重庆市巴蜀中学2020届高三下学期高考适应性月考卷(九)理科数学试题
- 格式:pdf
- 大小:1.83 MB
- 文档页数:4
2020届重庆巴蜀中学高三适应性月考卷(二)数学(理)试题一、单选题1.已知α是第二象限角,且sin 45α=,则cos α=( ) A .45B .45-C .35D .35-【答案】D【解析】通过同角三角函数的平方关系,结合α是第二象限角,cos α为负值,直接代入解得答案. 【详解】∵α是第二象限角,且sin 45α=,可得3cos 5α==-, 故选:D . 【点睛】本题考查同角三角函数关系,注意象限角的符号即可,属于基础题.2.集合A ={x |(x ﹣1)(x ﹣7)≤0},集合B ={x |x =2k +1,k ∈N },则A ∩B =( ) A .{1,7} B .{3,5,7}C .{1,3,5,7}D .{1,2,3,4,5,6,7}【答案】C【解析】先求出集合A 与B ,求出两集合的交集即可. 【详解】∵集合()(){}{}|=17017|Ax x x x x ≤≤≤=﹣﹣, 集合B ={x |x =2k +1,k ∈Z }, ∴A ∩B ={1,3,5,7}, 故选:C . 【点睛】本题考查集合的运算,此类题目一般比较简单,只需将两集合解出,再进行交并补运算即可求解.3.向量a =r (1,2),b =r (2,λ),c =r (3,﹣1),且(a b +r r )∥c r ,则实数λ=( ) A .3 B .﹣3C .7D .﹣7【答案】B【解析】向量a r ,b r ,计算可得a b +r r ,再由c r 和(a b +rr )∥c r ,代入向量平行的性质公式计算,即可求解. 【详解】根据题意, 向量=a r(1,2),=b r(2,λ),则()=32+a b λ+,rr ,c =r (3,﹣1),且(a b +r r )∥c r ,则有()()3132+0λ⨯--=, 解可得=3λ-, 故选:B . 【点睛】本题考查平面向量的坐标运算和平行的性质,属于平面向量常考题型.4.已知随机变量X 服从正态分布N (3,σ2),且P (x ≤1)=0.1,则P (3<X ≤5)=( ) A .0.1 B .0.2C .0.3D .0.4【答案】D【解析】根据已知随机变量X 服从正态分布N (3,σ2),得到正态分布曲线关于=3x 对称,又根据题目P (x ≤1)=0.1,由对称性可得()50.1P x ≥=,因此得到P (1≤X ≤5)的值,再乘12即为所求. 【详解】∵随机变量X 服从正态分布N (3,σ2), ∴正态分布曲线关于=3x 对称, 又P (x ≤1)=0.1, ∴()50.1P x ≥=, ∴()()510.1235==0.422P X P X ≤≤-⨯≤1<=,故选:D 【点睛】本题考查正态分布概率问题,此类问题通常根据正态分布曲线的对称性质推导求解,属于基础题.5.函数πsin(2)3y x =-的图象的一条对称轴方程为( )A .π12x =B .π12x =-C .π6x =D .π6x =-【答案】B【解析】试题分析:令232x k πππ-=+,即5212k x ππ=+()k Z ∈,当1k =-时,12x π=-,故选B.【考点】1、两角差的正弦函数;2、正弦函数的图象与性质.6.定义H (x )表示不小于x 的最小整数,例如:H (1.5)=2,对x ,y ∈R ,则下列正确的是( ) A .H (﹣x )=﹣H (x ) B .H (2﹣x )=H (x )C .H (x +y )≥H (x )+H (y )D .H (x ﹣y )≥H (x )﹣H (y )【答案】D【解析】根据题意,可用特殊值法进行逐一排除,最后得到正确选项. 【详解】∵定义H (x )表示不小于x 的最小整数,A 选项,令()()1.5, 1.5=11.5=2x H H =----,,显然错误, B 选项,令()()3,233x H H =-≠,显然错误,C 选项,令()()()1.5, 2.5,=4=5x y H x y H x H y ==++,,故错误,D 选项根据排除法,因此正确,故选:D . 【点睛】此类问题属于定义新概念题型,根据定义去判断各个推论是否正确,此类问题最快速的办法是举特例进行排除,可快速锁定答案,属于中等题.7.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且b +c =acosB +acosC ,则A =( )A .2π B .3π C .6π D .23π 【答案】A【解析】由题意代入余弦定理,可得到三边a ,b ,c 的等式,化简可得222a b c =+,从而得到△ABC 为直角三角形,A 为直角. 【详解】由b +c =acosB +acosC ,根据余弦定理可得,22222222a c b a b c b c a a ac ab +-+-++=,22222222a c b a b c b c c b+-+-++=, ()()()2332a b c bc b c b c b c bc+++-++=()()()()222=2a b c bc b c b c b bc c bc+++-+-+,进一步化简可得222a b c =+ ∴△ABC 为直角三角形,2A π=.故选:A . 【点睛】本题考查余弦定理的应用,考查运算求解能力,通过余弦定理找到各边之间的关系,然后推导出角的大小,属于中等题.8.对任意x ∈R ,存在函数f (x )满足( ) A .f (cosx )=sin 2x B .f (sin 2x )=sinx C .f (sinx )=sin 2x D .f (sinx )=cos 2x【答案】D【解析】根据题意,对任意x ∈R ,存在函数f (x )满足,对选项逐一判断即可. 【详解】对于A 选项,取x =4π,则cos x =2,sin2x =1,∴f (2)=1;取x =4π-,则cos x ,sin2x =-1,∴f )=-1;∴f (2)=1和-1,不符合函数的定义,故不满足题意; 对于B 选项,取x =0,则sin2x =0,∴f (0)=0; 取x =2π,则sin2x =0,∴f (0)=1; ∴f (0)=0和1,不符合函数的定义,故不满足题意;对于C 选项,取x =4π,则sin x =2,sin2x =1,∴f (2)=1;取x =34π,则sin x =2,sin2x =-1,∴f (2)=-1;∴f 和-1,不符合函数的定义,故不满足题意; 对于D 选项, ∵22=12sin cos x x -,∴f (sinx )=cos 2x =212sin x -,即对任意x ∈R ,存在函数f (sinx )=cos 2x , 只有D 选项满足题意. 故选:D . 【点睛】本题考查三角函数二倍角公式和函数的解析式,需要对公式和概念的熟练掌握,属于简单题.9.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,AB ⊥BC ,且SA =2,AB =1,BC =则三棱锥S ﹣ABC 外接球的表面积为( ) A .4π B .6πC .8πD .10π【答案】C【解析】由勾股定理可得AC ,求得△ABC 外接圆的半径,从而再利用勾股定理可求该三棱锥的外接球的半径,即可求出三棱锥S -ABC 的外接球的表面积. 【详解】∵AB ⊥BC ,AB =1,BC =∴由勾股定理可得AC =2, ∴AC 是△ABC 外接圆的直径,∴△ABC 外接圆的半径为r =1, ∵SA ⊥平面ABC ,且SA =2, 设球心到平面ABC 的距离为d ,则由勾股定理可得2222211(2)R d d =+=+-, ∴22=1R d =,,∴三棱锥S −ABC 的外接球的表面积为248R ππ=. 故选:C . 【点睛】本题考查几何体外接球的表面积,此类问题常常先求底面的外接圆半径,再与球心到底面距离、球的半径运用勾股定理求解,属于中等难度题型.10.已知AB u u u r •AC =u u u r 0,|BC |=4,P 是三角形ABC 平面内任意一点,且满足|PA u u u r|=1,则PB u u u r •PC uuur 的最小值是( )A .﹣4B .﹣3C .﹣2D .﹣1【答案】B【解析】利用已知0AB AC ⋅=u u u r u u u r,得到AB AC ⊥,|BC |=4,以A 为坐标原点建立平面直角坐标系,再根据P 点满足|PA u u u r|=1,设P 点坐标为()cos sin P θθ,,代入点坐标计算PB PC ⋅u u u r u u u r ,再根据辅助角公式和坐标之间的关系可得PB PC ⋅u u u r u u u r的取值范围,从而得解. 【详解】∵0AB AC ⋅=u u u r u u u r,∴AB AC ⊥, 建立如图直角坐标系,设()()()0,00,,0A B y C x ,,, 又|BC |=4, ∴2224x y +=∵|PA u u u r|=1,∴设()cos sin P θθ,, ()()cos sin cos sin B P y x P C θθθθ⋅=--⋅--,,u u u r u u u r22cos +cos sin +sin x y θθθθ=--()22+1x y θϕ=-+-()4cos +1θϕ=--,∵()1cos 1θϕ-≤-≤,35PB PC -≤⋅≤u u u r u u u r,故最小值为3-, 故选:B . 【点睛】本题考查向量积的最值问题,通常建立直角坐标系,设未知数,得到各个向量的坐标,运用坐标运算计算出含有未知量的解析式,再进一步运用函数思想找出取值范围,属于中等题.11.已知f (x )=sin (ωx 6π+)(ω∈Z )x ∈(0,3π]时f (x )12=有唯一解,则满足条件的ω的个数是( ) A .3 B .4C .5D .6【答案】D【解析】对ω进行分类讨论,当0>ω,通过0,,3x π⎛⎤∈ ⎥⎝⎦可确定6x πω+的范围,636ππωπ⎛⎤+ ⎥⎝⎦,由f (x )12=,得到2,233πωππ⎡⎫∈⎪⎢⎣⎭,从而得到[)2,6ω∈,再根据ω∈Z ,可得ω的值;当0ω<时,同理可得ω的值.【详解】当0>ω时,0,,,,36636x x ππππωπω⎛⎤⎛⎤∈∴+∈+ ⎥⎥⎝⎦⎝⎦Q 513,3666πωπππ⎡⎫∴+∈⎪⎢⎣⎭, ∵()12f x =有唯一解, 2,233πωππ⎡⎫∴∈⎪⎢⎣⎭,[)2,6ω∈, 又,2,3,45,Z ωω∈∴=,当0ω<时,0,,,,36366x x πππωππω⎛⎤⎡⎫∈∴+∈+ ⎪⎥⎢⎝⎦⎣⎭Q117,,3666πωπππ⎡⎫∴+∈--⎪⎢⎣⎭∴42,,(6,4]33πωππω⎛⎤∈--∈-- ⎥⎝⎦, 又,5,4Z ωω∈∴=--, 综上所述, 2,3,4,5,5,4ω=-- 故选:D . 【点睛】本题主要考查三角函数的图象与性质,函数零点与方程的根的关系,求三角函数的ω值时,利用函数图像数求出ω的范围,即可求得ω值,属于中等题.12.已知抛物线()2:20C x py p =>,直线1:l y kx t =+与抛物线C 交于,A B 两点(A点在B 点右侧),直线()2:l y kx m m t =+≠交抛物线C 于,M N 两点(M 点在N 点右侧),直线AM 与直线BN 交于点E ,交点E 的横坐标为2k ,则抛物线C 的方程为( ) A .2x y = B .22x y =C .23x y =D .24x y =【答案】D【解析】联立直线1l 与抛物线C 得到2A B x x pk +=,同理2M N x x pk +=,记AB 的中点为P ,MN 的中点为Q ,根据直线PQ 过点E ,得到2E x pk k ==,得到答案. 【详解】联立直线1l 与抛物线C :22x pyy kx t⎧=⎨=+⎩,消去y 得2220x pkx pt --=,2A B x x pk +=,同理2M N x x pk +=,记AB 的中点为P ,MN 的中点为Q ,所以P Q x x pk ==, 又因为直线PQ 过点E (EP 为中线,所以EQ 也为中线,所以,,P Q E 三点共线), 所以2E x pk k ==,所以2p =,从而抛物线C 的方程为24x y =. 故选:D .【点睛】本题考查了抛物线方程,确定直线PQ 过点E 是解题的关键,意在考查学生的计算能力和转化能力.二、填空题 13.设复数z 满足12zi=+2+i ,则|z |=_____ 【答案】5【解析】复数方程的两边同乘1+2i ,然后利用多项式展开化简,即可确定z ,再进一步求得z . 【详解】 复数z 满足212zi i=++, 所以()()212=2245z i i i i i =++-++=, 故5z = 故答案为:5. 【点睛】本题考查复数代数形式的乘除运算,复数的模的计算,属于基础题. 14.函数()()212log 224f x x x =--的单调递增区间是________.【答案】(),4-∞-【解析】计算定义域为()(),46,x ∈-∞-+∞U ,再根据复合函数单调性得到答案. 【详解】()()212log 224f x x x =--,函数定义域为满足22240x x -->,即()(),46,x ∈-∞-+∞U , 函数12log y u =单调递减,故只需求2224y x x =--的单调递减区间,即1x ≤.综上所述:(),4x ∈-∞-. 故答案为:(),4-∞-. 【点睛】本题考查了复合函数单调性,忽略掉定义域是容易发生的错误. 15.sin 20°+2sin 20°cos 40°=_____.【答案】2. 【解析】利用20301040301==0+︒︒︒︒︒︒-,进行角的转化,再利用和差公式化简即可求解. 【详解】sin 202sin 20cos 40︒︒︒+()()()=sin 30102sin 3010cos 3010︒︒︒︒︒︒--++()()=sin 301012cos 3010︒︒︒︒⎡⎤-++⎣⎦()()sin 12sin30cos10cos3010cos30cos102sin30sin10︒︒︒︒︒︒︒︒-+=-()1cos10101sin10n 2︒︒︒︒⎛⎫=+- ⎪ ⎪⎝⎭-1cos1010cos102︒︒︒︒=1310sin10cos10sin1010cos10222sin ︒︒︒︒︒︒+--sin 200in 20s ︒︒︒-==【点睛】本题为计算题,主要考察正余弦和差公式的灵活应用,此类问题中非特殊角三角函数化简求值,如20°、40°等角度,一般找出与特殊角的和差关系,再利用和差公式化简即可,属于中等题. 16.已知函数f (x )=lnx 1x++a ,f ′(x )是f (x )的导函数,若关于x 的方程f ′(x )1f x x -=+()0有两个不等的根,则实数a 的取值范围是_____ 【答案】(﹣∞,14-ln 2)【解析】根据题意可得f ′(x ),代入关于x 的方程f ′(x )()1f x x -=+0,方程有2个交点转化为y =121x --lnx 1x-与y =a 有两个不同的交点,则令g (x )=121x --lnx 1x-,求导研究g (x )的图象从而可得a 的取值范围. 【详解】根据题意可得,f ′(x )22111x x x x-=-=,x >0∵关于x 的方程关于x 的方程f ′(x )()1f x x -=+0有两个不相等的实数根,∴221x x -=lnx 1x ++a 有两个不相等的实数根, ∴y =121x --lnx 1x-与y =a 有两个不同的交点; 令g (x )=121x --lnx 1x-,∴g ′(x )()()23233212112x x x xx x x x x -+-+=-+==-, 令g ′(x )=0,x =2或﹣1(舍负);令g ′(x )>0,0<x <2;令g ′(x )<0,x >2; ∴g (x )的最大值为g (2)=114--ln 21124-=-ln 2; ∴a 14-<ln 2;∴a 的取值范围为(﹣∞,14-ln 2). 故答案为:(﹣∞,14-ln 2). 【点睛】本题主要考查导数的运算、导数在函数中的应用、函数零点等基础知识,考查了转化能力、运算求解能力,考查了函数与方程、化归与转化等数学思想方法,属于较难题.三、解答题17.已知函数f (x )=sinxcosx 2+cos 2x +1 (1)求f (x )的最小正周期和最大值,并写出取得最大值时x 的集合;(2)将f (x )的函数图象向左平移φ(φ>0)个单位后得到的函数g (x )是偶函数,求φ的最小值.【答案】(1)最小正周期为T =π,f (x )取得最大值为2,此时x 的集合为{x |x =k π12π+,k ∈Z }.(2)12π【解析】(1)由三角函数公式化简可得f (x )=sin (2x 3π+)+1,由此可得最小正周期及最大值,由当且仅当2x 3π+=2k π2π+,k ∈Z 时,f (x )取得最大值,解出x 的集合;(2)通过平移变换可得g (x )=sin (2x +2φ3π+)+1,若函数g (x )是偶函数,运用三角函数的诱导公式,令23πϕ+=2k ππ+,k ∈Z 即可,从而得到φ的最小值.【详解】(1)f (x )=sinxcosx 32+cos 2x +112=sin 2x 32+cos 2x +1=sin (2x 3π+)+1,所以函数f (x )的最小正周期为T 22π==π, 当且仅当2x 3π+=2k π2π+,k ∈Z 时,f (x )取得最大值为2,此时x 的集合为{x |x =k π12+π,k ∈Z }.(2)g (x )=f (x +φ)=sin (2x +2φ3π+)+1,因为g (x )是偶函数, 所以2φ3π+=k π2π+,k ∈Z ,即φ12=k π12+π,k ∈Z ,所以φ的最小值为12π.【点睛】本题主要考查了利用公式化简三角函数,求三角函数的周期、最值、极值点和三角函数的图像和性质等,需要特别注意集合的书写规范,属于基础题.18.如图,在四棱锥S ﹣ABCD 中,SA ⊥底面ABCD ,底面ABCD 是平行四边形,E 是线段SD 上一点.(1)若E 是SD 的中点,求证:SB ∥平面ACE ; (2)若SA =AB =AD =2,SC =2,且DE 23=DS ,求二面角S ﹣AC ﹣E 的余弦值.【答案】(1)证明见解析(2)1919【解析】(1)由题意连结BD ,交AC 于点O ,连结OE ,可证OE ∥SB ,SB ∥平面ACE 得证;(2)建立空间直角坐标系,求得平面SAC 与平面ACE 的法向量,代入公式求二面角的余弦值即可. 【详解】(1)证明:连结BD ,交AC 于点O ,连结OE , ∵底面ABCD 是平行四边形,∴O 是BD 的中点, ∵E 是SD 的中点,∴OE ∥SB , ∵SB ⊄平面ACE ,OE ⊂平面ACE , ∴SB ∥平面ACE .(2)∵SA ⊥底面ABCD ,AC ⊂平面ABCD , ∴SA ⊥AC ,在Rt △SAC 中,SA =2,SC =, ∴AC =2, ∵AB =AD =2,∴△ABC ,△ACD 都是等边三角形, ∴BD =以O 为原点,OD 为x 轴,OA 为y 轴,过O 作AS 的平行线为z 轴,建立空间直角坐标系,O (0,0,0),D0,0),A (0,1,0),S (0,1,2),DS =u u u r(1,2),23DE DS ==u u u r u u u r(3-,2433,), OE OD DE =+=u u u r u u u r u u u r 2433,,), ∵BD ⊥平面SAC ,取平面SAC 的一个法向量n OD ==u u u rr0,), 设平面ACE 的法向量m =r(x ,y ,z ),则0240333m OA y m OE x y z ⎧⋅==⎪⎨⋅=++=⎪⎩u u uv r u u u v r ,取x =4,得m =r (4,0,), 设二面角S ﹣AC ﹣E 的平面角为θ,则cosθm n m n ⋅===⋅r r r r∴二面角S﹣AC﹣E的余弦值为419.【点睛】本题主要考查线面平行的判定定理,二面角的向量求法,意在考查学生的分析转化能力和计算求解能力,属于基础题.19.甲、乙两名射击运动员在进行射击训练,已知甲命中10环,9环,8环的概率分别是13,13,13,乙命中10环,9环,8环的概率分别是18,14,58,任意两次射击相互独立.