B .6条 C .5条 D .4条 9、下列命题中,正确的是( )A .平行于同一平面的两条直线平行B .与同一平面成等角的两条直线平行C .与同一平面成相等二面角的两个平面平行D .若平行平面与同一平面相交,则交线平行 10、下列通项公式表示的数列为等差数列的是( )A .1+=n n a n B .12-=n a n C .n n n a )1(5-+= D .13-=n a n 11、若)2,0(,54sin παα∈=,则cos2α等于( )A .257B .-257C .1D .5712、把直线y=-2x 沿向量)1,2(=a 平行,所得直线方程是( )A .y=-2x+5B .y=-2x -5C .y=-2x+4D .y=-2x -4 13、已知函数219log )3(2+=x x f ,则f (1)值为 ( ) A 、21B 、1C 、5log 2D 、2 14、表示如图中阴影部分所示平面区域的不等式组是( )A .⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y xB .⎪⎩⎪⎨⎧≥-+≥--≤-+0623063201232y x y x y xC .⎪⎩⎪⎨⎧≤-+≤--≤-+0623063201232y x y x y xD .⎪⎩⎪⎨⎧≥-+≤--≥-+0623063201232y x y x y x15、若f(x)是周期为4的奇函数,且f (-5)=1,则( ) A .f(5)=1 B .f(-3)=1 C .f(1)=-1 D .f(1)=1 16、若—1<x<0,则下列各式成立的是( )A 、x x x 2.0)21(2>>B 、x x x 2)21(2.0>>C 、x x x 22.0)21(>>D 、x x x )21()21(2>> 17、在a 和b (a ≠b )两个极之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为( )A 、n a b - B 、1+-n b a C 、1+-n a b D 、2+-n ab 18、)2(log ax y a -=在 [0,1]上是x 的减函数,则a 的取值范围是( )A 、(0,1)B 、(1,2)C 、(0,2)D 、[2,+∞] 19、f(x)是定义在R 上的偶函数,满足)(1)2(x f x f -=+,当2≤x ≤3时,f(x)=x ,则f(5.5)等于( )A 、5.5B 、—5.5C 、—2.5D 、2.5 20、1)(---=a x x a x f 的反函数f —1(x )的图象的对称中心是(—1,3),则实数a 等于( )A 、—4B 、—2C 、2D 、3 21、设函数,13)(2++=x x x f 则=+)1(x f ( )A 232++x xB 532++x xC 632++x xD 552++x x22、等差数列0,213-,7-,… 的第1+n 项是( ) A n 27- B )1(27+-n C 127+-n D )1(27--n23、若R a ∈,下列不等式恒成立的是( )A 、a a >+12B 、 1112>+a C 、a a 692>+ D 、a a 2lg )1lg(2≥+24、要得到)42sin(π+-=x y 的图象,只需将)2sin(x y -=的图象( )A 、向左平移4π个单位 B 、向右平移4π个单位 C 、向左平移8π个单位 D 、 向右平移8π个单位25、3log 42等于( )A 、3B 、3C 、33 D 、3126、从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是( ) A 、51 B 、53 C 、54 D 、31 27、在抽查产品的尺寸过程中,将其尺寸分成若干组。
Book 5 Unit5 first aid高频词汇短语1.________n.& vt.帮助;援助;资助2.________adj.暂时的;临时的3.________vi.& vt.流血4.________n.毒药;毒害vt.毒害;使中毒5.________vt.&vi.倒;灌;注;涌6.________n.损伤;伤害→________v.使受伤,弄伤7._____n.变化;多样(化);多变(性)→________adj.各种各样的8.________adj.牢的;紧的;紧密的→________adv.紧地;牢牢地9.________adj.(动作)稳定有力的;坚定的→________adv.坚固地;稳定地10.________vt.&vi.治疗;对待;款待n.款待;招待→________n.治疗;疗法;对待;待遇11.________vt.涂;敷;搽;应用;运用vi.申请;请求;使用;有效→________n.申请人→________n.申请(书)12.______n.压力;挤压;压迫(感)→____v.挤压;压迫13. (对伤患者的)急救______________14. 生病______________15. 触电;电休克______________16. 榨出;挤出______________17. 反复;多次______________18. 在适当的位置;适当______________19. 若干;许多______________20. 找到______________21. 区别对待;有影响;起(重要)作用________22. 阻止……______________23. 烧伤______________单元重点单词句型1.aid n.& vt.帮助;援助;资助运用完成句子(1)她应该能够不用词典就能读懂这个。
She should be able to read this ________________ a dictionary.(2)我们上急救课时,相互做实践的对象。
In our_____________ , we practised on one another.(3)他们被控帮助他逃跑。
They were accused of ______________________________We were________in our investigation(调查)by the cooperation of the local police.A. stoppedB. treatedC. aimedD. aidedI have a Longman Dictionary of Contemporary English,which is an important ________ learning English.A. aid inB. aid toC. help toD. help at2.apply vt.涂;敷;搽;应用;运用vi.申请;请求;使用;有效运用--完成句子(1)从这所著名的大学毕业后,我将把我学到的知识应用到日常工作中。
When I graduate from this famous university, I'll _____ what I have learnt everyday work.(2)学生们应该专心学习。
Students should ________________________________study.(3)——我失业好长时间了。
