八年级数学上册知识树-----孙志伟
- 格式:ppt
- 大小:867.00 KB
- 文档页数:28
苏教版八年级数学上册知识点总结(苏科版)知识点总结:第一章:三角形全等全等三角形的定义是指能够完全重合的两个三角形。
全等三角形的形状和大小完全相等,与位置无关。
一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等。
三角形全等不因位置发生变化而改变。
全等三角形的性质包括对应边相等、对应角相等,周长相等、面积相等,以及对应边上的对应中线、角平分线、高线分别相等。
全等三角形的判定有边角边公理(SAS)、角边角公理(ASA)、推论(AAS)、边边边公理(SSS)、斜边、直角边公理(HL)。
证明两个三角形全等的基本思路是已知两边时找第三边(SSS),找夹角(SAS),或找是否有直角(HL);已知一边一角时找一角(AAS或ASA),或找夹边(SAS);已知两角时找夹边(ASA),或找其它边(AAS)。
第二章:轴对称轴对称图形是指关于直线对称的两个图形。
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
线段的垂直平分线的性质定理是线段垂直平分线上的点到线段两个端点的距离相等。
判定定理是到线段两个端点距离相等的点在这条线段的垂直平分线上。
三角形三条边的垂直平分线的交点到三个顶点的距离相等。
角的角平分线的性质定理是角平分线上的点到角两边的距离相等。
判定定理是到角两个边距离相等的点在这个角的角平分线上。
三角形三个角的角平分线的交点到三条边的距离相等。
等腰三角形的性质定理是两个底角相等(等边对等角)。
和立方1、定义:开平方和立方是数学中常见的运算。
2、表示方法:开平方用符号√,立方用符号³表示。
3、性质:1)开平方和立方的结果都是实数。
2)开平方和立方运算具有可逆性,即可以进行反向运算。
三、实数的分类1、定义:实数是数学中的一种数值,包括有理数和无理数。
2、分类:1)有理数:可以表示为两个整数之比的数,包括整数、分数和小数。
苏科版八年级上册数学知识点复习纲要
(整理)
本文档是对苏科版八年级上册数学知识点的复纲要进行整理,旨在帮助学生系统地回顾和巩固所学的数学内容。
以下是各个章节的重点知识点:
第一章数学的语言
- 数的定义和性质
- 各种数的表示方法:自然数、整数、有理数和无理数
- 有理数的运算:加法、减法、乘法和除法
- 小数和分数的相互转化
第二章代数式与方程
- 代数式的基本概念和运算法则
- 单项式和多项式:加法、减法和乘法
- 一次方程的解法
- 方程的实际应用
第三章图形的认识
- 点、线、面和体的概念
- 直线、射线和线段的关系
- 角的概念和分类
- 角的度量和衡量
- 平行线、垂直线和相交线的判断
第四章几何图形的性质
- 三角形:分类、内角和外角的性质、全等三角形、相似三角形
- 四边形:矩形、正方形、平行四边形、菱形和长方形的性质- 圆的基本概念和性质
- 圆的面积和周长的计算
第五章数据的统计和概率
- 数据的调查和收集
- 数据的整理和图表的绘制
- 数据的分析和解读
- 简单的概率计算
通过系统地复以上知识点,学生们可以更好地理解和掌握数学的基本概念和运算法则,提升数学能力,为研究八年级下册的数学打下坚实的基础。
祝愿大家学业进步!。
苏教版?数学?〔八年级上册〕知识点总结第一章轴对称图形线段轴轴对角对称称图等腰三角形的形性质轴等腰梯形对轴对称的应用称设计轴对称图案第二章勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边2 2 2 c的平方,即a b c2、勾股定理的逆定理如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。
3、勾股数:满足a 2 b 2c2的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环〞这一时之,归纳起来有四类:〔1〕开方开不尽的数,如7,32等;〔2〕有特定意义的数,如圆周率π,或化简后含有π的数,如π+8等;3(3〕有特定构造的数,如0.1010010001,等;(4〕某些三角函数值,如sin60o等三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a〞,读作根号a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于2x就叫做a的a,即x=a,那么这个数平方根〔或二次方根〕。
表示方法:正数a的平方根记做“a〞,读作“正、负根号a〞。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a的平方根的运算,叫做开平方。
a0注意a的双重非负性:a 03、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根〔或三次方根〕。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:3a3a,这说明三次根号内的负号可以移到根号外面。
XX八年级数学上册知识点整理归纳(第三章鲁教版)第三章实数31无理数有理数总可以用有限小数或无限循环小数表示。
反过来,任何有限小数或无限循环小数也都是有理数。
无理数的概念:无限不循环小数叫做无理数。
练习:下列说法正确的是()(A)无限小数是无理数;(B)带根号的数是无理数;()无理数是开方开不尽的数;(D)无理数包括正无理数和负无理数2无理数:特定意义的数,如∏;特定结构的数;如20XX000XX02…带有根号的数,但根号下的数字开不尽方,如3分类:正无理数和负无理数。
32平方根定义:如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根(也叫做二次方根)。
2表示方法:正数a有两个平方根,一个是a的算术平方根鲁教版初二数学知识点(上);另一个是-鲁教版初二数学知识点(上),它们是一对互为相反数,合起来是3开平方:求一个数a的平方根的运算,叫做开平方。
开平方与乘方是互为逆运算。
判断:(1)2是4的平方根()(2)-2是4的平方根()(3)4的平方根是2()(4)4的算术平方根是-2()()17的平方根是鲁教版初二数学知识点(上)()(6)-16的平方根是-4()小结:一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。
33立方根定义:如果一个数x的立方等于a,即x3=a,那么这个数x叫做a的立方根。
2性质:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
3开立方:求一个数a的立方根的运算,叫做开立方。
4平方根与立方根的联系与区别:联系:①0的平方根、立方根都有一个是0;②平方根、立方根都是开方的结果。
区别:①定义不同;②个数不同;③表示方法不同;④被开方数的取值范围不同。
34方根的估算估算无理数的方法是(1)通过平方运算,采用“夹逼法”,确定真值所在范围;(2)根据问题中误差允许的范围,在真值的范围内取出近似值。
2“精确到”与“误差小于”意义不同。
八年级数学上册 各章知识点汇总第十一章 三角形一、知识结构图边与三角形有关的线段 高中线角平分线三角形的内角和 多边形的内角和三角形的外角和 多边形的外角和二、知识定义三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角:多边形相邻两边组成的角叫做它的内角。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
三、公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形对角线的条数:(1)从n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n 边形共有23)-n(n 条对角线。
第十二章 全等三角形一、全等三角形角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4.证明两个三角形全等的基本思路:多边形的角和:多边形的外角和为360°。
多边形内角和公式: n 边形的内角和等于(n-2)·180°角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)边边边:三边对应相等的两个三角形全等(可简写成“SSS”)3.全等三角形的判定③全等三角形的对应边上的对应中线、角平分线、高线分别相等。
苏教版八年级数学上册知识点(详细全面精华)(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏教版八年级数学上册知识点(详细全面精华)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏教版八年级数学上册知识点(详细全面精华)(2)(word版可编辑修改)的全部内容。
苏教版八年级数学上册知识点第1章全等三角形一、全等三角形概念 : 能够完全重合的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角.一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形的表示全等用符号“≌"表示,读作“全等于”.如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等.(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
4、学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边",“对应角"与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”5、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS")边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA")角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS")直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL")6、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。