(1)求甲运动员两次射击命中环数之和恰好为18的概率;(2)现在甲、乙两人进行射击比赛,每一轮比赛两人各射击1次,环数高于对方为胜,环数低于对方为负,环数相等为平局,规定连续胜利两轮的选手为最终的胜者,比赛结束,求恰好进行3轮射击后比赛结束的概率【答案】(1)13(2)427【解析】(1)甲运动员两次射击命中环数之和恰好为18包含“第一次10环和第二次8环”,“第一次8环第二次10环”,“第一次9环和第二次9环”这三种情况,分别求三种情况概率再求和;(2)求恰好进行3轮射击后比赛结束的概率,先确定甲胜利,平局,失败的概率,恰好进行3轮射击后比赛结束情形包括两种:①当甲获得最终胜利结束3轮比赛时,由第2轮、第3轮甲连续胜利,第一轮甲没有获得胜利,算出其概率P118;②当乙获得最终胜利结束3轮比赛时,则第2轮、第3轮乙连续胜利,第1轮乙没有获得胜利,其概率P25=216,两情形概率之和即为所求.【详解】(1)记X 表示甲运动员两次射击命中环数之和,则X =18包含“第一次10环和第二次8环”,“第一次8环第二次10环”,“第一次9环和第二次9环”这三种情况,∴甲运动员两次射击命中环数之和恰好为18的概率为:P 121111133333C =⨯⨯+⨯=.(2)记A i 表示甲在第i 轮胜利,B i 表示甲在第i 轮平局,∁i 表示甲在第i 轮失败, ∴P (A i )151151384382⎛⎫=⨯++⨯= ⎪⎝⎭,P (B i )13=,P (∁i )16=,①当甲获得最终胜利结束3轮比赛时,由第2轮、第3轮甲连续胜利,第一轮甲没有获得胜利, 其概率P 1111112228⎛⎫=⨯⨯-= ⎪⎝⎭, ②当乙获得最终胜利结束3轮比赛时,则第2轮、第3轮乙连续胜利,第1轮乙没有获得胜利, 其概率P 21155666216=⨯⨯=, ∴经过3轮比赛结束的概率P 12154821627P P =+=+=. 【点睛】本题考查了概率的计算,第一种为已知取值,求取此值的概率,常常利用排列组合、枚举法、概率公式等方法计算,第二种需要分析判断得到结果所有的可能情况,再根据每种状况求出概率,属于中档题.20.已知椭圆E :22221x y a b +=(a >b >0)的离心率e =(1)若点P (1)在椭圆E 上,求椭圆E 的标准方程;(2)若D (2,0)在椭圆内部,过点D E 于M .N 两点,|MD |=2|ND |,求椭圆E 的方程.【答案】(1)2214x y +=(2)221123x y +=【解析】(1)因为2c e a ==,所以2234c a =,则2214b a =,所以222214x y b b +=,将P(1b 2=1,所以a 2=4,可得椭圆方程; (2)设M (x 1,y 1),N (x 2,y 2),设y 1<y 2,因为2214b a =,所以椭圆的方程为222214x y b b+=,MN 的直线方程为x =+2,联立求解韦达定理,结合条件|MD |=2|ND |,可得y 1=﹣2y 2,所以解得1y =2y =b 2=3,a 2=12,求得椭圆E 的方程. 【详解】(1)因为c e a ==,所以2234c a =,则2214b a =,所以222214x y b b +=,将P (1,2)代入方程,得b 2=1,所以a 2=4, 所以椭圆E 的标准方程为2214x y +=;(2)设M (x 1,y 1),N (x 2,y 2),不妨设y 1<y 2,因为2214b a =,所以椭圆的方程为222214x y b b+=,MN 的直线方程为x =+2,联立2222214x x y b b ⎧=+⎪⎪⎨⎪+=⎪⎩,得,16y 2+12﹣12b 2=0, 所以y 1+y2=,y 1y 22334b -=①.因为|MD |=2|ND |,即y 1=﹣2y 2,所以1y =22y = 代入①,得b 2=3,a 2=12,所以椭圆E 的方程为221123x y +=.【点睛】本题考查椭圆方程的求解,一种为根据离心率及椭圆上的点建立方程组求解,考查计算能力;另一种为已知弦长之间的关系求解,利用弦长关系转化得到纵坐标的关系,结合韦达定理即可求解,意在考查学生的转化能力和计算求解能力. 21.已知函数f (x )=()21211x xx e -+-(1)求f (x )>0的解集; (2)若x ∈R 时,2221mxxx e e +≥+恒成立,求实数m 的取值范围.【答案】(1)(0,+∞)(2)[12,+∞) 【解析】(1)通过对f (x )求导,可得x ∈R 时,f ′(x )≥0,所以f (x )在(﹣∞,+∞)上单调递增,又f (0)=0,x ∈(0,+∞)时f (x )>0,不等式得解; (2)若x ∈R 时,2221mxxxe e+≥+恒成立,不等式转化为2e 2mx ≥e x1xe +(x ∈R ),因为都是偶函数,所以只需x ∈[0,+∞)时,2e 2mx x+-e 2x﹣1≥0成立即可,构造新的函数F (x )=2e 2mx x+-e 2x﹣1,求导后再对导函数进行分类讨论,可得实数m 的取值范围. 【详解】(1)因为f (x )=()21211x xx e -+-,则f ′(x )=2122x x x e-;所以x ∈R 时,f ′(x )≥0,所以f (x )在(﹣∞,+∞)上单调递增,又f (0)=0, 所以x ∈(﹣∞,0)时,f (x )<0,x ∈(0,+∞)时f (x )>0,∴f (x )>0的解集为(0,+∞). (2)因为x ∈R 时,2e 2mxx+≥e 2x+1恒成立,等价于221mx x xxe e e+-≥恒成立, 即2e 2mx ≥e x 1x e+(x ∈R ), 因为都是偶函数,所以只需x ∈[0,+∞)时,2e 2mx x+-e 2x﹣1≥0成立即可,令F (x )=2e 2mxx+-e 2x﹣1,F (0)=0,F ′(x )=2(2mx +1)e 2mxx+-2e 2x =2e 2x[(2mx +1)e 2mx x --1],F ′(0)=0,令G (x )=(2mx +1)e 2mxx--1,G (0)=0,G′(x)=2me2mx x-+(2mx+1)(2mx﹣1)e2mx x-=(4m2x2+2m﹣1)e2mx x-①当2m﹣1≥0,即m12≥时,G′(x)≥0,所以G(x)在[0,+∞)上单调递增,又因为G(0)=0,所以x∈[0,+∞)时,G(x)≥0,即F′(x)≥0,所以F(x)在[0,+∞)上单调递增,又因为F(0)=0,所以x∈[0,+∞)时,F(x)≥0,所以m12≥时满足要求;②当m=0,x=1时,2e<e2+1,不成立,所以m≠0;③当2m﹣1<0且m≠0时,即m12<且m≠0时,x∈122mm⎛⎫-⎪⎪⎝⎭,上单调递减,又因为G(0)=0,所以x∈122mm⎛⎫-⎪⎪⎝⎭,时,G(x)<0,即F′(x)<0,所以F(x)在122mm⎛⎫-⎪⎪⎝⎭,上单调递减,又因为F(0)=0,所以x∈122mm⎛⎫-⎪⎪⎝⎭,时,F(x)<0,所以m12<且m≠0时不满足要求.综上所述,实数m的取值范围是[12,+∞).【点睛】本题主要考查函数单调性和导数之间的关系,以及不等式恒成立求参数问题,将不等式恒成立转化为构造差函数,求函数的最值是解决本题的关键,也是本题的难点,需要对导函数进一步求导和分类讨论,综合性较强,运算量较大,难度较大.22.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=4cosθ,直线C2的参数方程为1x tcosy tsinαα=+⎧⎨=⎩(t为参数).(1)求曲线C1的直角坐标方程和直线C2的普通方程;(2)若P(1,0),直线C2与曲线C1相交于A,B两点,求|PA|•|PB|的值.【答案】(1)曲线C1:x2+y2﹣4x=0;直线C2:xsinα﹣ycosα﹣sinα=0(2)3 【解析】(1)求曲线C1的直角坐标方程需利用直角坐标与极坐标关系互化关系式x=ρcosθ,y=ρsinθ,x2+y2=ρ2,将ρ=4cosθ,等式两边乘ρ得ρ2=4ρcosθ代入即可,直线C2的参数方程消去参数t即为普通方程;(2)因为P (1,0)在直线C 2上,将直线C 2的参数方程1x tcos y tsin αα=+⎧⎨=⎩(t 为参数)代入曲线C 1:x 2+y 2﹣4x =0,设A ,B 对应的参数分别为t 1,t 2,根据根与系数关系可得则t 1t 2=﹣3,故可求|PA |•|PB |=|t 1t 2|=3. 【详解】(1)曲线C 1的极坐标方程为ρ=4cos θ,由x =ρcos θ,y =ρsin θ,x 2+y 2=ρ2, 可得ρ2=4ρcos θ,即为x 2+y 2﹣4x =0,直线C 2的参数方程为1x tcos y tsin αα=+⎧⎨=⎩(t 为参数),可得xsin α﹣ycos α﹣sin α=0; (2)因为P (1,0)在直线C 2上, 将直线C 2的参数方程1x tcos y tsin αα=+⎧⎨=⎩(t 为参数)代入x 2+y 2﹣4x =0,可得(1+tcos α)2+(tsin α)2﹣4(1+tcos α)=0, 化为t 2﹣2tcos α﹣3=0,设A ,B 对应的参数分别为t 1,t 2,则t 1t 2=﹣3, 可得|PA |•|PB |=|t 1t 2|=3. 【点睛】本题考查极坐标方程与平面直角坐标方程的转化、参数方程与普通方程的转化、求弦长关系问题,极坐标方程与平面直角坐标方程的转化、参数方程与普通方程的转化,可利用转化关系直接求解,求弦长关系问题通常借助联立二次方程,转化为根与系数关系问题求解.23.已知函数f (x )=|x +1|+2|x ﹣m | (1)当m =2时,求f (x )≤9的解集;(2)若f (x )≤2的解集不是空集,求实数m 的取值范围. 【答案】(1)[﹣2,4](2)[﹣3,1]【解析】(1)当m =2时,函数f (x )=|x +1|+2|x ﹣2|≤9,对x 分类讨论,分别在三个区间1122x x x --≤≤<,,>,去掉绝对值求解不等式即可求得解集; (2)若f (x )≤2的解集不是空集,转化为f (x )min ≤2成立,又根据|x +1|+|x ﹣m |≥|m +1|恒成立,f (x )min =|m +1|≤2,解得﹣3≤m ≤1.【详解】(1)当m=2时,f(x)=|x+1|+2|x﹣2|332512331x xx xx x-⎧⎪=-+-≤≤⎨⎪-+-⎩,>,,<.∵f(x)≤9,∴3392xx-≤⎧⎨⎩>或5912xx-+≤⎧⎨-≤≤⎩或3391xx-+≤⎧⎨-⎩<,∴2<x≤4或﹣1≤x≤2或﹣2≤x<﹣1,∴﹣2≤x≤4,∴不等式的解集为[﹣2,4];(2)∵f(x)≤2的解集不是空集,∴f(x)min≤2.∵|x+1|+|x﹣m|≥|m+1|,|x﹣m|≥0,∴f(x)=|x+1|+2|x﹣m|≥|m+1|,当且仅当x=m时取等号,∴|m+1|≤2,∴﹣3≤m≤1,∴实数m的取值范围为[﹣3,1].【点睛】本题考查含有绝对值不等式的解法和求参数范围问题,解含有绝对值不等式一般进行分区间讨论去掉绝对值,然后求解不等式即可;不等式恒有解求参数问题一般进行等价转化成求函数最值问题,然后通过函数最值确定参数的取值范围,属于中等题.第 21 页共 21 页。
2020届重庆八中高考数学适应性考试(理科)试题一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2﹣4x≤0,x∈Z},B={y|y=m2,m∈A},则A∩B=()A.{0,1,4} B.{0,1,6} C.{0,2,4} D.{0,4,16}2.若x是实数,i是虚数单位,且(1+xi)(x﹣i)=﹣i,则x=()A.﹣1 B.0 C.1 D.23.已知数列{an }是递增的等比数列,a1+a3+a5=21,a3=6,则a5+a7+a9=()A.B.C.42 D.844.若圆C与y轴相切于点P(0,1),与x轴的正半轴交于A,B两点,且|AB|=2,则圆C的标准方程是()A.B.C.D.5.我国魏晋时期的数学家刘徽在《九章算术注》中首创割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形割圆,通过逐步增加正多边形的边数而使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率,如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中n表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为(数据sin15°≈0.2588,sin10°≈0.1736,sin7.50≈0.1306)()A.3,3.1248,3.1320 B.3,3.1056,3.1248C .3,3.1056,3.1320D .3,3.1,3.1406.如图,一直角墙角的两边足够长,若P 处有一棵树(不考虑树的粗细)与两墙的距离分别是2m 和αm (0<α≤10),现用12m 长的篱笆,借助墙角围成一个矩形花圃ABCD ,设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内(包括边界),则函数u=f (a )(单位:m 2)的图象大致是( )A .B .C .D .7.若x ,y 满足,则y ﹣2x 的最大值为( )A .3B .2C .0D .﹣28.如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为( )A .B .C .D .9.函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的图象如图所示,将f (x )的图象向右平移m 个单位得到g (x )的图象关于y 轴对称,则正数m 的最小值为( )A .B .C .D .10.已知三棱锥O ﹣ABC 的顶点A ,B ,C 都在半径为3的球面上,O 是球心,∠AOB=150°,当△AOC 与△BOC 的面积之和最大时,三棱锥O ﹣ABC 的体积为( )A .B .C .D .11.设抛物线C :y 2=4x 的焦点为F ,过点P (﹣1,0)作斜率为k (k >0)的直线l 与抛物线C 交于A ,B 两点,若,则k=( )A .B .C .1D .212.设e 表示自然对数的底数,函数f (x )=(a ∈R ),若关于x 的不等式f(x )≤有解,则实数a 的取值范围为( )A .[e 2﹣,e 2+]B .[e 2﹣,e 2+)C .(e 2﹣,e 2+]D .(e 2﹣,e 2+)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,,则当取最小值时,实数t= .14.在展开式中,只有第7项的二项式系数最大,则展开式中常数项是 .15.若星期一的所温为20℃,人星期二开始,每天的气温与前一天相比,仅等可能存在三种情形:“升1℃”、“持平”、“降1℃”,则星期五时气温也为20℃的概率为 .16.已知正项数列{a n }满足a 1=1,,数列{b n }满足,记{b n }的前n 项和为T n ,则T 20的值为 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且.(1)求角C;(2)若,求b﹣2a的取值范围.18.如图所示,正三角形ABC所在平面与梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F为棱AE的中点.(1)求证:直线AB⊥平面CDF;(2)若异面直线BE与AD所成角为450,求二面角B﹣CF﹣D的余弦值.19.某市在对高三学生的4月理科数学调研测试的数据统计显示,全市10000名学生的成绩服从正态分布X~N,现从甲校100分以上的200份试卷中用系统抽样的方法抽取了20份试卷来分析,统计如下:(注:表中试卷编号n1<n2<28<n4<n5<…<n20)(1)列出表中试卷得分为126分的试卷编号(写出具体数据);(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为ξ,求ξ的分布列和期望.(附:若随机变量X服从正态分布N(μ,σ2),则P(μ﹣σ<X<μ+σ)=68.3%,P(μ﹣2σ<X<μ+2σ)=95.4%,P(μ﹣3σ<X<μ+3σ)=99.7%)20.已知椭圆C:4x2+y2=4m2(m>0),过原点的直线与椭圆C交于A,B两点,点P是椭圆上的任意一点且直线PA,PB与坐标轴不平行.(1)证明:直线PA的斜率与直线PB斜率之积为定值;(2)若A,B不是椭圆C的顶点,且PA⊥AB,直线BP与x轴,y轴分别交于E,F两点.(i)证明:直线BP的斜率与直线AF斜率之比为定值;,求的最大值.(ii)记△OEF的面积为S△OEF21.已知f(x)=e x﹣1﹣a(x+1)(x≥1),g(x)=(x﹣1)lnx,其中e为自然对数的底数.(1)若f(x)≥0恒成立,求实数a的取值范围;(2)若在(1)的条件下,当a取最大值时,求证:f(x)≥g(x).选修4-4:坐标系与参数方程22.在平面直角系xOy中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标为ρ=2cosθ,且直线(t为参数)与曲线C交于不同两点A,B.(1)求实数m的取值范围;(2)设点M(m,0),若|MA|•|MB|=1,求实数m的值.选修4-5:不等式选讲(5﹣|x+1|﹣|x﹣2|)的定义域为D.23.设函数f(x)=log2(1)求集合D;(2)设a,b∈D,证明:.2020届重庆八中高考数学适应性考试(理科)试题参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x 2﹣4x ≤0,x ∈Z},B={y|y=m 2,m ∈A},则A ∩B=( ) A .{0,1,4} B .{0,1,6} C .{0,2,4} D .{0,4,16} 【考点】1E :交集及其运算.【分析】根据条件求出集合A ,B 的等价条件,结合集合交集的定义进行计算即可.【解答】解:A={x|x 2﹣4x ≤0,x ∈Z}={x|x (x ﹣4)≤0,x ∈Z}={x|0≤x ≤4,x ∈Z}={0,1,2,3,4},B={y|y=m 2,m ∈A}={y|y=0,1,4,9,16}, 则A ∩B={0,1,4}, 故选:A2.若x 是实数,i 是虚数单位,且(1+xi )(x ﹣i )=﹣i ,则x=( ) A .﹣1 B .0C .1D .2【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵(1+xi )(x ﹣i )=﹣i ,∴2x+x 2i=0,可得2x=x 2=0, 解得x=0. 故选:B .3.已知数列{a n }是递增的等比数列,a 1+a 3+a 5=21,a 3=6,则a 5+a 7+a 9=( )A .B .C .42D .84【考点】88:等比数列的通项公式.【分析】设递增的等比数列{a n }的公比为q >1,由a 1+a 3+a 5=21,a 3=6,可得+6+6q 2=21,解得q 2,利用a 5+a 7+a 9=q 4(a 1+a 3+a 5)即可得出.【解答】解:设递增的等比数列{an }的公比为q>1,∵a1+a3+a5=21,a3=6,+6+6q2=21,解得q2=2,则a5+a7+a9=q4(a1+a3+a5)=4×21=84.故选:D.4.若圆C与y轴相切于点P(0,1),与x轴的正半轴交于A,B两点,且|AB|=2,则圆C的标准方程是()A.B.C.D.【考点】J1:圆的标准方程.【分析】根据题意画出图形,结合图形求出圆的半径和圆心坐标,即可写出圆的标准方程.【解答】解:如图所示,由题意,圆C的半径为r==,圆心坐标为(,1),∴圆C的标准方程为(x﹣)2+(y﹣1)2=2;故选:C.5.