——真的吗?为什么不在我的公司申请一份工作呢?—I'm out of work for a long time.—Really? Why not ________ a job at my company?Only when you________what you have learned to practice________say you have made it.A. adapt; you canB. apply; can youC. use; you canD. adopt; can youOnce the new rules are made, what matters much next is how they will be________ to all the members of the club.A. devotedB. referredC. appliedD. directed3.fall ill (=get ill/become ill/be ill) 生病运用---完成句子(1)因为这个坏消息他病倒了。
He ______ because of the bad news.(2)他由于自己不小心而受了伤。
He _________ because of his own carelessness.(3)他生气时就会大叫,这是常有的情形。
He shouts when he________, as is often the case.Because of the bad weather, my mother ________and lay in bed, she ________ for a week.A. has been ill; was illB. fell ill; has fallen illC. fell ill; has been illD. fell ill; is illOn landing from the sea yesterday, he________,so he may be absent from the meeting.A. fell illB. was illC. fall illD. is ill4.squeeze out 榨出;挤出运用:完成句子(1)那个柠檬看来已经干了,但也许你还能挤出几滴来。
The lemon looks dry, but you may be able to _____ a few drops.(2)每年他们都榨取很多的菠萝汁。
Every year they_ _ much juice _ __ the pineapples.5.in place 在适当的位置;适当运用:完成句子(1)她的衣服不适合在会议上穿。
Her dress is _______ at the meeting.(2)所有东西用过以后要放回原处。
Everything should be put ______ after use.Maggie is a neat and tidy student, who likes to have everything________.A. in publicB. in placeC. in returnD. in practiceWith everything needed________,she declared that the party began.A. in the place B taking placeC. out of placeD. in place6.make a difference 区别对待;有影响;起(重要)作用运用:完成句子(1)这次旅行对他以后的人生有影响。
The travel________ to his later life.(2)让警察知道一些证据关系重大。
It _______ to inform the policemen of some evidence.I read the poem__________.You have to be very exact in this job, because a small mistake can make a big________.A. similarityB. explanationC. instructionD. differenceShe thought it was worthwhile for her to teach in the small village to make a________ to the life of the children there.A. differenceB. senseC. studyD. discovery7、vital 至关重要的,生死攸关的完成句子①If the injuries are second or third degree burns, the doctor or hospital at once.如果是二度或者三度烧伤,至关重要的是把伤者立刻送去看医生或送往医院。
②Consideration for other people all of us.对我们所有人而言体谅别人是极其重要的。
③As far as I'm concerned, regular exercise our health.就我个人而言,经常锻炼对我们的健康非常重要。
[2012·安徽卷]Interest is as ________ to learning as the ability to understand, even more so.A. vitalB. availableC. specificD. similar8、treat v. 治疗,对待,款待n.款待,招待(一)归纳同类,拓展联想完成句子①John used these to the most severe injuries Ms Slade's hands.约翰就用这些东西把斯莱德女士手上最重的伤口包扎起来。
②Rules help us live together in harmony, because they show us the right way to others规则帮助我们和谐得在一起生活,因为规则向我们展示了对待他人正确的方式。
③His parents are dead and he lives with a family that .他的父母死了,他与一个对他不好的家庭住在一起。
④Let's go out for dinner-this time.咱们出去吃饭吧!这次我请客。
I still remember many years ago he________us to a good dinner on New Year's Day.A. aidedB. pouredC. appliedD. treated-This afternoon let's go to a good restaurant.-Oh, it'll cost a lot of money.-Don't worry. It is my________ today.A. serviceB. offerC. turnD. treat重点句型1、原句:So, as you can imagine, if your skin gets burned it can be very serious.因此,就如你能想到的,如果你的皮肤受到伤害,那它会是很严重。