我国魏晋时期的数学家刘徽在《九章算术注》中首创割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形割圆,通过逐步增加正多边形的边数而使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率,如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中n表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为(数据sin15°≈0.2588,sin10°≈0.1736,sin7.50≈0.1306)()A.3,3.1248,3.1320 B.3,3.1056,3.1248C.3,3.1056,3.1320 D.3,3.1,3.140【考点】EF:程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=6sin30°=3,输出S的值为3,不满足条件n≥18,执行循环体,n=12,S=12×sin15°=3.1056,输出S的值为3.1056,不满足条件n≥18,执行循环体,n=24,S=24×sin7.5°=3.1320,输出S的值为3.1320,满足条件n≥18,退出循环.故选:C.6.如图,一直角墙角的两边足够长,若P处有一棵树(不考虑树的粗细)与两墙的距离分别是2m和αm(0<α≤10),现用12m长的篱笆,借助墙角围成一个矩形花圃ABCD,设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内(包括边界),则函数u=f(a)(单位:m2)的图象大致是()A .B .C .D .【考点】3O :函数的图象.【分析】设CD=x ,得出矩形面积关于x 的函数,讨论对称轴与x 的范围的关系得出f (a )的解析式,即可得出答案.【解答】解:设CD=x ,则AD=12﹣x ,设矩形ABCD 的面积为y , ∴y=x (12﹣x )=﹣x 2+12x ,∵P 在矩形ABCD 内部,∴,即2≤x ≤12﹣a .若12﹣a ≤6,即6≤a ≤10时,f (a )=﹣(12﹣a )2+12(12﹣a )=﹣a 2+12a , 若12﹣a >6,即0<a <6,时,f (a )=﹣62+12×6=36.∴f (a )=.故选B .7.若x ,y 满足,则y ﹣2x 的最大值为( )A .3B .2C .0D .﹣2【考点】7C :简单线性规划.【分析】首先作出可行域,再作出直线l 0:y=2x ,将l 0平移与可行域有公共点,直线y=2x+z 在y 轴上的截距最大时,z 有最大值,求出此时直线y=2x+z 经过的可行域内的点的坐标,代入z=y ﹣2x 中即可.【解答】解:如图,作出x ,y 满足的可行域,由解得A (﹣1,4)作出直线l 0:y=2x ,将l 0平移至过点A 处时,函数z=y ﹣2x 有最大值4+2=6. 故选:C .8.如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】首先把三视图转化为立体图,然后根据三视图中的线段长和线面的关系,求出锥体的体积【解答】解:首先把几何体的三视图复原成立体图形根据三视图中的线段长,得知:AD=,CE=3,AC=2,由于俯视图是边长为2的正三角形,进一步求得:AB=2,AF=1所以BF=根据三视图的特点得知:BF⊥底面DACE,VB﹣DACE=SDACE•BF=×=;故选:A.9.函数f(x)=Asin(ωx+φ)(A>0,ω>0,)的图象如图所示,将f(x)的图象向右平移m个单位得到g(x)的图象关于y轴对称,则正数m的最小值为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式;再利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得正数m的最小值.【解答】解:根据函数f(x)=Asin(ωx+φ)(A>0,ω>0,)的图象,可得A=1,=﹣,∴ω=2.再根据五点法作图可得2•+φ=,∴φ=.∴f(x)=sin(2x+).将f(x)的图象向右平移m个单位得到g(x)=sin(2x﹣2m+)的图象关于y轴对称,∴﹣2m+=kπ+,∴m=﹣﹣,k∈Z,取k=﹣1,可得正数m的最小值为,故选:C.10.已知三棱锥O﹣ABC的顶点A,B,C都在半径为3的球面上,O是球心,∠AOB=150°,当△AOC与△BOC的面积之和最大时,三棱锥O﹣ABC的体积为()A .B .C .D .【考点】LF :棱柱、棱锥、棱台的体积.【分析】由题意画出图形,可得当∠AOC=∠BOC=90°时,△AOC 和△BOC 的面积之和最大,此时OA ⊥OC ,OB ⊥OC ,∴OC ⊥平面AOB ,然后利用等积法求得答案. 【解答】解:如图,设球O 的半径为R ,则R=3.∵S △AOC +S △BOC =R 2(sin ∠AOC+sin ∠BOC ),∴当∠AOC=∠BOC=90°时,△AOC 和△BOC 的面积之和最大, 此时OA ⊥OC ,OB ⊥OC ,∴OC ⊥平面AOB ,∴V O ﹣ABC =V C ﹣OAB ==.故选:D .11.设抛物线C :y 2=4x 的焦点为F ,过点P (﹣1,0)作斜率为k (k >0)的直线l 与抛物线C 交于A ,B 两点,若,则k=( )A .B .C .1D .2【考点】K8:抛物线的简单性质.【分析】设直线l 的方程,代入抛物线方程,利用韦达定理及抛物线的焦点弦公式,联立即可求得x 1,x 2,由x 1•x 2=1,即可求得k 的值. 【解答】解:抛物线y 2=4x 的焦点F (1,0),直线AB 的方程为y ﹣0=k (x+1),k >0.设A (x 1,y 1),B (x 2,y 2) 代入抛物线y 2=4x 化简可得 k 2x 2+(2k 2﹣4)x+k 2=0, ∴x 1+x 2=,①x 1•x 2=1,②由抛物线的焦半径公式可知:丨AF 丨=x 1+=x 1+1,丨BF 丨=x 2+=x 2+1,由,则=,则x 2﹣2x 1=1,③由①②解得:x 1=,x 2=,x 1•x 2=×=1,整理得:k 2=,解得:k=±,由k >0,则k=,故选B .12.设e 表示自然对数的底数,函数f (x )=(a ∈R ),若关于x 的不等式f(x )≤有解,则实数a 的取值范围为( )A .[e 2﹣,e 2+]B .[e 2﹣,e 2+)C .(e 2﹣,e 2+]D .(e 2﹣,e 2+)【考点】7E :其他不等式的解法.【分析】由关于x 的不等式f (x )≤有解,可得≥有解,可得≥,解绝对值不等式,求得a 的范围.【解答】解:∵函数(a ∈R ),关于x 的不等式有解,即 (x ﹣a )2≤﹣有解,∴﹣≥0 有解,即≥有解,∴≥,∴|e 2﹣a|≤,∴﹣≤a ﹣e 2≤,e 2﹣≤a ≤e 2+,故选:A .二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,,则当取最小值时,实数t= 1 .【考点】9J :平面向量的坐标运算.【分析】利用数量积运算性质、函数的单调性即可得出. 【解答】解: =,=1, =1.∴===取最小值时,t=1.故答案为:1.14.在展开式中,只有第7项的二项式系数最大,则展开式中常数项是 ﹣220 .【考点】DB :二项式系数的性质.【分析】由题意求得n=12,在二项式展开式的通项公式中,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.【解答】解:(x ﹣)n 的展开式中只有第7项的二项式系数最大,故n 为偶数,展开式共有13项,故n=12.(x ﹣)12,它的展开式的通项公式为 T r+1=C 12r •(﹣1)r •x,令12﹣r=0,求得r=9,则展开式中的常数项是C 129•(﹣1)9=﹣220.故答案为:﹣22015.若星期一的所温为20℃,人星期二开始,每天的气温与前一天相比,仅等可能存在三种情形:“升1℃”、“持平”、“降1℃”,则星期五时气温也为20℃的概率为.【考点】CB:古典概型及其概率计算公式.【分析】由题意列表求出基本事件总数n=81,并利用列举法求出其中星期五时气温也为20℃的包含的基本事件有m=19个,由此能求出星期五时气温也为20℃的概率.【解答】解:由题意列表如下:(单位:℃)由表知基本事件总数n=81,其中星期五时气温也为20℃的包含的基本事件有m=19个,故星期五时气温也为20℃的概率p=.16.已知正项数列{a n }满足a 1=1,,数列{b n }满足,记{b n }的前n 项和为T n ,则T 20的值为 2 . 【考点】8E :数列的求和.【分析】由题意可得﹣=4,运用等差数列的通项公式可得=4n ﹣3,求得b n =(﹣),运用数列的求和方法:裂项相消求和,即可得到所求和.【解答】解:a 1=1,,可得﹣=4,即有=1+4(n ﹣1)=4n ﹣3,由题意可得a n =,==,则b n =(﹣),则T 20=(﹣1+3﹣+﹣3+ (9))=×(9﹣1) =2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且.(1)求角C;(2)若,求b﹣2a的取值范围.【考点】HT:三角形中的几何计算.【分析】(1)由余弦定理,得a2+b2﹣c2=2abcosC,从而,进而,由此能求出C.(2)由正弦定理,得,从而,进而,由此能求出b﹣2a的取值范围.【解答】解:(1)由余弦定理,可得a2+b2﹣c2=2abcosC,∵,∴,∴,又,∴.(2)由正弦定理,,∴,∵△ABC是锐角三角形,∴得,∴,,∴b﹣2a的取值范围是(﹣3,0).18.如图所示,正三角形ABC所在平面与梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F为棱AE的中点.(1)求证:直线AB⊥平面CDF;(2)若异面直线BE与AD所成角为450,求二面角B﹣CF﹣D的余弦值.【考点】MT:二面角的平面角及求法;LW:直线与平面垂直的判定.【分析】(1)取AB中点M,连接MF,MC,可得四边形MFDC为平行四边形,MC∥FD;由CM⊥AB,得DF⊥AB;又CD⊥AB,CD∩DF=D,即可得AB⊥平面CDF.(2)异面直线BE,AD所成角即直线DA,DC所成角,可得AC=CD=2,以B为原点,建立空间直角坐标系B﹣xyz,如图2所示,则,,利用向量法求解【解答】解:(1)证明:取AB中点M,连接MF,MC,因为M为AB中点,所以MF平行且等于,又CD平行且等于,所以MF平行且等于CD,所以四边形MFDC为平行四边形,所以MC∥FD;因为△ABC为正三角形,M为AB中点,所以CM⊥AB,从而DF⊥AB;又平面ABC⊥平面BCDE,CD⊥BC,平面ABC∩平面BCDE=BC,∴CD⊥平面ABC,∵CD⊥AB,CD∩DF=D,∴AB⊥平面CDF.(2)解:异面直线BE,AD所成角即直线DA,DC所成角,则∠ADC=45°,又∠ACD=90°,则AC=CD=2,以B为原点,建立空间直角坐标系B﹣xyz,如图2所示,则,,设平面BCF的法向量为,则即解得令z=﹣4,得,由(1)可知AB⊥平面CDF,所以为平面CDF的一个法向量.cos===∵二面角B﹣CF﹣D为钝角,所以二面角B﹣CF﹣D的余弦值为.19.某市在对高三学生的4月理科数学调研测试的数据统计显示,全市10000名学生的成绩服从正态分布X~N,现从甲校100分以上的200份试卷中用系统抽样的方法抽取了20份试卷来分析,统计如下:(注:表中试卷编号n1<n2<28<n4<n5<…<n20)(1)列出表中试卷得分为126分的试卷编号(写出具体数据);(2)该市又从乙校中也用系统抽样的方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图),试通过茎叶图比较两校学生成绩的平均分及分散程度(均不要求计算出具体值,给出结论即可);(3)在第(2)问的前提下,从甲乙两校这40名学生中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市前15名的人数记为ξ,求ξ的分布列和期望.(附:若随机变量X服从正态分布N(μ,σ2),则P(μ﹣σ<X<μ+σ)=68.3%,P(μ﹣2σ<X<μ+2σ)=95.4%,P(μ﹣3σ<X<μ+3σ)=99.7%)【考点】CP:正态分布曲线的特点及曲线所表示的意义;BA:茎叶图.【分析】(1)根据分层抽样的抽取编号为等差数列可知n5和n9的值;(2)根据茎叶图的数据集中程度判断均值和方差;(3)根据正态分布概率可得146分以上才能进入前15名,利用超几何分布概率公式得出分布列,从而可求出数学期望.【解答】解:(1)126分的试卷编号分别为48,88.(2)通过茎叶图可知:甲校学生成绩的平均分高于乙校学生成绩的平均分,甲校学生成绩比较集中,乙校学生成绩比较分散.(3)∵,根据正态分布可知:P(74<X<146)=99.7%,∴,即前15名的成绩全部在146分以上(含146分).根据茎叶图可知这40人中成绩在146分以上(含146分)的有3人,而成绩在140分以上(含140分)的有8人.∴ξ的取值为0,1,2,3.,,,,所以ξ的分布列为因此.20.已知椭圆C :4x 2+y 2=4m 2(m >0),过原点的直线与椭圆C 交于A ,B 两点,点P 是椭圆上的任意一点且直线PA ,PB 与坐标轴不平行.(1)证明:直线PA 的斜率与直线PB 斜率之积为定值;(2)若A ,B 不是椭圆C 的顶点,且PA ⊥AB ,直线BP 与x 轴,y 轴分别交于E ,F 两点. (i )证明:直线BP 的斜率与直线AF 斜率之比为定值;(ii )记△OEF 的面积为S △OEF ,求的最大值.【考点】K4:椭圆的简单性质.【分析】(1)设A (x 1,y 1),P (x 2,y 2),则B (﹣x 1,﹣y 1),把A ,P 坐标代入椭圆方程,写出PA ,PB 的斜率,化简整理可得直线PA 的斜率与直线PB 斜率之积为定值; (2)(i )由(1)得,再由PA ⊥AB ,求得PA 的斜率,进一步得到PB 的斜率,写出PB所在直线方程,求得E ,F 的坐标,即可得到直线BP 的斜率与直线AF 斜率之比为定值; (ii )由三角形面积公式写出△OEF 的面积,由基本不等式可得其最大值,除以m 2得答案. 【解答】(1)证明:设A (x 1,y 1),P (x 2,y 2),则B (﹣x 1,﹣y 1), ∴,,∴==﹣4;(2)证明:(i )由(1)得,又∵PA ⊥AB ,∴k AB •k PA =﹣1,得,∵k PA •k PB =﹣4,∴.),∴直线BP:,则,F(0,3y1则,∴.(ii)解:∵,∴,当且仅当时取到最大值.即的最大值为.21.已知f(x)=e x﹣1﹣a(x+1)(x≥1),g(x)=(x﹣1)lnx,其中e为自然对数的底数.(1)若f(x)≥0恒成立,求实数a的取值范围;(2)若在(1)的条件下,当a取最大值时,求证:f(x)≥g(x).【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)法一:(分类讨论法),f'(x)=e x﹣1﹣a.≥0即可求得实数分①当a≤1,②当a>1,讨论f(x)单调性,求出最小值,只需f(x)mina的取值范围;法二:(分离参数法).f(x)≥0恒成立在[1,+∞)上恒成立.令,讨论h(x)单调性,求出最小值,a≤h(x)≥0即可求得实数a的取值范围;min(2)由题意可知,.要证f(x)≥g(x)⇔,先证明:x≥1时,lnx≤x﹣1.即只需要证明可得k'(x)在[1,1+ln2]上单减,在[1+ln2,+∞)上单增,k(x)在[1,+∞)上单调递增,所以k(x)≥k(1)=0.即可得证.【解答】(1)解:法一:(分类讨论法).因为x≥1,f'(x)=e x﹣1﹣a.①当a≤1时,e x﹣1≥1,所以f'(x)=e x﹣1﹣a≥0,故f(x)在[1,+∞)上单调递增,所以,所以.②当a>1时,令f'(x)=0⇒x=1+lna,若x∈(1,1+lna),f'(x)<0;若x∈(1+lna,+∞),f'(x)>0,所以f(x)在(1,1+lna)上单减,在(1+lna,+∞)上单增;所以,解得,此时a无解,综上可得.法二:(分离参数法).f(x)≥0恒成立在[1,+∞)上恒成立.令,则,所以h(x)在[1,+∞)上单增,故,所以.(2)证明:由题意可知,.要证f(x)≥g(x)⇔,(*)先证明:x≥1时,lnx≤x﹣1.令.当x≥1时,h'(x)≤0,所以h(x)在[1,+∞)上单减,所以h(x)≤h(1)=0,所以lnx≤x﹣1.所以要证明(*)式成立,只需要证明.(**)…令k''(x)=0⇒x=1+ln2又k''(x)在[1,+∞)上单调递增,则在[1,1+ln2]上,k''(x)≤0,在[1+ln2,+∞),k''(x)>0.所以,k'(x)在[1,1+ln2]上单减,在[1+ln2,+∞)上单增,所以,所以k(x)在[1,+∞)上单调递增,所以k(x)≥k(1)=0.所以(**)成立,也即是(*)式成立.故f(x)≥g(x).选修4-4:坐标系与参数方程22.在平面直角系xOy中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标为ρ=2cosθ,且直线(t为参数)与曲线C交于不同两点A,B.(1)求实数m的取值范围;(2)设点M(m,0),若|MA|•|MB|=1,求实数m的值.【考点】QH:参数方程化成普通方程.【分析】(1)求出直线l的普通方程为:,曲线C的直角坐标方程为:x2+y2=2x,圆心(1,0).由题意知圆心到直线l的距离d<1,由此能求出实数m的取值范围.(2)直线(t为参数)代入圆C:x2+y2=2x,得25t2+(6m﹣6)t+m2﹣2m=0,由|MA|•|MB|=1,能求出实数m的值.【解答】解:(1)∵直线(t为参数),∴消去参数t,得直线l的普通方程为:,∵曲线C的极坐标为ρ=2cosθ,即ρ2=2ρcosθ,∴曲线C的直角坐标方程为:x2+y2=2x,圆心(1,0),半径r=1,由题意知圆心到直线l的距离,解得.(2)直线(t 为参数)代入圆C :x 2+y 2=2x ,得25t 2+(6m ﹣6)t+m 2﹣2m=0,设方程的两根为t 1,t 2,则t 1+t 2=,t 1t 2=,∵|MA|•|MB|=1,∴|m 2﹣2m|=1, 解得m=1或(舍)或(舍).综上,实数m 的值为1.选修4-5:不等式选讲23.设函数f (x )=log 2(5﹣|x+1|﹣|x ﹣2|)的定义域为D . (1)求集合D ;(2)设a ,b ∈D ,证明:.【考点】4N :对数函数的图象与性质.【分析】(1)根据绝对值的性质求出不等式的解集,从而求出集合D 即可; (2)根据绝对值的性质证明即可. 【解答】(1)解:|x+1|+|x ﹣2|<5,当x ≥2时,|x+1|+|x ﹣2|=2x ﹣1<5,解得2≤x <3, 当﹣1<x <2时,|x+1|+|x ﹣2|=3<5恒成立, 当x ≤﹣1时,﹣1﹣x ﹣x+2<5,解得﹣2<x ≤﹣1, 综上,定义域D={x|﹣2<x <3}. (2)证明:原不等式⇔3|a+b|<|9+ab| ⇔9a 2+18ab+9b 2<81+a 2b 2+18ab ⇔(a 2﹣9)(b 2﹣9)>0. 由a ,b ∈D 得a 2<9,b 2<9, 原不等式得证.。
2020届重庆市巴蜀中学高三高考适应性月考数学(理)试题一、单选题1.已知α是第二象限角,且sin 45α=,则cosα=( ) A .45 B .45- C .35 D .35- 【答案】D【解析】通过同角三角函数的平方关系,结合α是第二象限角,cosα为负值,直接代入解得答案.【详解】∵α是第二象限角,且sin 45α=,可得3cos 5α==-, 故选:D .【点睛】本题考查同角三角函数关系,注意象限角的符号即可,属于基础题.2.集合A ={x |(x ﹣1)(x ﹣7)≤0},集合B ={x |x =2k +1,k ∈N },则A ∩B =( )A .{1,7}B .{3,5,7}C .{1,3,5,7}D .{1,2,3,4,5,6,7}【答案】C【解析】先求出集合A 与B ,求出两集合的交集即可.【详解】 ∵集合()(){}{}|=17017|Ax x x x x ≤≤≤=﹣﹣, 集合B ={x |x =2k +1,k ∈Z },∴A ∩B ={1,3,5,7},故选:C .【点睛】本题考查集合的运算,此类题目一般比较简单,只需将两集合解出,再进行交并补运算即可求解.3.向量a =r (1,2),b =r (2,λ),c =r (3,﹣1),且(a b +r r )∥c r,则实数λ=( )A .3B .﹣3C .7D .﹣7【答案】B 【解析】向量a r ,b r ,计算可得a b +r r ,再由c r 和(a b +r r )∥c r ,代入向量平行的性质公式计算,即可求解.【详解】根据题意, 向量=a r (1,2),=b r (2,λ),则()=32+a b λ+,r r , c =r (3,﹣1),且(a b +r r )∥c r ,则有()()3132+0λ⨯--=,解可得=3λ-,故选:B .【点睛】本题考查平面向量的坐标运算和平行的性质,属于平面向量常考题型.4.已知随机变量X 服从正态分布N (3,σ2),且P (x ≤1)=0.1,则P (3<X ≤5)=( )A .0.1B .0.2C .0.3D .0.4 【答案】D【解析】根据已知随机变量X 服从正态分布N (3,σ2),得到正态分布曲线关于=3x 对称,又根据题目P (x ≤1)=0.1,由对称性可得()50.1P x ≥=,因此得到P (1≤X ≤5)的值,再乘12即为所求. 【详解】∵随机变量X 服从正态分布N (3,σ2),∴正态分布曲线关于=3x 对称,又P (x ≤1)=0.1,∴()50.1P x ≥=,∴()()510.1235==0.422P X P X ≤≤-⨯≤1<=, 故选:D【点睛】本题考查正态分布概率问题,此类问题通常根据正态分布曲线的对称性质推导求解,属于基础题.5.函数πsin(2)3y x =-的图象的一条对称轴方程为( ) A .π12x =B .π12x =-C .π6x =D .π6x =- 【答案】B 【解析】试题分析:令232x k πππ-=+,即5212k x ππ=+()k Z ∈,当1k =-时,12x π=-,故选B. 【考点】1、两角差的正弦函数;2、正弦函数的图象与性质.6.定义H (x )表示不小于x 的最小整数,例如:H (1.5)=2,对x ,y ∈R ,则下列正确的是( )A .H (﹣x )=﹣H (x )B .H (2﹣x )=H (x )C .H (x +y )≥H (x )+H (y )D .H (x ﹣y )≥H (x )﹣H (y )【答案】D【解析】根据题意,可用特殊值法进行逐一排除,最后得到正确选项.【详解】∵定义H (x )表示不小于x 的最小整数, A 选项,令()()1.5, 1.5=11.5=2x H H =----,,显然错误, B 选项,令()()3,233x H H =-≠,显然错误,C 选项,令()()()1.5, 2.5,=4=5x y H x y H x H y ==++,,故错误,D 选项根据排除法,因此正确,故选:D .【点睛】此类问题属于定义新概念题型,根据定义去判断各个推论是否正确,此类问题最快速的办法是举特例进行排除,可快速锁定答案,属于中等题.7.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且b +c =acosB +acosC ,则A =( )A .2πB .3πC .6πD .23π 【答案】A【解析】由题意代入余弦定理,可得到三边a ,b ,c 的等式,化简可得222a b c =+,从而得到△ABC 为直角三角形,A 为直角.【详解】由b +c =acosB +acosC , 根据余弦定理可得,22222222a c b a b c b c a a ac ab+-+-++=, 22222222a c b a b c b c c b+-+-++=, ()()()2332a b c bc b c b c b c bc +++-++=()()()()222=2a b c bc b c b c b bc c bc +++-+-+, 进一步化简可得222a b c =+∴△ABC 为直角三角形,2A π=. 故选:A .【点睛】本题考查余弦定理的应用,考查运算求解能力,通过余弦定理找到各边之间的关系,然后推导出角的大小,属于中等题.8.对任意x ∈R ,存在函数f (x )满足( )A .f (cosx )=sin 2xB .f (sin 2x )=sinxC .f (sinx )=sin 2xD .f (sinx )=cos 2x 【答案】D【解析】根据题意,对任意x ∈R ,存在函数f (x )满足,对选项逐一判断即可.【详解】对于A 选项,取x =4π,则cos x =2,sin2x =1,∴f (2)=1;取x =4π-,则cos x x =-1,∴f ()=-1;∴f (2)=1和-1,不符合函数的定义,故不满足题意; 对于B 选项,取x =0,则sin2x =0,∴f (0)=0;取x =2π,则sin2x =0,∴f (0)=1;∴f (0)=0和1,不符合函数的定义,故不满足题意;对于C 选项,取x =4π,则sin x ,sin2x =1,∴f )=1;取x =34π,则sin x =2,sin2x =-1,∴f (2)=-1;∴f (2)=1和-1,不符合函数的定义,故不满足题意; 对于D 选项,∵22=12sin cos x x -,∴f (sinx )=cos 2x =212sin x -,即对任意x ∈R ,存在函数f (sinx )=cos 2x ,只有D 选项满足题意.故选:D .【点睛】本题考查三角函数二倍角公式和函数的解析式,需要对公式和概念的熟练掌握,属于简单题.9.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,AB ⊥BC ,且SA =2,AB =1,BC =S ﹣ABC 外接球的表面积为( )A .4πB .6πC .8πD .10π【答案】C【解析】由勾股定理可得AC ,求得△ABC 外接圆的半径,从而再利用勾股定理可求该三棱锥的外接球的半径,即可求出三棱锥S -ABC 的外接球的表面积.【详解】∵AB ⊥BC ,AB =1,BC =∴由勾股定理可得AC =2,∴AC 是△ABC 外接圆的直径,∴△ABC 外接圆的半径为r =1,∵SA ⊥平面ABC ,且SA =2,设球心到平面ABC 的距离为d ,则由勾股定理可得2222211(2)R d d =+=+-,∴22=1R d =,,∴三棱锥S −ABC 的外接球的表面积为248R ππ=.故选:C .【点睛】本题考查几何体外接球的表面积,此类问题常常先求底面的外接圆半径,再与球心到底面距离、球的半径运用勾股定理求解,属于中等难度题型.10.已知AB u u u r •AC =u u u r 0,|BC |=4,P 是三角形ABC 平面内任意一点,且满足|PA u u u r |=1,则PB u u u r •PC uuu r 的最小值是( )A .﹣4B .﹣3C .﹣2D .﹣1 【答案】B【解析】利用已知0AB AC ⋅=u u u r u u u r,得到AB AC ⊥,|BC |=4,以A 为坐标原点建立平面直角坐标系,再根据P 点满足|PA u u u r |=1,设P 点坐标为()cos sin P θθ,,代入点坐标计算PB PC ⋅u u u r u u u r ,再根据辅助角公式和坐标之间的关系可得PB PC ⋅u u u r u u u r 的取值范围,从而得解.【详解】∵0AB AC ⋅=u u u r u u u r,∴AB AC ⊥,建立如图直角坐标系,设()()()0,00,,0A B y C x ,,,又|BC |=4,∴2224x y += ∵|PA u u u r|=1,∴设()cos sin P θθ,, ()()cos sin cos sin B P y x P C θθθθ⋅=--⋅--,,u u u r u u u r22cos +cos sin +sin x y θθθθ=--()+1θϕ=-()4cos +1θϕ=--,∵()1cos 1θϕ-≤-≤,35PB PC -≤⋅≤u u u r u u u r ,故最小值为3-,故选:B .【点睛】本题考查向量积的最值问题,通常建立直角坐标系,设未知数,得到各个向量的坐标,运用坐标运算计算出含有未知量的解析式,再进一步运用函数思想找出取值范围,属于中等题.11.已知f (x )=sin (ωx 6π+)(ω∈Z )x ∈(0,3π]时f (x )12=有唯一解,则满足条件的ω的个数是( )A .3B .4C .5D .6 【答案】D 【解析】对ω进行分类讨论,当0>ω,通过0,,3x π⎛⎤∈ ⎥⎝⎦可确定6x πω+的范围,636ππωπ⎛⎤+ ⎥⎝⎦,由f (x )12=,得到2,233πωππ⎡⎫∈⎪⎢⎣⎭,从而得到[)2,6ω∈,再根据ω∈Z ,可得ω的值;当0ω<时,同理可得ω的值.【详解】当0>ω时,0,,,,36636x x ππππωπω⎛⎤⎛⎤∈∴+∈+ ⎥⎥⎝⎦⎝⎦Q 513,3666πωπππ⎡⎫∴+∈⎪⎢⎣⎭, ∵()12f x =有唯一解, 2,233πωππ⎡⎫∴∈⎪⎢⎣⎭,[)2,6ω∈, 又,2,3,45,Z ωω∈∴=,当0ω<时,0,,,,36366x x πππωππω⎛⎤⎡⎫∈∴+∈+ ⎪⎥⎢⎝⎦⎣⎭Q 117,,3666πωπππ⎡⎫∴+∈--⎪⎢⎣⎭∴42,,(6,4]33πωππω⎛⎤∈--∈-- ⎥⎝⎦, 又,5,4Z ωω∈∴=--,综上所述, 2,3,4,5,5,4ω=--故选:D .【点睛】本题主要考查三角函数的图象与性质,函数零点与方程的根的关系,求三角函数的ω值时,利用函数图像数求出ω的范围,即可求得ω值,属于中等题.12.已知抛物线C :x 2=2py (p >0),直线l 1:y =kx +t 与抛物线C 交于A ,B 两点(A 点在B 点右侧),直线l 2:y =kx +m (m ≠t )交抛物线C 于M ,N 两点(M 点在N 点右侧),直线AM 与直线BN 交于点E ,交点E 的横坐标为2k ,则抛物线C 的方程为( )A .x 2=yB .x 2=2yC .x 2=3yD .x 2=4y 【答案】D【解析】设1122(,),(,)A x y B x y ,3344(,),(,)M x y N x y ,利用根与系数关系公式,推出12+2x x pk =,34+2x x pk =,取A 、B 中点P ,M 、N 中点Q ,则E 、P 、Q 三点共线,且所在直线方程为x =pk ,又根据E的横坐标为2k ,求解即可.【详解】如图所示,设1122(,),(,)A x y B x y ,则直线l 1:y =kx +t 与抛物线C 联立消去y ,可得2220,x pkx pt --=∴12+2x x pk =,设3344(,),(,)M x y N x y ,则直线l 2:y =kx +m 与抛物线C 联立消去y可得2220,x pkx pm --=∴34+2x x pk =,取A 、B 中点P ,M 、N 中点Q ,则E 、P 、Q 三点共线,且所在直线方程为x =pk ,∵E 的横坐标为2k ,∴22k pk p ==,,∴抛物线C 的方程为:x 2=4y.故选:D .【点睛】本题考查直线与抛物线的位置关系,涉及平面几何知识,取A 、B 中点,M 、N 中点与E 三点共线,考查分析能力及转化能力,属于中档题.二、填空题13.设复数z 满足12z i =+2+i ,则|z |=_____ 【答案】5【解析】复数方程的两边同乘1+2i ,然后利用多项式展开化简,即可确定z ,再进一步求得z .【详解】复数z 满足212z i i=++, 所以()()212=2245z i i i i i =++-++=, 故5z =故答案为:5.【点睛】本题考查复数代数形式的乘除运算,复数的模的计算,属于基础题.14.函数f (x )=log 13(x 2﹣2x ﹣24)的单调递增区间是_____ 【答案】(﹣∞,﹣4).【解析】先求出函数f (x )的定义域,确定真数部分函数的单调性,再由复合函数的单调性可知函数的单调增区间.【详解】函数的定义域为22240x x >﹣﹣,即为64{|}x x x ->或<,令2224t x x =﹣﹣, 则原函数13y log t =, 因为13y log t =在(0,+∞)单调递减, 2224t x x =﹣﹣在(-∞,-4)单调递减,在(6,+∞)单调递增,由复合函数的单调性可知函数的单调增区间为(-∞,-4),故答案为:(-∞,-4).【点睛】本题考查复合函数单调性,复合函数单调性的判断遵循“同增异减”的判断法则,前提是先求定义域,然后找出中间函数的单调区间,再判断复合函数的单调区间即可,属于基础题. 15.sin 20°+2sin 20°cos 40°=_____.【答案】2. 【解析】利用20301040301==0+︒︒︒︒︒︒-,进行角的转化,再利用和差公式化简即可求解. 【详解】sin 202sin 20cos 40︒︒︒+()()()=sin 30102sin 3010cos 3010︒︒︒︒︒︒--++()()=sin 301012cos 3010︒︒︒︒⎡⎤-++⎣⎦()()sin 12sin30cos10cos3010cos30cos102sin30sin10︒︒︒︒︒︒︒︒-+=-()1cos10101sin10n 2︒︒︒︒⎛⎫=- ⎪ ⎪⎝⎭1cos1010cos102︒︒︒︒=+1310sin10cos10sin1010cos1022sin ︒︒︒︒︒︒--sin 20cos 0in 202+s ︒︒︒-==【点睛】本题为计算题,主要考察正余弦和差公式的灵活应用,此类问题中非特殊角三角函数化简求值,如20°、40°等角度,一般找出与特殊角的和差关系,再利用和差公式化简即可,属于中等题. 16.已知函数f (x )=lnx 1x ++a ,f ′(x )是f (x )的导函数,若关于x 的方程f ′(x )1f x x -=+()0有两个不等的根,则实数a 的取值范围是_____【答案】(﹣∞,14-ln 2) 【解析】根据题意可得f ′(x ),代入关于x 的方程f ′(x )()1f x x -=+0,方程有2个交点转化为y =121x --lnx 1x -与y =a 有两个不同的交点,则令g (x )=121x --lnx 1x-,求导研究g (x )的图象从而可得a 的取值范围. 【详解】根据题意可得,f ′(x )22111x x x x-=-=,x >0 ∵关于x 的方程关于x 的方程f ′(x )()1f x x -=+0有两个不相等的实数根,∴221x x-=lnx 1x ++a 有两个不相等的实数根, ∴y =121x --lnx 1x-与y =a 有两个不同的交点; 令g (x )=121x --lnx 1x-, ∴g ′(x )()()23233212112x x x xx x x x x -+-+=-+==-, 令g ′(x )=0,x =2或﹣1(舍负);令g ′(x )>0,0<x <2;令g ′(x )<0,x >2; ∴g (x )的最大值为g (2)=114--ln 21124-=-ln 2; ∴a 14-<ln 2;∴a 的取值范围为(﹣∞,14-ln 2). 故答案为:(﹣∞,14-ln 2). 【点睛】本题主要考查导数的运算、导数在函数中的应用、函数零点等基础知识,考查了转化能力、运算求解能力,考查了函数与方程、化归与转化等数学思想方法,属于较难题.三、解答题17.已知函数f (x )=sinxcosx cos 2x +1 (1)求f (x )的最小正周期和最大值,并写出取得最大值时x 的集合;(2)将f (x )的函数图象向左平移φ(φ>0)个单位后得到的函数g (x )是偶函数,求φ的最小值. 【答案】(1)最小正周期为T =π,f (x )取得最大值为2,此时x 的集合为{x |x =kπ12π+,k ∈Z }.(2)12π【解析】(1)由三角函数公式化简可得f (x )=sin (2x 3π+)+1,由此可得最小正周期及最大值,由当且仅当2x 3π+=2kπ2π+,k ∈Z 时,f (x )取得最大值,解出x 的集合;(2)通过平移变换可得g (x )=sin (2x +2φ3π+)+1,若函数g (x )是偶函数,运用三角函数的诱导公式,令23πϕ+=2k ππ+,k ∈Z 即可,从而得到φ的最小值.【详解】(1)f (x )=sinxcosx +cos 2x +112=sin 2x +cos 2x +1=sin (2x 3π+)+1,所以函数f (x )的最小正周期为T 22π==π, 当且仅当2x 3π+=2kπ2π+,k ∈Z 时,f (x )取得最大值为2,此时x 的集合为{x |x =kπ12+π,k ∈Z }.(2)g (x )=f (x +φ)=sin (2x +2φ3π+)+1,因为g (x )是偶函数, 所以2φ3π+=kπ2π+,k ∈Z ,即φ12=kπ12+π,k ∈Z ,所以φ的最小值为12π.【点睛】本题主要考查了利用公式化简三角函数,求三角函数的周期、最值、极值点和三角函数的图像和性质等,需要特别注意集合的书写规范,属于基础题.18.如图,在四棱锥S ﹣ABCD 中,SA ⊥底面ABCD ,底面ABCD 是平行四边形,E 是线段SD 上一点.(1)若E是SD的中点,求证:SB∥平面ACE;(2)若SA=AB=AD=2,SC=,且DE23DS,求二面角S﹣AC﹣E的余弦值.【答案】(1)证明见解析(2【解析】(1)由题意连结BD,交AC于点O,连结OE,可证OE∥SB,SB∥平面ACE得证;(2)建立空间直角坐标系,求得平面SAC与平面ACE的法向量,代入公式求二面角的余弦值即可. 【详解】(1)证明:连结BD,交AC于点O,连结OE,∵底面ABCD是平行四边形,∴O是BD的中点,∵E是SD的中点,∴OE∥SB,∵SB⊄平面ACE,OE⊂平面ACE,∴SB∥平面ACE.(2)∵SA⊥底面ABCD,AC⊂平面ABCD,∴SA⊥AC,在Rt△SAC中,SA=2,SC=2,∴AC=2,∵AB=AD=2,∴△ABC,△ACD都是等边三角形,∴BD=以O为原点,OD为x轴,OA为y轴,过O作AS的平行线为z轴,建立空间直角坐标系,O(0,0,0),D0,0),A(0,1,0),S(0,1,2),DS =u u u r(1,2),23DE DS ==u u u r u u u r(3-,2433,), OE OD DE =+=u u u r u u u r u u u r(24333,,), ∵BD ⊥平面SAC ,取平面SAC 的一个法向量n OD ==u u u r r0,), 设平面ACE 的法向量m =r(x ,y ,z ),则024033m OA y m OE x y z ⎧⋅==⎪⎨⋅=++=⎪⎩u u uv r u u u v r ,取x =4,得m =r (4,0,, 设二面角S ﹣AC ﹣E 的平面角为θ,则cosθ19m n m n ⋅===⋅r r r r .∴二面角S ﹣AC ﹣E的余弦值为19.【点睛】本题主要考查线面平行的判定定理,二面角的向量求法,意在考查学生的分析转化能力和计算求解能力,属于基础题.19.甲、乙两名射击运动员在进行射击训练,已知甲命中10环,9环,8环的概率分别是13,13,13,乙命中10环,9环,8环的概率分别是18,14,58,任意两次射击相互独立. (1)求甲运动员两次射击命中环数之和恰好为18的概率;(2)现在甲、乙两人进行射击比赛,每一轮比赛两人各射击1次,环数高于对方为胜,环数低于对方为负,环数相等为平局,规定连续胜利两轮的选手为最终的胜者,比赛结束,求恰好进行3轮射击后比赛结束的概率【答案】(1)13(2)427【解析】(1)甲运动员两次射击命中环数之和恰好为18包含“第一次10环和第二次8环”,“第一次8环第二次10环”,“第一次9环和第二次9环”这三种情况,分别求三种情况概率再求和;(2)求恰好进行3轮射击后比赛结束的概率,先确定甲胜利,平局,失败的概率,恰好进行3轮射击后比赛结束情形包括两种:①当甲获得最终胜利结束3轮比赛时,由第2轮、第3轮甲连续胜利,第一轮甲没有获得胜利,算出其概率P118=;②当乙获得最终胜利结束3轮比赛时,则第2轮、第3轮乙连续胜利,第1轮乙没有获得胜利,其概率P25=216,两情形概率之和即为所求.【详解】(1)记X表示甲运动员两次射击命中环数之和,则X=18包含“第一次10环和第二次8环”,“第一次8环第二次10环”,“第一次9环和第二次9环”这三种情况,∴甲运动员两次射击命中环数之和恰好为18的概率为:P1211111 33333C=⨯⨯+⨯=.(2)记A i表示甲在第i轮胜利,B i表示甲在第i轮平局,∁i表示甲在第i轮失败,∴P(A i)151151384382⎛⎫=⨯++⨯=⎪⎝⎭,P(B i)13=,P(∁i)16=,①当甲获得最终胜利结束3轮比赛时,由第2轮、第3轮甲连续胜利,第一轮甲没有获得胜利,其概率P1111112228⎛⎫=⨯⨯-=⎪⎝⎭,②当乙获得最终胜利结束3轮比赛时,则第2轮、第3轮乙连续胜利,第1轮乙没有获得胜利,其概率P21155 666216 =⨯⨯=,∴经过3轮比赛结束的概率P12154 821627P P=+=+=.【点睛】本题考查了概率的计算,第一种为已知取值,求取此值的概率,常常利用排列组合、枚举法、概率公式等方法计算,第二种需要分析判断得到结果所有的可能情况,再根据每种状况求出概率,属于中档题.20.已知椭圆E :22221x y a b +=(a >b >0)的离心率e =(1)若点P (1,2)在椭圆E 上,求椭圆E 的标准方程;(2)若D (2,0)在椭圆内部,过点D 的直线交椭圆E 于M .N 两点,|MD |=2|ND |,求椭圆E 的方程.【答案】(1)2214x y +=(2)221123x y +=【解析】(1)因为c e a ==,所以2234c a =,则2214b a =,所以222214x y b b +=,将P (1程,得b 2=1,所以a 2=4,可得椭圆方程;(2)设M (x 1,y 1),N (x 2,y 2),设y 1<y 2,因为2214b a =,所以椭圆的方程为222214x y b b+=,MN 的直线方程为x =+2,联立求解韦达定理,结合条件|MD |=2|ND |,可得y 1=﹣2y 2,所以解得1y =22y =b 2=3,a 2=12,求得椭圆E 的方程. 【详解】(1)因为2c e a ==,所以2234c a =,则2214b a =,所以222214x y b b +=,将P (1b 2=1,所以a 2=4, 所以椭圆E 的标准方程为2214x y +=;(2)设M (x 1,y 1),N (x 2,y 2),不妨设y 1<y 2,因为2214b a =,所以椭圆的方程为222214x y b b+=,MN 的直线方程为x =+2,联立2222214x x y b b ⎧=+⎪⎪⎨⎪+=⎪⎩,得,16y 2+12﹣12b 2=0, 所以y 1+y2=,y 1y 22334b -=①.因为|MD |=2|ND |,即y 1=﹣2y 2,所以1y =22y = 代入①,得b 2=3,a 2=12,所以椭圆E 的方程为221123x y +=.【点睛】本题考查椭圆方程的求解,一种为根据离心率及椭圆上的点建立方程组求解,考查计算能力;另一种为已知弦长之间的关系求解,利用弦长关系转化得到纵坐标的关系,结合韦达定理即可求解,意在考查学生的转化能力和计算求解能力. 21.已知函数f (x )=()21211x x x e -+-(1)求f (x )>0的解集; (2)若x ∈R 时,2221mxxx e e +≥+恒成立,求实数m 的取值范围.【答案】(1)(0,+∞)(2)[12,+∞) 【解析】(1)通过对f (x )求导,可得x ∈R 时,f ′(x )≥0,所以f (x )在(﹣∞,+∞)上单调递增,又f (0)=0,x ∈(0,+∞)时f (x )>0,不等式得解; (2)若x ∈R 时,2221mxxxe e+≥+恒成立,不等式转化为2e 2mx ≥e x1xe +(x ∈R ),因为都是偶函数,所以只需x ∈[0,+∞)时,2e 2mxx+-e 2x﹣1≥0成立即可,构造新的函数F (x )=2e 2mxx+-e 2x﹣1,求导后再对导函数进行分类讨论,可得实数m 的取值范围. 【详解】(1)因为f (x )=()21211x x x e-+-,则f ′(x )=2122xxx e -;所以x ∈R 时,f ′(x )≥0,所以f (x )在(﹣∞,+∞)上单调递增,又f (0)=0,所以x∈(﹣∞,0)时,f(x)<0,x∈(0,+∞)时f(x)>0,∴f(x)>0的解集为(0,+∞).(2)因为x∈R时,2e2mx x+≥e2x+1恒成立,等价于221mx xxxeee+-≥恒成立,即2e2mx≥e x1xe+(x∈R),因为都是偶函数,所以只需x∈[0,+∞)时,2e2mx x+-e2x﹣1≥0成立即可,令F(x)=2e2mx x+-e2x﹣1,F(0)=0,F′(x)=2(2mx+1)e2mx x+-2e2x=2e2x[(2mx+1)e2mx x--1],F′(0)=0,令G(x)=(2mx+1)e2mx x--1,G(0)=0,G′(x)=2me2mx x-+(2mx+1)(2mx﹣1)e2mx x-=(4m2x2+2m﹣1)e2mx x-①当2m﹣1≥0,即m12≥时,G′(x)≥0,所以G(x)在[0,+∞)上单调递增,又因为G(0)=0,所以x∈[0,+∞)时,G(x)≥0,即F′(x)≥0,所以F(x)在[0,+∞)上单调递增,又因为F(0)=0,所以x∈[0,+∞)时,F(x)≥0,所以m1 2≥时满足要求;②当m=0,x=1时,2e<e2+1,不成立,所以m≠0;③当2m﹣1<0且m≠0时,即m12<且m≠0时,x∈122mm⎛⎫-⎪⎪⎝⎭,上单调递减,又因为G(0)=0,所以x∈122mm⎛⎫-⎪⎪⎝⎭,时,G(x)<0,即F′(x)<0,所以F(x)在122mm⎛⎫-⎪⎪⎝⎭,上单调递减,又因为F(0)=0,所以x∈122mm⎛⎫-⎪⎪⎝⎭,时,F(x)<0,所以m12<且m≠0时不满足要求.综上所述,实数m的取值范围是[12,+∞).【点睛】本题主要考查函数单调性和导数之间的关系,以及不等式恒成立求参数问题,将不等式恒成立转化为构造差函数,求函数的最值是解决本题的关键,也是本题的难点,需要对导函数进一步求导和分类讨论,综合性较强,运算量较大,难度较大.22.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=4cosθ,直线C2的参数方程为1x tcosy tsinαα=+⎧⎨=⎩(t为参数).(1)求曲线C1的直角坐标方程和直线C2的普通方程;(2)若P(1,0),直线C2与曲线C1相交于A,B两点,求|PA|•|PB|的值.【答案】(1)曲线C1:x2+y2﹣4x=0;直线C2:xsinα﹣ycosα﹣sinα=0(2)3【解析】(1)求曲线C1的直角坐标方程需利用直角坐标与极坐标关系互化关系式x=ρcosθ,y=ρsinθ,x2+y2=ρ2,将ρ=4cosθ,等式两边乘ρ得ρ2=4ρcosθ代入即可,直线C2的参数方程消去参数t即为普通方程;(2)因为P(1,0)在直线C2上,将直线C2的参数方程1x tcosy tsinαα=+⎧⎨=⎩(t为参数)代入曲线C1:x2+y2﹣4x=0,设A,B对应的参数分别为t1,t2,根据根与系数关系可得则t1t2=﹣3,故可求|PA|•|PB|=|t1t2|=3.【详解】(1)曲线C1的极坐标方程为ρ=4cosθ,由x=ρcosθ,y=ρsinθ,x2+y2=ρ2,可得ρ2=4ρcosθ,即为x2+y2﹣4x=0,直线C2的参数方程为1x tcosy tsinαα=+⎧⎨=⎩(t为参数),可得xsinα﹣ycosα﹣sinα=0;(2)因为P(1,0)在直线C2上,将直线C2的参数方程1x tcosy tsinαα=+⎧⎨=⎩(t为参数)代入x2+y2﹣4x=0,可得(1+tcosα)2+(tsinα)2﹣4(1+tcosα)=0,化为t2﹣2tcosα﹣3=0,设A,B对应的参数分别为t1,t2,则t1t2=﹣3,可得|PA|•|PB|=|t1t2|=3.【点睛】本题考查极坐标方程与平面直角坐标方程的转化、参数方程与普通方程的转化、求弦长关系问题,极坐标方程与平面直角坐标方程的转化、参数方程与普通方程的转化,可利用转化关系直接求解,求弦长关系问题通常借助联立二次方程,转化为根与系数关系问题求解.23.已知函数f(x)=|x+1|+2|x﹣m|(1)当m=2时,求f(x)≤9的解集;(2)若f(x)≤2的解集不是空集,求实数m的取值范围.【答案】(1)[﹣2,4](2)[﹣3,1]【解析】(1)当m=2时,函数f(x)=|x+1|+2|x﹣2|≤9,对x分类讨论,分别在三个区间1122x x x--≤≤<,,>,去掉绝对值求解不等式即可求得解集;(2)若f(x)≤2的解集不是空集,转化为f(x)min≤2成立,又根据|x+1|+|x﹣m|≥|m+1|恒成立,f (x)min=|m+1|≤2,解得﹣3≤m≤1.【详解】(1)当m=2时,f(x)=|x+1|+2|x﹣2|332512331x xx xx x-⎧⎪=-+-≤≤⎨⎪-+-⎩,>,,<.∵f(x)≤9,∴3392xx-≤⎧⎨⎩>或5912xx-+≤⎧⎨-≤≤⎩或3391xx-+≤⎧⎨-⎩<,∴2<x≤4或﹣1≤x≤2或﹣2≤x<﹣1,∴﹣2≤x≤4,∴不等式的解集为[﹣2,4];(2)∵f(x)≤2的解集不是空集,∴f(x)min≤2.∵|x+1|+|x﹣m|≥|m+1|,|x﹣m|≥0,∴f(x)=|x+1|+2|x﹣m|≥|m+1|,当且仅当x=m时取等号,∴|m+1|≤2,∴﹣3≤m≤1,∴实数m的取值范围为[﹣3,1].【点睛】本题考查含有绝对值不等式的解法和求参数范围问题,解含有绝对值不等式一般进行分区间讨论去掉绝对值,然后求解不等式即可;不等式恒有解求参数问题一般进行等价转化成求函数最值问题,然后通过函数最值确定参数的取值范围,属于中等题.。
2020届重庆市巴蜀中学高考适应性月考数学(理)试题一、单选题1.已知集合{}2|20A x x x =-->,集合1|12xB x ⎧⎫⎪⎪⎛⎫=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =I ( )A .(),0-∞B .()2,+∞C .(),1-∞-D .()0,∞+【答案】C【解析】化简集合A 和B ,根据交集定义,即可求得A B I . 【详解】∴ {}2|20A x x x =-->∴ 化简可得()(),12,A =-∞-⋃+∞根据指数函数12xy ⎛⎫= ⎪⎝⎭是减函数∴ 121x⎛⎫ ⎪⎭>⎝,即01122x ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故0x < ∴ (),0B =-∞故(),1A B =-∞-I 故选:C. 【点睛】本题考查了集合的交集,在集合运算比较复杂时,可以使用数轴来辅助分析问题,属于基础题. 2.已知复数12iz i -=+(i 为虚数单位),则z 对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】化简12iz i -=+,可得()()()()1211322255i i i z i i i i ---===-++-,即可求得z 对应的点. 【详解】Q ()()()()1211322255i i i z i i i i ---===-++- ∴ z 对应的点为13,55⎛⎫- ⎪⎝⎭,故在第四象限故选:D. 【点睛】本题主要考查了复数的四则运算,以及复数的基本概念的应用,其中解答中熟练应用复数的运算法则化简是解答的关键,属于基础题.3.已知实数x ,y 满足102022x y x y y x -+≥⎧⎪+-≥⎨⎪≥-⎩则z x y =+的最小值是( )A .1B .2C .3D .4【答案】B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合即可求得z x y =+的最小值. 【详解】作出可行域,由z x y =+,得y x z =-+,Q 当y x z =-+与边界直线20x y +-=重合时,z 取得最小值. ∴ 可取公共点13,22⎛⎫ ⎪⎝⎭,可知min 13222z =+= 故选:B. 【点睛】本题考查线性规划的相关内容,解题关键是根据约束条件画出不等式组表示的平面区域,数形结合解决问题,属于中档题.4.命题p :2m =,命题q :直线()1120m x y m --+-=与直线230mx y m +-=垂直,则p 是q成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】根据充分条件和必要条件的定义判断,即可得出答案. 【详解】Q 由直线()1120m x y m --+-=与直线230mx y m +-=垂直 ∴ 可得(1)20m m --=,即220m m --=,解得1m =-或2m =.故:由直线()1120m x y m --+-=与直线230mx y m +-=垂直不能推出:2m =∴命题p 是命题q 不必要条件Q 由2m =时直线分别是: 100x y --=,30x y +-=,此时两条直线垂直.故命题p 能推出命题q∴ 命题p 是命题q 充分条件综上所述,p 是q 充分不必要条件. 故选:A. 【点睛】本题主要考查了充分条件与必要条件的判定,其中熟记充分条件和必要条件的判定方法是解答的关键,着重考查了理解能力与运算能力,属于基础题. 5.已知()tan 2πθ-=,则sin sin 2πθθ⎛⎫+ ⎪⎝⎭的值为( ) A .25B .25-C .25±D .45【答案】B【解析】由()tan 2πθ-=,可得tan 2θ=-,根据诱导公式化简sin sin 2πθθ⎛⎫+ ⎪⎝⎭,即可求得答案. 【详解】Q ()tan 2πθ-= ∴ tan 2θ=-Q sin sin cos sin 2πθθθθ⎛⎫+=⋅ ⎪⎝⎭222cos sin tan cos sin 1tan θθθθθθ==++ 22145-==-+ 故选:B. 【点睛】本考查了由诱导公式求三角函数值,能熟练使用诱导公式是解本题关键,考察了计算能力,属于基础题. 6.“辛卜生公式”给出了求几何体体积的一种计算方法:夹在两个平行平面之间的几何体,如果被平行于这两个平面的任何平面所截,截得的截面面积是截面高(不超过三次)的多项式函数,那么这个几何体的体积,就等于其上底面积、下底面积与四倍中截面面积的和乘以高的六分之一.即:()046hV S S S '=++,式中h ,S ,S ',0S 依次为几何体的高,下底面积,上底面积,中截面面积.如图,现将曲线()20y x x =≥与直线2y =及y轴围成的封闭图形绕y 轴旋转一周得到一个几何体.利用辛卜生公式可求得该几何体的体积V =( )A .2π B .πC .2πD .4π【答案】C【解析】根据“辛卜生公式”:()046hV S S S '=++,根据旋转体特点,结合已知,即可求得答案. 【详解】Q 根据辛卜生公式:()046hV S S S '=++ Q 根据题意可知该几何体是由,曲线()20y x x =≥与直线2y =及y 轴围成的封闭图形绕y 轴旋转一周得到.∴ 0S '=,22S ππ==,201S ππ=⋅=,∴ 根据辛卜生公式()220426V πππ=⨯++= 故选:C. 【点睛】本题考查了求旋转体体积,解题的关键是能够理解辛卜生公式,考查了理解能力和计算能力,属于基础题. 7.已知()f x 是R 上的偶函数,当0x ≥时,有()()3f x f x +=-,当[)0,3x ∈时,()2xf x =,则12log 192f ⎛⎫= ⎪⎝⎭( ) A .12B .13C .2D .3【答案】D【解析】利用偶函数()f x 满足()()3f x f x +=-求出函数的周期,然后化简12log 192f ⎛⎫ ⎪⎝⎭,通过周期性和偶函数性质,即可求得答案. 【详解】Q 当0x ≥时,()()3f x f x +=-,∴ ()()6f x f x +=,故()f x 最小正周期:6T =.Q ()122log 192log 192f f ⎛⎫=- ⎪⎝⎭,又Q ()f x 为偶函数故()()()222log 192log 192log 643f f f -==⨯()()2log 3226log 3log 323f f =+===故选D. 【点睛】本题考查了函数的周期性,需要掌握(+)()f m x f x =的周期为m ,当所求的变量不在所给的函数定义域内,利用函数的周期和奇偶性化简到定义域内,这是解此类型题的关键. 8.如图是一程序框图,则输出的S 值为( )A .20222023B .10112013C .10102021D .20202021【答案】C【解析】由程序框图可得111133520192021S =+++⨯⨯⨯L ,根据数列的裂项求和,即可得出答案. 【详解】 由程序框图可知:111133520192021S =+++⨯⨯⨯L 1111111233520192021⎛⎫=⨯-+-+⋅⋅⋅+- ⎪⎝⎭ 11120201010122021220212021⎛⎫=-=⨯= ⎪⎝⎭ 故选:C. 【点睛】本题考查数列的裂项求和,解题关键是能够理解程序框图,考查了分析能力,属于基础题.9.已知向量()2,0a =r ,向量(b =r ,向量c r满足c a b --=r r r ,则c r 的最大值为( )A B .C . 3D .【答案】D【解析】设(),c x y =r ,()2,0a =r,(b =r ,则(3,c a b x y --=-r r r ,即可求得()(2233x y -+=,将c r的起点放到坐标原点,则终点在以(为圆心,,即可求得cr 的最大值.【详解】Q 设(),c x y =r ,()2,0a =r,(b =r∴ (3,c a b x y --=-r r r故c a b --==r r r即()(2233x y -+=Q将c r的起点放到坐标原点,则终点在以(为圆心,.∴c r的最大值即:圆心到原点的距离+半径,=故选:D. 【点睛】本题主要考查向量的模的最值问题,根据向量模的几何意义,考查了分析能力和计算能力,属于基础题型. 10.巴蜀中学作为一所中华名校,不仅是培养学生的摇篮,也是培养教师的摇篮,每一年都有许多实习老师到巴蜀中学实习.现有甲乙等4位实习老师被分到高二年级的(1),(2),(3)三个班级实习.要求每个班级至少有一名实习老师,每个实习老师只能到一个班级实习,则甲不去高二(1)班,乙必须去高二(3)班实习的概率为( ) A .736B .16C .29D .772【答案】A【解析】根据题意,基本事件数234336n C A =⋅=,甲去(3)班,有222A =种,甲去(2)班,有2112225C C C +⋅=种,即可求得答案.【详解】根据题意基本事件数234336n C A =⋅=Q ①甲去(3)班,有222A =种,②甲去(2)班,有2112225C C C +⋅=种,∴ 甲不去高二(1)班,乙必须去高二(3)班实习的概率为:736P =, 故选:A. 【点睛】本题考查排列组合的简单应用.在排列组合的过程中,一般我们要注意:特殊元素优先排,相邻元素捆绑排这样一个原则.11.已知抛物线24x y =的焦点为F ,过直线2y x =-上任一点引抛物线的两条切线,切点为A ,B ,则点F 到直线AB 的距离( ) A .无最小值B .无最大值C .有最小值,最小值为1D .有最大值,【答案】D【解析】设()11,A x y ,()22,B x y ,可得2114x y =,2224x y =,即可求得A 为切点的切线方程1l 和以B 为切点的切线方程2l ,设过直线2y x =-上任一点为()00,P x y ,将()00,P x y 代入1l 和2l ,即可求得直线AB 的方程,进而求得点F 到直线AB 的距离. 【详解】设()11,A x y ,()22,B x y ,可得2114x y =,2224x y =Q 以A 为切点的切线方程为1l :()1112x y y x x -=-,即112x y x y =-——① 同理可得,以B 为切点的切线方程为2l :222x y x y =- ——② 设过直线2y x =-上任一点为()00,P x y∴ ()00,P x y 代入①②得10012002,2,2x y x y x y x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以直线AB 的方程为002xy x y =-,即002x y x y =-, 又Q 002y x =-,即0122x y x ⎛⎫=-+⎪⎝⎭Q AB 过定点()2,2P ,∴ 当PF AB ⊥时,()0,1F 到l 的距离的最大值为=当AB 过点F 时,距离的最小值为0故选:D . 【点睛】本题主要考查直线与圆锥曲线的综合应用能力,综合性强,本题涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化.12.已知函数()()()()()22213122x x f x a a e a x e x =---+++有4个不同的零点,则实数a 的取值范围为( ) A .1,2e ⎛⎫⎪⎝⎭B .11,22e +⎛⎫⎪⎝⎭C .()1,11,2e ⎛⎫⎪⎝⎭U D .11,11,22e +⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U 【答案】D【解析】因为()0f x =,故()()()()222131220x x a a e a x e x ---+++=,化简为:()()()e 221e 20x xa x a x ⎡⎤⎡⎤-+--+=⎣⎦⎣⎦,即2e x x a +=,221e x x a +-=,构造函数()2ex x g x +=,求其最值即可求得实数a 的取值范围. 【详解】Q 由()0f x =,()()()()222131220x x a a e a x e x ---+++=∴ 得()()()e 221e 20x xa x a x ⎡⎤⎡⎤-+--+=⎣⎦⎣⎦,可得:2e x x a +=,221e xx a +-=, 设()2e x x g x +=,则()()1e xx g x -+'=, Q 当()0g x '>时,1x <-当()<0g x '时,1x >-∴ ()g x 在(),1-∞-上单调递增,在()1,-+∞上单调递减,故()20g -=,()()max 1e g x g =-=, 当2x >-,()0g x >.Q x →-∞,()g x →-∞,x →+∞,()0g x +→.要使方程有4个不同的零点,则0e021e 21a a a a<<⎧⎪<-<⎨⎪-≠⎩,可得11e 22a +<<,1a ≠, 故选:D. 【点睛】本题考查了函数零点问题,要将函数的求零点问题转化为求方程根的问题,就自变量取不同范围进行讨论求解这是解题关键.二、填空题13.二项式2462x x ⎛⎫- ⎪⎝⎭展开式中的常数项为______. 【答案】-32【解析】写出二项式2462x x ⎛⎫- ⎪⎝⎭展开通项公式:()()462142rr r r r T C x x --+=-,即可求得答案. 【详解】Q 二项式2462x x ⎛⎫- ⎪⎝⎭展开通项公式: ()()()46224814422rrrr r r rr T C x x C x ---+=-=-∴ 当3r =时,()()32483442232rr rC x C -=--=-∴二项式2462x x ⎛⎫- ⎪⎝⎭展开式中的常数项为:32-. 故答案为:32-. 【点睛】本题考查求二项式展开式中常数项,解题关键是掌握二项展开式的通项公式,考查分析能力和计算能力,属基础题.14.已知函数()()()sin 2cos 202f x x x πϕϕϕ⎛⎫=+++<< ⎪⎝⎭,将()f x 的图像向右平移12π个单位后得到的函数图像关于y 轴对称,则ϕ的值为______. 【答案】512π【解析】将()()()sin 2cos 202f x x x πϕϕϕ⎛⎫=+++<<⎪⎝⎭化简可得:()24f x x πϕ⎛⎫=++ ⎪⎝⎭, 将()f x 的图像向右平移12π个单位后得:()212g x x πϕ⎛⎫=++ ⎪⎝⎭,根据()g x 图像关于y 轴对称,即可求得答案. 【详解】Q ()()()sin 2cos 202f x x x πϕϕϕ⎛⎫=+++<<⎪⎝⎭∴ 由辅助角公式可得:()24f x x πϕ⎛⎫=++⎪⎝⎭将()f x 的图像向右平移12π个单位后得:()212g x x πϕ⎛⎫=++ ⎪⎝⎭∴ ()212g x x πϕ⎛⎫=++ ⎪⎝⎭图像关于y 轴对称 ∴()122k k ππϕπ+=+∈Z ,512k ϕππ=+,又02πϕ<<,∴0k =,512ϕπ=. 故答案为:512π. 【点睛】本题主要考查了三角恒等变换、及三角函数的图像变换和三角函数的性质的应用,其中根据三角恒等变换的公式,化简得到函数的解析式,掌握三角函数的图像变换和三角函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.15.已知双曲线C :22221x y a b-=(0a >,0b >)的左,右焦点为1F ,2F ,以12F F 为直径的圆与双曲线C 的渐近线在第一象限交于点P ,线段2PF 与双曲线的交点M 为2PF 的中点,则双曲线C 的离心率为______.1【解析】因为以12F F 为直径的圆与双曲线C 的渐近线在第一象限交于点P ,故222x y c by x a ⎧+=⎪⎨=⎪⎩解得,,x a y b =⎧⎨=⎩,求得(),P a b ,由中点坐标公式解得,22a c b M +⎛⎫⎪⎝⎭,将其代入22221x ya b-=,即可求得双曲线C 的离心率. 【详解】Q 以12F F 为直径的圆与双曲线C 的渐近线在第一象限交于点P ,∴ 222x y c by xa ⎧+=⎪⎨=⎪⎩解得:,,x a y b =⎧⎨=⎩ 故(),P a b , 又Q ()2,0F c ,∴,22a c b M +⎛⎫ ⎪⎝⎭,代入双曲线方程22221x y a b-= 可得:22240c ac a +-=,化简可得2240e e +-=∴1e =-±,又1e >,∴1e =.故答案为1. 【点睛】本题考查了求双曲线离心率的问题,解题关键双曲线的几何性质及离心率的求法,数形结合是本题的关键,查分析能力和计算能力,属于中档题.16.已知数列{}n a ,满足()()*112n n na n a n +--=∈N ,{}na 的前n 项和为nS,对任意的*n ∈N ,当5n ≠时,都有5n S S <,则5S 的取值范围为______. 【答案】()5,6【解析】由()112n n na n a +--=,当1n =,得12a =.由()()1121212n n n n na n a n a na +++⎧--=⎪⎨+-=⎪⎩ 可得212n n n a a a +++=,即可求得{}n a 为等差数列,结合当5n ≠时,都有5n S S <,即可求得5S 的取值范围. 【详解】Q 由()112n n na n a +--=, ∴ 当1n =,得12a =.Q ()112n n na n a +--=——①可得()1212n n n a na +++-=——②∴ 由①②得:212n n n a a a +++=,故{}n a 为等差数列.又Q 120a =>,5S 最大,则0d <,50a >,60a <,即240,250d d +>⎧⎨+<⎩1225d ⇒-<<-, 又51010S d =+,可得()55,6S ∈ 故答案为:()5,6. 【点睛】本题解题关键是根据已知条件判断出数量是等差数列,掌握数列单调性是解本题的关键,考查了分析能力和计算能力,属于基础题.三、解答题17.已知数列{}n a ,是一个等差数列,且22a =,145a a +=,数列{}n b 是各项均为正数的等比数列,且满足:112b =,24164b b ⋅=. (1)求数列{}n a 与{}n b 的通项公式; (2)求证:11222n n a b a b a b ++⋅⋅⋅+<.【答案】(1)n a n =,12nn b ⎛⎫= ⎪⎝⎭(2)证明见解析【解析】(1)因为{}n a 为等差数列,设公差为d ,则1112,35,a d a a d +=⎧⎨++=⎩即可求得首项和公差,即可求得{}n a .因为{}n b 为等比数列,2243164b b b ⋅==,23118b b q ==,即可求得公比,进而求得{}n b . (2)因为n a n =,12nn b ⎛⎫= ⎪⎝⎭,所以()23111111123122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,根据数列求和错位相减法,即可求得n T ,进而求得答案. 【详解】(1)Q {}n a 为等差数列,设公差为d ,∴1112,35,a d a a d +=⎧⎨++=⎩∴11,1,a d =⎧⎨=⎩∴()11n a a n d n =+-=.Q {}n b 为等比数列,0n b >,设公比为q ,则0q >, ∴2243164b b b ⋅==,23118b b q ==, ∴12q =,1111222n nn b -⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭. (2)令112233n n n T a b a b a b a b =+++⋅⋅⋅+,∴ ()23111111123122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭——①可得:()2311111112122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭——②∴由①-②得:23111112211111111222222212nn n n n T n n ++⎛⎫⎛⎫- ⎪ ⎪⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++⋅⋅⋅+-⨯=-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,∴1112222n nn T n -⎛⎫⎛⎫=--⨯< ⎪ ⎪⎝⎭⎝⎭.故11222n n a b a b a b ++⋅⋅⋅+<. 【点睛】本题考查求等差数列通项公式和数列求和.错位相减法求数列和,适用于通项公式为等差的一次函数乘以等比的数列形式,考查了学生的计算能力,属于基础题型.18.2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据y (单位:十亿元).绘制如下表1: 表1根据以上数据绘制散点图,如图所示.(1)根据散点图判断,y a bx =+与2y cx d =+哪一个适宜作为销售额y 关于x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及下表中的数据,建立y 关于x 的回归方程,并预测2020年天猫双十一销售额;(注:数据保留小数点后一位)(3)把销售额超过10(十亿元)的年份叫“畅销年”,把销售额超过100(十亿元)的年份叫“狂欢年”,从2010年到2019年这十年的“畅销年”中任取3个,求取到的“狂欢年”个数ξ的分布列与期望. 参考数据:2i i t x =.参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线$µva u β=+$的斜率和截距的最小二乘估计公式分别为µ1221111ni ni u v nuvu nuβ==-=-∑∑,µµv u αβ=-$. 【答案】(1)2y cx d =+更适宜(2)$22.7 2.0y x =-,预测2020年双十一的销售额为324.7十亿元(3)答案见解析【解析】(1)根据其图像的形状,即可得出答案.(2)根据101102211010i ii i t y t ybtt =-=-=-∑∑$,a y bt =-$$,即可求得y 关于x 的回归方程,即可预测2020年天猫双十一销售额;(3)因为畅销年个数为8,狂欢年个数为4,ξ的可能取值为0,1,2,3,分别求出()0P ξ=,()1P ξ=,()2P ξ=,()3P ξ=,即可求得随机变量X 的分布列和数学期望.【详解】(1)根据其图像的形状可知,2y cx d =+更适宜.(2)1011022110677701038.5102285005702.725380148301055021110i ii i t y t ybtt =-=--⨯⨯====≈--∑∑$,$102 2.738.5 2.0ay bt =-=-⨯≈-$, ∴ $22.7 2.0y x =-,当1x =时,$324.7y =(十亿元), ∴预测2020年双十一的销售额为324.7十亿元.(3)畅销年个数为8,狂欢年个数为4,ξ的可能取值为0,1,2,3()34384105614C P C ξ====,()2144382431567C C P C ξ⋅====, ()2144382432567C C P C ξ⋅====,()34384135614C P C ξ====,∴()1331301231477142E ξ=⨯+⨯+⨯+⨯=. 【点睛】本题考查了概率的求法和离散型随机变量分布列及其数学期望,在列分布列时,要弄清随机变量所满足的分布列类型,结合相应公式求出事件的概率,进而得出概率分布列以及数学期望,考查计算能力.19.已知,在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,()sin cos ,sin p A C A =+u r,()cos sin ,sin q C A C =--r ,若1cos 22B p q +⋅=u r r .(1)求角B ;(2)若3b =,求ABC V 面积的最大值.【答案】(1)23B π=(2)4【解析】(1)因为()sin cos ,sin p A C A =+u r ,()cos sin ,sin q C A C =--r ,1cos 22Bp q +⋅=u r r 可得:222cos sin sin sin cos p q C A A C B ⋅=--=u r r,根据正弦定理可得222a c ac b ++=,即可求得答案.(2)由余弦定理:2222cos b a c ac B =+-,2293a c ac ac =++≥,则3ac ≤,根据三角形面积公式即可求得答案. 【详解】(1)Q ()sin cos ,sin p A C A =+u r ,()cos sin ,sin q C A C =--r ,1cos 22Bp q +⋅=u r r ∴ 222cos sin sin sin cos p q C A A C B ⋅=--=u r r,可得:2221sin sin sin sin 1sin C A A C B ---=-,∴ 222sin sin sin sin sin A C A C B ++=.由正弦定理:222a c ac b ++=故:2222cos a c b ac ac B +-=-=∴ 1cos 2B =-, Q 0B π<<, ∴23B π=.(2)由余弦定理:2222cos b a c ac B =+-,∴2293a c ac ac =++≥,∴3ac ≤,当且仅当a c =时,()max 3ac =,∴1sin 244ABC S ac B ac ==≤V .∴ABC V 面积的最大值为:4.【点睛】本题主要考查正弦定理,余弦定理解三角形和三角形面积公式,解题关键是利用正弦定理sin sin sin a b c A B C==边化角,再利用和角的正弦公式化简所给式子,属于基础题.20.已知椭圆C :22221x y a b+=()0a b >>的两个焦点为1F ,2F ,焦距为直线l :1y x =-与椭圆C 相交于A ,B 两点,31,44P ⎛⎫- ⎪⎝⎭为弦AB 的中点. (1)求椭圆的标准方程;(2)若直线l :y kx m =+与椭圆C 相交于不同的两点M ,N ,()0,Q m ,若3OM ON OQ λ+=u u u u r u u u r u u u r(O 为坐标原点),求m 的取值范围.【答案】(1)2213x y +=(2)113m <<或113m -<<-【解析】(1)因为31,44P ⎛⎫- ⎪⎝⎭为弦AB 的中点,设()11,A x y ,()22,B x y ,将其代入22221x ya b+=利用点差法,即可求得答案.(2)因为M ,Q ,N 三点共线,133OQ OM ON λ=+u u u r u u u u r u u u r , 根据三点共线性质可得:1133λ+=,则2λ=,将直线l和椭圆C 联立方程22,33y kx m x y =+⎧⎨+=⎩消掉y ,结合已知,利用韦达定理即可求得答案. 【详解】(1)Q焦距为则c =设()11,A x y ,()22,B x y ,Q 31,44P ⎛⎫- ⎪⎝⎭为弦AB 的中点,根据中点坐标公式可得:1232x x +=,1212y y +=-, 又Q 将其()11,A x y ,()22,B x y 代入椭圆C :22221x ya b+=∴ 2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩ ∴ 将两式作差可得:()()()()22121212120b x x x x a y y y y +-++-=, ∴()()22121222121231ABb x x y y b k x x a y y a+-==-==-+, ∴223a b =——①. Q 222a c b -=——②由①②得: 2231a b ⎧=⎨=⎩∴椭圆的标准方程为2213x y +=. (2)Q M ,Q ,N 三点共线,133OQ OM ON λ=+u u u r u u u u r u u u r∴ 根据三点共线性质可得: 1133λ+=,则2λ=设()11,M x y ,()22,N x y ,则1212033x x +=,∴122x x =-.将直线l 和椭圆C 联立方程22,33y kx m x y =+⎧⎨+=⎩消掉y . 可得:()222136330kxkmx m +++-=.220310k m ∆>⇒-+>——①,根据韦达定理:122613km x x k +=-+,21223313m x x k-=+, 代入122x x =-,可得:22613km x k =+,222233213m x k--=+, ∴ ()222222363321313k m m kk --⨯=++,即()2229131m k m -⋅=-. Q 2910m -≠,219m ≠, ∴22213091m k m -=≥-——②, 代入①式得22211091m m m --+>-,即()22211091m m m -+->-, ∴()()2221910m m m --<,∴2119m <<满足②式, ∴113m <<或113m -<<-.【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理解决. 21.已知函数()ln f x x x =. (1)求()f x 的单调区间与极值;(2)若不等式23ln 0322x x x e x λλ⎛⎫+-≥ ⎪⎝⎭+对任意[]1,3x ∈恒成立,求正实数λ的取值范围. 【答案】(1)单减区间为10,e ⎛⎫ ⎪⎝⎭,()f x 的单增区间为1,e ⎛⎫+∞ ⎪⎝⎭,()1ef x =-极小值,无极大值.(2)127ln32λ≤【解析】(1)因为()ln f x x x =,定义域为()0,∞+,则()1ln f x x '=+,即可求得()f x 的单调区间与极值;(2)223e ln 0322x x x x x x λλ⋅⎛⎫+-≥ ⎪⎝⎭+,故2302x x +>,将其化简可得2233ln e 22x x x x x x λλ⎛⎫⎛⎫+⋅+≥⋅ ⎪ ⎪⎝⎭⎝⎭,()23e 2x f x x f λ⎛⎫+≥ ⎪⎝⎭,由(1)知()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单增,23e 2x x x λ+≥,23ln 2x x xλ⎛⎫+ ⎪⎝⎭≤,即可求得正实数λ的取值范围.【详解】(1)Q ()ln f x x x =∴ ()1ln f x x '=+,定义域为()0,∞+,又∴()0f x '>,1e x >,()0f x '<,10e x <<.∴()f x 的单减区间为10,e ⎛⎫⎪⎝⎭,()f x 的单增区间为1,e ⎛⎫+∞ ⎪⎝⎭∴()1111ln e e e e f x f ⎛⎫===- ⎪⎝⎭极小值,无极大值.(2)Q 223e ln 0322xx x x x x λλ⋅⎛⎫+-≥ ⎪⎝⎭+,故2302x x +>∴将223eln 0322xxx x x x λλ⋅⎛⎫+-≥ ⎪⎝⎭+化简可得: 2233ln e 22x x x x x x λλ⎛⎫⎛⎫+⋅+≥⋅ ⎪ ⎪⎝⎭⎝⎭, ∴()23e 2xf x x f λ⎛⎫+≥ ⎪⎝⎭. Q 2322x x +≥,0e e 1x λ>=,∴由(1)知()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单增, ∴23e 2x x x λ+≥,∴23ln 2x x x λ⎛⎫≤+ ⎪⎝⎭,即23ln 2x x xλ⎛⎫+ ⎪⎝⎭≤. 令()23ln 2x x h x x⎛⎫+ ⎪⎝⎭=, ()223232ln 322x x x x h x x +⎛⎫-+ ⎪⎝⎭+'∴= 令()23232ln 322x k x x x x +⎛⎫=-+ ⎪⎝⎭+, 则()22332223322x k x x x x +'=-⎛⎫++ ⎪⎝⎭3321223322x x x x ⎛⎫+ ⎪=- ⎪ ⎪++⎝⎭29231403322x x x x x ---=⋅<⎛⎫+⋅+ ⎪⎝⎭, ∴ ()k x 在[]1,3上单减,()751ln 052k =->,()5273ln 032k =-<, ∴()01,3x ∃∈,()00k x =且在()01,x 上,()0k x >,()0h x '>,()h x 单增,在()0,3x 上,()0k x <,()0h x '<,()h x 单减.()()(){}()()min 27ln 52min 1,3,1ln ,3ln 23h x h h h h ===∴=∴()()13h h > ∴127ln32λ≤. 【点睛】 本题主要考查导数在函数中的综合应用和不等式恒成立问题.对于恒成立问题,通常利用导数研究函数的单调性,求出最值,进而得出相应的不等关系式.着重考查了转化与化归思想、逻辑推理能力与计算能力.22.在直角坐标系xOy 中,曲线1C :22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C :24sin 3ρρθ=-,曲线1C 与曲线2C 相交于M ,N 两点.(1)求曲线2C 的直角坐标方程与直线MN 的一般方;(2)点3,04P ⎛⎫- ⎪⎝⎭,求PM PN +. 【答案】(1)2C :2243x y y +=-,直线MN :4430x y -+=(2【解析】(1)将曲线1C :22cos 2sin x y θθ=+⎧⎨=⎩化简为:2cos 2sin 2x y θθ-⎧=⎪⎪⎨⎪=⎪⎩,根据22sin cos 1θθ+=消参,即可得到2C 的直角坐标方程,将1C 和2C 直角坐标方程作差,即可求得直线MN 的一般方程.(2)将MN l :34y x =+方程,改写成直线参数方程: 342x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入1C ,即可求得PM PN +.【详解】(1)1C :()2224x y -+=即2240x x y -+=. ——① 2C :2243x y y +=-——②将①-②得: MN l :4430x y -+-=,∴ 曲线2C 的直角坐标方程: 2243x y y +=-,直线MN 的一般方程为:4430x y -+=.(2)MN l :34y x =+, ∴ 3,04P ⎛⎫- ⎪⎝⎭在MN l 上, 直线MN 的参数方程为:342x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),代入1C :()2224x y -+=,整理得257016t +=,根据韦达定理: 12t t +=125716t t =⋅, ∴10t >,20t >.故:12PM PN t t +=+=. 【点睛】本题考查了极坐标和直角坐标方程.解题关键是掌握直线的标准参数方程,结合韦达定理来求线段和,意在考查学生的转化能力和计算求解能力,属于基础题.23.已知函数()122f x x x a =-++.(1)若1a =,求不等式()4f x ≥的解集;(2)证明:对任意x ∈R ,()22f x a a ≥+-.【答案】(1)[)5,1,3x ⎛⎤∈-∞-+∞ ⎥⎝⎦U (2)证明见解析 【解析】(1)当1a =时,()122f x x x =-++,分别讨论1x ≤-,11x -<<和1x ≥时求解()4f x ≥,即可求得答案;(2)因为()()221f x x x a x a =-++++,根据||||||||||a b a b a b -≤+≤+即可求得答案.【详解】(1)当1a =时,()122f x x x =-++①当1x ≤-时,()1224f x x x =---≥,得53x ≤-;②当11x -<<时,()12234f x x x x =-++=+≥,得1x ≥,∴x ∈∅③当1x ≥时,()122314f x x x x =-++=+≥,得1x ≥, ∴[)5,1,3x ⎛⎤∈-∞-+∞ ⎥⎝⎦U . (2)Q ()()()22121f x x x a x a x x a x a =-++++≥---++()2121222a x a a a a a =+++≥+=+≥+-.∴ 对任意x ∈R ,()22f x a a ≥+-.【点睛】本题主要考查了含绝对值不等式的求解,其中解答中合理分类讨论去掉绝对值,转化为等价不等式求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.。
重庆市巴蜀中学高三适应性月考(九)数学(理)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,则()A. B. C. D.2. 若复数满足,则的共轭复数的虚部为()A. B. C. D.3. 已知等比数列满足,,则该数列的公比为()A. B. C. D.4. 阅读如图1所示的程序框图,运行相应的程序,则输出的S 的值为()A. B. C. D.5. 函数的图象向左平移个单位长度后得到函数的图象,则下列选项中的函数的一条对称轴的是()A. B. C. D.6. 下列命题中,正确的选项是()A. 若为真命题,则为真命题B. ,使得C. “平面向量与的夹角为钝角”的充分不必要条件是“” D. 在锐角中,必有7. 已知圆,若圆刚好被直线平分,则的最小值为()A. B. C. D.8. 已知抛物线,直线与抛物线交于两点,若中点的坐标为,则原点到直线的距离为()A. B. C. D.9. 已知,则()A. B. C. D.10. 2018年俄罗斯世界杯将于2018年6月14日至7月15日在俄罗斯境内座城市的座球场内举行,共有支球队参加比赛,其中欧洲有支球队参赛,中北美球队有支球队参赛,亚洲、南美洲、非洲各有支球队参赛,所有参赛球队被平均分入个小组.已知小组的支队伍来自不同的大洲,东道主俄罗斯(俄罗斯属于欧洲球队)和墨西哥(墨西哥属于中北美球队)在小组中,那么南美洲球队巴西队在小组的概率为()A. B. C. D.11. 已知定义在上的偶函数满足,且当时,,那么函数在区间上的所有零点之和为()A. B. C. D.12. 已知某几何体的三视图如图2所示(小正方形的边长为),则该几何体的外接球的表面积为()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中的常数项为__________.14. 已知实数满足条件则的最小值为__________.15. 已知双曲线的左、右焦点分别为,过且斜率为的直线与双曲线的两条渐近线分别交于两点,若,则双曲线的离心率为__________.16. 如图3,正方形的边长为,顶点分别在轴的非负半轴,轴的非负半轴上移动,为的中点,则的最大值是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知在数列中,.(1)求数列的通项公式;(2)设,求的前项和.18. 支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.巴蜀中学高2018届学生为了调查支付宝在人群中的使用情况,在街头随机对名市民进行了调查,结果如下.(1)对名市民按年龄以及是否使用支付宝进行分组,得到以下表格,试问能否有的把握认为“使用支付宝与年龄有关”? 岁以上 岁以下(2)现采用分层抽样的方法,从被调查的岁以下的市民中抽取了位进行进一步调查,然后从这位市民中随机抽取位,求至少抽到位“使用支付宝”的市民的概率;(3) 为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有的概率获得元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一周使用了次支付宝,记为这一周他获得的奖励金数,求的分布列和数学期望.附:,其中.19. 如图4,在四棱锥中,底面,底面为直角梯形,,过作平面分别交线段于点.(1)证明:;(2)若直线与平面所成的线面角的正切值为,则当点在线段的何处时,直线与平面所成角为?20. 已知椭圆的左右焦点分别为,上顶点为,右顶点为,的外接圆半径为.(1)求圆的标准方程;(2)设直线与椭圆交于两点,若以为直径的圆经过点,求面积的最大值.-21. 已知.(1)当时,若函数在处的切线与函数相切,求实数的值;(2)当时,记.证明:当时,存在,使得.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中采取相同的单位长度.曲线的极坐标方程是,直线的参数方程是(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)设点,若直线与曲线交于两点,求的值.23. 已知函数(且).(1)当时,解不等式;(2)若的最大值为,且正实数满足,求的最小值.数学(理)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,则()A. B. C. D.【答案】C【解析】分析:首先根据一元二次不等式的解法以及绝对值的解法,项确定出集合P,Q中的元素,最后根据集合的交集中元素的特征,求得,即得结果.详解:解不等式,可得,结合,可得,解不等式,可得,所以,所以,故选C.点睛:该题以集合为载体,考查了一元二次不等式的解法以及绝对值不等式的解法,注意交集中元素的特征,最后求得结果.2. 若复数满足,则的共轭复数的虚部为()A. B. C. D.【答案】B【解析】分析:首先利用复数的模以及复数的除法运算,求得复数,之后应用共轭复数的定义,求得,从而确定其虚部的值,求得结果.详解:根据题意,有,所以,故其虚部为,故选B.点睛:该题考查的是有关复数的除法运算以及共轭复数的定义,在求解的过程中,注意对复数的除法运算法则要掌握,最后一定要看清题意,是其共轭复数的虚部,从而正确求得结果.3. 已知等比数列满足,,则该数列的公比为()A. B. C. D.【答案】A【解析】分析:首先根据等比数列的性质,确定出,之后应用等比数列的通项公式求得,因为题中没有关于限定公比的条件的语句,所以应该是两个值,得到结果...............................详解:根据等比数列的性质可得,所以,即,故选A.点睛:该题考查的是有关等比数列的性质的问题,在求解的过程中,注意对数列的通项公式的应用,得到其公比q所满足的等量关系式,求得结果.4. 阅读如图1所示的程序框图,运行相应的程序,则输出的S 的值为()A. B. C. D.【答案】C【解析】分析:首先分析该程序框图的作用以及要完成的任务,从中可以发现就是求几个数的和,要看清条件,到什么时候结束,最后通分,求得结果.详解:根据题中所给的框图,可知输出的,故选C.点睛:该题考查的是有关程序框图的输出结果的求解问题,在解题的过程中,需要明确其要求,以及对应的量有哪些,算到什么时候就结束了,一定要注意条件,最后求得结果即可.5. 函数的图象向左平移个单位长度后得到函数的图象,则下列选项中的函数的一条对称轴的是()A. B. C. D.【答案】B【解析】分析:首先根据题意,结合左右平移的规律,得到的解析式,再利用正弦型函数的性质求得图像的对称轴方程,之后对各个选项逐一验证,即可得结果.详解:依题意,,令,解得,逐项对比,可以求得满足条件,故选B.点睛:该题考查的是有关三角函数图像的平移变换以及对称性,在解题的过程中,需要明确左右平移对函数解析式中量的变化,以及对应函数图像的对称轴位置的确定以及对称轴方程的求解问题.6. 下列命题中,正确的选项是()A. 若为真命题,则为真命题B. ,使得C. “平面向量与的夹角为钝角”的充分不必要条件是“” D. 在锐角中,必有【答案】D【解析】分析:首先对各个选项的内容进行分析,对于A项,要明确复合命题的真值表,两个命题都是真命题,才会有为真命题,而只要有一个真命题,则就为真命题,在研究指数函数的图像的时候,发现,当时,在y轴右侧,当底数越小的时候,图像越靠近于x轴,对于时,除了夹角为钝角,还有反向共线的时候,所以都是不正确的,利用锐角三角形三个内角的大小,以及正弦函数的单调性还有诱导公式,可以确定D项是正确的,从而求得结果.详解:因为若为真命题的条件是至少有一个是真命题,而为真命题的条件为两个都是真命题,所以当一个真一个假时,为假命题,所以A不正确;当时,都有成立,所以B不正确;“”是“平面向量与的夹角为钝角”的必要不充分条件,所以C不正确;因为在直角三角形中,,有,所以有,即,故选D.点睛:该题考查的内容比较多,每一个知识点都是相互独立的,所以需要对各选项逐一分析,涉及到的知识点有复合命题的,有向量的,有函数的,有三角的,所以需要我们对基础知识比较扎实,才能做好本题.7. 已知圆,若圆刚好被直线平分,则的最小值为()A. B. C. D.【答案】C【解析】分析:首先要明确圆被直线平分的条件,就是直线过圆心,将圆心坐标代入直线的方程,得到关于两个正数的整式形式的和为定值,而目标式是关于两个正数的分式形式和的最值,将两式相乘,利用基本不等式求得结果.详解:根据题意,有圆心在直线上,所以有,所以有,故选C.点睛:该题考查的是有关利用基本不等式求最值的问题,在解题的过程中,涉及到的知识点有圆被直线平分的条件是直线过圆心,之后应用点在直线上的条件,点的坐标满足直线方程,从而求得所满足的关系,之后应用利用基本不等式求最值的方法求解.8. 已知抛物线,直线与抛物线交于两点,若中点的坐标为,则原点到直线的距离为()A. B. C. D.【答案】D【解析】分析:首先根据题意设出直线的方程,之后与抛物线的方程联立,利用韦达定理求得两根和,之后借助于中点坐标公式求得关于k所满足的等量关系式,从而确定出直线的方程,接着应用点到直线的距离公式求得结果.详解:根据抛物线的对称性,可知该直线的斜率是存在的,设直线的方程为,与抛物线方程联立,化简可得,因为是弦的中点,所以有,解得,所以直线方程为,所以原点到直线的距离为,故选D.点睛:该题考查的是有关抛物线的中点弦所在直线的问题,在求解的过程中,注意有关直线与曲线相交的统一解法,再者注意韦达定理的应用以及中点坐标公式的应用,最后求出直线方程之后注意点到直线的距离公式的正确使用.9. 已知,则()A. B. C. D.【答案】B【解析】分析:首先注意与的关系,想到用到倍角公式,求得的值,之后分析与的关系,从而应用诱导公式求得结果.详解:依题意,,故选B.点睛:该题考查的是有关应用倍角公式以及诱导公式求三角函数值的问题,在解题的过程中,需要认真分析角之间的关系,以及已知量与待求量的联系,应用相应的公式求得结果.10. 2018年俄罗斯世界杯将于2018年6月14日至7月15日在俄罗斯境内座城市的座球场内举行,共有支球队参加比赛,其中欧洲有支球队参赛,中北美球队有支球队参赛,亚洲、南美洲、非洲各有支球队参赛,所有参赛球队被平均分入个小组.已知小组的支队伍来自不同的大洲,东道主俄罗斯(俄罗斯属于欧洲球队)和墨西哥(墨西哥属于中北美球队)在小组中,那么南美洲球队巴西队在小组的概率为()A. B. C. D.【答案】A【解析】分析:首先要明确A组球队所满足的条件,来自不同的洲,所以得需要先确定选的哪个洲的球队,之后再确定选定洲之后对应的球队的选法,接着需要明确当南美洲球队巴西队选定之后另一个球队有几种选法,从而得到满足条件的基本事件与总的基本事件数,最后作除法运算求得结果.详解:根据题意有,A组剩余两个球队需要从亚洲、南美洲、和非洲三个洲中选两个洲,有种选法,每个洲选定之后从5个球队中任选1个球队,共有5种选法,所以另两个球队共有种选法,若南美洲球队巴西队在A组,则另一个球队有种选法,所以南美洲球队巴西队在小组的概率为,故选A.点睛:该题考查的是有关古典概型的问题,在求解的时候,需要明确实验所对应的基本事件数,以及满徐条件的基本事件数,在此过程中,需要时刻注意题中所给的组队的要求,之后借助于相关公式求得结果.11. 已知定义在上的偶函数满足,且当时,,那么函数在区间上的所有零点之和为()A. B. C. D.【答案】D【解析】分析:首先从题的条件得到函数的图像关于直线对称,借助偶函数,得到图像关于y轴对称,从而得到函数是周期函数,借助于两个函数在相应区间上的图像,应用数形结合求得结果.详解:根据,可得是函数图像的对称轴,又因为是偶函数,所以其图像关于y轴对称,所以其为最小正周期为2的周期函数,又函数也是偶函数,并且其图像也关于直线对称,在同一个坐标系中,画出函数的图像和的图像,可以发现在区间上一共有6个交点,且是关于对称的三对,所以留个零点的和为,故选D.点睛:该题考查的是有关函数的零点的问题,在解决之前,需要明确函数的相关性质,一是函数图像的对称性,二是函数的周期性,三是数形结合思想的应用,之后借助于中点坐标公式求得相应的结果.12. 已知某几何体的三视图如图2所示(小正方形的边长为),则该几何体的外接球的表面积为()A. B. C. D.【答案】A【解析】分析:首先根据题中所给的三视图,还原几何体,得到该几何体是由正方体切割而成的,找到该几何体的顶点有三个是正方体的棱的中点,一个就是正方体的顶点,之后将几何体补体,从而得到该三棱锥的外接球是补成的棱柱的外接球,利用公式求得结果.详解:根据题中所给的三视图,可以将几何体还原,可以得到该几何体是由正方体切割而成的,记正方体是,则记的中点为E,CD中点为F,中点为G,题中所涉及的几何体就是三棱锥,经过分析,将几何体补体,取棱中点H,再取正方体的顶点,从而得到该三棱锥的外接球即为直三棱柱的外接球,利用正弦定理可以求得底面三角形的外接圆的半径为,棱柱的高为4,所以可以求得其外接球的半径,所以其表面积为,故选A.点睛:该题考查的是有关利用三视图还原几何体,求其外接球的体积的问题,在解题的过程中,最关键的一步就是还原几何体,再者就是将其补成一个直三棱柱,之后应用直三棱柱的外接球的球心在上下底面外心的连线的中点处,利用公式求得结果.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中的常数项为__________.【答案】.【解析】分析:首先利用二项式定理得到二项展开式的通项,令x的幂指数等于零,求得r的值,即可求得展开式中常数项的值.详解:的展开式的通项为,令,得,所以展开式中的常数项为,故答案是216.点睛:该题考查的是有关二项式定理的问题,涉及到的知识点为求其展开式中的某一项,在求解的过程中,需要先求得展开式中的通项,之后令x的幂指数等于题中所要求的量,从而求得结果.14. 已知实数满足条件则的最小值为__________.【答案】.【解析】分析:首先根据题中所给的约束条件作出相应的可行域,结合表示的是区域内的点到坐标原点的距离的平方,结合图形,根据其几何意义,可以得到其结果为原点到直线的距离的平方,应用点到直线的距离公式求得结果.详解:根据约束条件画出可行域,其为直线的右下方,直线的右上方和直线的右上方,表示的是区域内的点到原点的距离的平方,从图中可以发现,距离最小时为原点到边界线的距离,即,而其平方为,所以的最小值为.点睛:该题考查的是有关线性规划的升级问题,约束条件是线性的,目标函数是非线性的,在解题的过程中,需要先根据约束条件画出相应的可行域,之后结合其几何意义,应用相应的公式求得结果.15. 已知双曲线的左、右焦点分别为,过且斜率为的直线与双曲线的两条渐近线分别交于两点,若,则双曲线的离心率为__________.【答案】.【解析】分析:首先根据题意,设出直线的方程,之后与双曲线的渐近线联立,分别求出A,B两点的坐标,之后根据题中条件,得出A 是的中点,根据中点坐标公式,得出其坐标间的关系,借助双曲线中的关系,求得该双曲线的离心率.详解:设直线的方程为,两条渐近线的方程分别为和,分别联立方程组,求得,根据,可以得到A 是的中点,所以有,整理得,结合双曲线中的关系,可以的到,所以答案为.点睛:该题考查的是有关双曲线的离心率问题,在解题的过程中,需要做的就是根据题中条件,想办法寻找的关系,利用题中条件,找到坐标间的关系,从而求得结果.16. 如图3,正方形的边长为,顶点分别在轴的非负半轴,轴的非负半轴上移动,为的中点,则的最大值是__________.【答案】.【解析】分析:首先根据题意,以及题中所给的图,设出正方形四个顶点的坐标,之后应用中点坐标公式,求得点E 的坐标,接下来应用向量数量积坐标公式,将其转化为关于的三角函数式,从而求得结果.详解:根据题意,设,根据正方形的特点,可以确定出,根据中点坐标公式,可以求得,所以有,所以其最大值为.点睛:该题考查的是有关向量的数量积的最值问题,在求解的时候,关键是将正方形的顶点坐标求出,之后将向量的数量积转化为关于角的三角函数式,借助于倍角公式和辅助角公式,从而求得结果.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知在数列中,.(1)求数列的通项公式;(2)设,求的前项和.【答案】(1) .(2) .【解析】分析:第一问首先应用题中所给的数列的递推公式,类比着写出个相邻两项差的式子,之后累加得出结果,注意对首项的验证;第二问利用对数的运算法则求得的通项,之后求和时利用分组求和法以及裂项相消法求和即可得结果.详解:(Ⅰ),,,.时,.(Ⅱ)令的前项和为.的前项和为.点睛:该题考查的是有关数列的问题,一是应用累加法求通项的问题,二是应用对数的运算法则求通项公式的问题,三是对数列求和,采用的方法就是分组求和法以及裂项相消法,在用累加法求和时需要对进行验证.18. 支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.巴蜀中学高2018届学生为了调查支付宝在人群中的使用情况,在街头随机对名市民进行了调查,结果如下.(1)对名市民按年龄以及是否使用支付宝进行分组,得到以下表格,试问能否有的把握认为“使用支付宝与年龄有关”?岁以上岁以下(2)现采用分层抽样的方法,从被调查的岁以下的市民中抽取了位进行进一步调查,然后从这位市民中随机抽取位,求至少抽到位“使用支付宝”的市民的概率;(3)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有的概率获得元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一周使用了次支付宝,记为这一周他获得的奖励金数,求的分布列和数学期望.附:,其中.【答案】(1) 不能有99%的把握认为“使用支付宝与年龄有关”.(2)(3)分布列见解析;.【解析】分析:第一问首先应用题中所给的列联表,利用公式求得观测值的值,之后与临界值比较大小,从而得到相应的结论;第二问利用相关知识求得所抽取的12人中,使用和不使用支付宝的人数分别是多少,之后借助于组合数求得相应的概率;第三问根据题意,求得随机变量X的取值以及相对应的概率,列出分布列,利用期望公式求得其期望.详解:(Ⅰ)不能有99%的把握认为“使用支付宝与年龄有关”.(Ⅱ)12位中,使用支付宝的人数为(人),不使用支付宝的人数为(人),.(Ⅲ)的分布列如下:点睛:该题考查的是有关统计、独立检验以及离散型随机变量的分布列的问题,在求解的过程中,需要明确独立检验的步骤,以及观测值的求解公式,再者对随机事件发生的概率求解时,需要对其对应的基本事件数弄清楚,最后在求随机变量的分布列及期望的时候,需要对变量的可取值以及对应的概率要算对.19. 如图4,在四棱锥中,底面,底面为直角梯形,,过作平面分别交线段于点.(1)证明:;(2)若直线与平面所成的线面角的正切值为,则当点在线段的何处时,直线与平面所成角为?【答案】(1)见解析.(2) 当在线段靠近的三分点位置时,直线与平面所成的线面角为45°.【解析】分析:第一问利用梯形的条件,结合线面平行的判定以及性质定理,证得线线垂直;第二问建立相应的空间直角坐标系,设出对应点的坐标,将线面角转化为有关向量所成的角,利用向量所成角的余弦公式求得结果.详解:(Ⅰ)证明:底面为直角梯形,,平面,平面,平面,平面,平面平面,.(Ⅱ)解:平面,,为直线与平面所成的线面角,,,.以点为原点,,,为轴建立空间直角坐标系,(2,0,0),(2,1,0),(0,2,0),(0,0,2),设,则,∴.设平面的法向量为,则令,则,,当在线段靠近的三分点位置时,直线与平面所成的线面角为45°.点睛:该题考查的是有关立体几何的问题,在解题的过程中,注意空间关系的转化,有关线线平行、线面平行之间的关系,利用相关的判定和性质定理证得结果,有关空间角的问题,大多应用空间向量来完成,注意相关公式的正确使用.20. 已知椭圆的左右焦点分别为,上顶点为,右顶点为,的外接圆半径为.(1)求圆的标准方程;(2)设直线与椭圆交于两点,若以为直径的圆经过点,求面积的最大值.-【答案】(1) .(2) .【解析】分析:第一问首先应用正弦定理求得三角形的外接圆的直径,结合椭圆的性质,以及三角形的特征,求得短半轴;第二问设出直线的方程,与椭圆方程联立,利用韦达定理,结合题中的条件,最后应用导数研究函数的单调性,求得其最值.详解:(Ⅰ)右顶点为,,,椭圆的标准方程为.(Ⅱ)设直线的方程为,与椭圆联立得.以为直径的圆经过点,①,代入①式得或(舍去),故直线过定点.,令,则在上单调递减,时,.点睛:该题考查的是有关直线与椭圆的综合题,在解题的过程中,需要明确焦点三角形的有关特征,以及正弦定理的内容和常数的意义,再者就是有关直线与椭圆相交的问题,需要联立消元,韦达定理紧跟其后,将三角形的面积表示成有关变量的函数关系,结合函数的解题思想,求得结果.21. 已知.(1)当时,若函数在处的切线与函数相切,求实数的值;(2)当时,记.证明:当时,存在,使得.【答案】(1) .(2)见解析.【解析】分析:第一问将代入解析式,之后对函数求导,从而可以求得,结合,利用点斜式写出切线的方程,之后再结合直线与抛物线相切的有关特征求得参数b的值;第二问结合题中的条件,转化函数解析式,利用导数研究函数的性质,向最值靠拢即可证得结果.详解:(Ⅰ)解:当时,,,故切线方程为.设切线与相切的切点为,故满足方程组解得,故.(Ⅱ)证明:,令,则在上单调递增,在上单调递减.即恒成立,或,在上单调递减,在上单调递增,.只需证时,即可,令则,恒成立,。
巴蜀中学2020届高三下学期期中测试理科数学(满分:150分考试时间:120分钟)、选择题(本大题共12小题,每小题5分,共60分.在每小题给岀的四个选项中,只有一个选项是符合题目要求的)1.设复数z=(a+i)2在复平面上的对应点在虚轴负半轴上,则实数A.充分而不必要条件 D.既不充分也不必要条件为f(x)的零点:且 f(x)| f( ) I 恒成立,f(x)在( ,)4412 24区间上有最小值无最大值,则0的最大值是8.图1是某县橙子辅导参加 2020年高考的学生身高条形统计图,从左到右的各条形图表示学生人数依次记为A 、A 2L A °(如A 2表示身高(单位:cm)在[150, 155)内的人数].图2是统计图1中身高在一定范围内学生人数A. -1B.1C. 2D. ..32.质地均匀的骰子六个面分别刻有 到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件23.已知函数 f(x) x ax b(a 0,b 0)有两个不同的零点 .x 1, x 2 , -2和X |, X 2三个数适当排序后既可成为等差数列,也可成为等比数列,则函数 f(x)的解析式为2A. f (x) x 5x 4B. f(X ) 5x 4C. f (x) x 2 5x 4D. f(X )x 2 5x 44.若l,m 是两条不同的直线, m 垂直于平面 1〃 的t” A.11 B.13 C.15 D.17a 的值是C.充分必要条件5.已知函数f(x)2x 2x,x |log 2x|,xX 2 X 3 X 4,且 f (为)f(X 2)f(X 3) f(X 4)。
现有结论:①X iX 2 2,②X 3X 4 1,X 4 2,④0x 1x 2x 3x 4 1.这四个结论中正确的个数有A.1B.2C.3D.46.已知抛物线C :2px(p0)的焦点为 F,点M (X 0,2 I 2)( X 0 卫)时抛物线C.上的一点,以点M 为圆2心与直线x —交于2E , G 两点若sin MFG1,则抛物线C 的方程是 3A. y 2 xB. y 2 2xC. y 2 4xD. y 2 8xB.必要而不充分条件 7.已知函数f(x)=sin(C.2 .232的一个算法流程图。
重庆市巴蜀中学2020届高三下学期9月月考数学(理)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设{|04}M x x =≤≤,{|40}N y y =-≤≤,函数()f x 的定义域为M ,值域为N ,则()f x 的图象可以是A .B .C .D .2.函数()()sin 2f x x ϕ=+,()0,ϕπ∈的图象向左平移12π个单位得到函数()g x 的图象,已知()gx 是偶函数,则tan 6πϕ⎛⎫-= ⎪⎝⎭( ) A .3- B .3 C .33-D .33. 设命题p :若x ,y ∈R ,x =y ,则1x y=;命题q :若函数f(x)=e x ,则对任意x 1≠x 2都有1212()()0f x f x x x ->-成立.在命题①p ∧q ,②p ∨q ,③p ∧(q ⌝),④(p ⌝)∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④4.已知函数()()sin (,0,0,)2f x A x x R A πωϕωϕ=+∈>><的部分图象如图所示,则()f x 的解析式是( )A .()()2sin 6f x x x R ππ⎛⎫=+∈ ⎪⎝⎭B .()()2sin 26f x x x R ππ⎛⎫=+∈ ⎪⎝⎭C .()()2sin 3f x x x R ππ⎛⎫=+∈ ⎪⎝⎭D .()()2sin 23f x x x R ππ⎛⎫=+∈ ⎪⎝⎭5.已知f (x )=2x 4x 3,x 02x 2x 3,x 0-+≤⎧⎪--+>⎨⎪⎩,不等式f (x+a )>f (2a-x )在[a ,a+1]上恒成立,则实数a 的取值范围是( ) A .(),2∞--B .(),0∞- C .()0,2D .()2,0-6.记nS 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .87.对于两条不同的直线m ,n 和两个不同的平面,,以下结论正确的是( ) A .若,,m ,n 是异面直线,则,相交 B .若,,,则C .若,,m ,n 共面于,则D .若,,,,不平行,则m ,n 为异面直线8.已知函数是偶函数,则下列结论可能成立的是( )A .,B .,C .,D .,9.设椭圆2212x y m+=和双曲线2213y x -=的公共焦点分别为F 1、F 2,P 为这两条曲线的一个交点,则|PF 1|·|PF 2|的值等于 A .3B .3C .2D .610.设点P 是椭圆22221(0)x y a b a b+=>>上异于长轴端点上的任意一点,12,F F 分别是其左右焦点,O 为中心,2212||3PF PF OP b +=,则此椭圆的离心率为( )A .12B .3C .22D .211.函数的单调递减区间为( )A .B .C .D .12.在各项都为正数的等比数列{}n a 中,若12a =,且1564a a ⋅=,则数列1(1)(1)nn n a a a +⎧⎫⎨⎬--⎩⎭的前n 项和是( )A .11121n +-- B .1121n -+C .1121n -+D .1121n --二、填空题:本题共4小题,每小题5分,共20分。
2020届重庆市巴蜀中学高三下学期适应性月考数学(理)试题一、单选题1.已知复数z 满足()2z i i i -⋅=-,则z =( ) A .1i + B .1i -C .1i -+D .1i --【答案】D【解析】首先得到2iz i i-∴=+,再化简复数. 【详解】2iz i i--=()2222111i i i i z i i i i i i --+∴=+=+=+=---. 故选:D 【点睛】本题考查复数的运算,属于基础题型. 2.已知集合{}|1A x x =<,1|1B x x ⎧⎫=<⎨⎬⎩⎭,则A B =I ( ) A .{}|01x x x <>或 B .{}|010x x x <<<或 C .{}|0x x < D .φ【答案】C【解析】解不等式得出集合B ,根据交集的定义写出A ∩B . 【详解】()()1|1=1,0B x x ⎧⎫=<+∞⋃-∞⎨⎬⎩⎭,,则A B =I {}|0x x <故选:C 【点睛】本题考查了解不等式与交集的运算问题,是基础题.3.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .24 【答案】C【解析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。
【详解】由题意可知,数列{}n a 为等差数列,所以18363a a a a +=+=, ∴由等差数列的求和公式可得1888()831222a a S +⨯=== ,故选C 。
【点睛】本题主要考查了等差数列的性质,及前n 项和公式的应用,其中解答中数列等差数列的性质和等差数列的前n 项和公式是解答的关键,着重考查了推理与运算能力,属于基础题。
4.已知随机变量X 服从正态分布(1,1)N -,则(01)P X <≤=( )(附:若2(,)X N μσ-,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=)A .0.1359B .0.906C .0.2718D .0.3413【答案】A【解析】由题意可知1,1μσ=-=,利用3σ原则,计算结果. 【详解】由题意可知1,1μσ=-=()()012P X P X μσμσ<≤=+<≤+()()112222P X P X μσμσμσμσ=-<≤+--<≤+ ()10.95450.68270.13592=⨯-=. 故选:A 【点睛】本题考查正态分布曲线的特性和曲线所表示的意义,意在考查3σ原则和曲线的对称性,属于基础题型. 5.将函数()sin 2f x x =的图像保持纵坐标不变,先将横坐标缩短为原来的12,再向右平移6π个单位长度后得到()g x ,则()g x 的解析式为A .()sin()6g x x π=-B .()sin()6g x x π=+C .2()sin(4)3g x x π=- D .()sin(4)6g x x π=-【答案】C【解析】将函数()sin2f x x =的图像保持纵坐标不变,先将横坐标缩短为原来的12得到sin 4y x =,再向右平移6π个单位长度后 得到()g x ,2()sin 4()sin(4)63g x x x ππ=-=-,故选C. 6.已知点(,)a b 在函数11()221x f x =-+的图象上,则下列四点中也在图象上的是( ) A .(,1)a b -+ B .(,)a b --C .(,1)a b --D .(,)a b -【答案】B【解析】首先计算()()0f x f x -+=,由此判断选项. 【详解】()()1111221221x x f x f x --+=-+-++ 2111221x x x=--++ 21111012x x+=-=-=+ , ∴点(,)a b 在函数11()221x f x =-+的图象上时,点(),a b --也在图象上. 故选:B 【点睛】本题考查函数的对称性的简单应用,属于基础题型,本题的关键是根据函数的形式,判断()()0f x f x -+=.7.如图是一个算法的程序框图,若该算法输出的结果是1011,则选择框里应该填入的是( )A .9?i <B .10?i <C .11?i <D .12?i <【答案】C【解析】首先判断程序框图的作用,然后根据输出结果判断选项. 【详解】由程序框图可知,程序是求数列()1111...1223341n n ++++⨯⨯⨯-的和, ()11111n n n n=---(2n ≥)根据裂项相消法可知()1111...1223341n n ++++⨯⨯⨯- 11111111......223341n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭111n n n-=-= , 由题意可知11011i i -=, 解得:11n =,这里i n = ,∴10i =进入循环,11=i 退出循环, ∴选择框里应填入11?i <.故选:C 【点睛】本题考查根据程序框图的的输出结果,求判断框的内容,属于基础题型,本题的关键是读懂循环结构,并会用裂项相消法求和.8.从“舞蹈、相声、小品、歌唱、杂技 ”5个候选节目中选出4个节目参加“艺术节”的汇演,其中第一出场节目不能是“舞蹈”,则不同的演出方案种数是( ) A .72 B .96 C .120 D .144【答案】B【解析】分选到的4个节目没有“舞蹈”和有“舞蹈”两类情况讨论,按照先选再排的方法求解. 【详解】当选出的4个节目没有“舞蹈”,则有4424A =种演出方法,当选出的4个节目有“舞蹈”,则再选3个,则有344C =种选择方案,第一场有3种方法,再安排其他节目有336A =种方案,则不同的演出方案有43672⨯⨯=种方法,综上,共有247296+=种方案. 故选:B 【点睛】本题考查排列的应用,意在考查分析问题的能力,属于基础题型.9.已知正项数列{}n a 满足:12n n a a +>,n S 是{}n a 的前n 项和,则下列四个命题中错误的是( )A .112nn a a +>B .()212kk kS S>+⋅C .12(2)n n S a a n <-≥D .1n n a a +⎧⎫⎨⎬⎩⎭是递增数列【答案】D【解析】由条件逐一分析选项,A,;利用不等式迭代得到选项;B.由条件可知112kk a a +> ,222kk a a +>,……22kk k a a >,得到12212...2...k k k kka a a a a a +++++>+++,再证明;C. 由条件对不等式进行放缩得到123123 (2222)n n n nn n n n n n a a a a S a a a a a ---=++++<+++++,再求和证明;D.设数列{}n a 是公比为4的等比数列,说明结论. 【详解】A.0n a >Q ,根据已知可知231121222......2nn n n n a a a a a +-->>>>,112n n a a +∴>,故A 正确;B.0n a >,()()12122212.........k k k k k k ka a a a a a S S a a a +++++++++=+++ 12212...1...k k kka a a a a a +++++=++++ ,由A 可知112k k a a +> ,222k k a a +>,……22kk k a a >,12212...2...k k k kka a a a a a +++++∴>+++,()221212k k kk k kS S S S ∴>+⇒>+,故B 正确; C.由A 可知1122n n n n a a a a -->⇒<……,222222n n n n a a a a -->⇒<111122n n n n a a a a -->⇒<()2n ≥, 123123......2222n n n nn n n n n n a a a a S a a a a a ---∴=++++<+++++ 1211......122n n n a --⎛⎫=+++ ⎪⎝⎭1112211212n n n n a a ⎛⎫- ⎪⎛⎫==- ⎪ ⎪⎝⎭ ⎪-⎝⎭122n n n aa -=- ,由A 可知112nn aa -> ,()2n ≥ 11222n n n n aa a a -∴-<- , 12n n S a a ∴<- ()2n ≥,故C 成立;D.若数列{}n a 是正项等比数列,并且公比4q =,则142n na a +=>,此时1n n a a +⎧⎫⎨⎬⎩⎭是常数列,不是递增数列,故D 不正确. 故选:D 【点睛】本题考查数列,不等式,证明的综合问题,意在考查推理证明,数列的综合应用,属于难题,本题的关键是根据条件进行迭代,从而根据不等式进行证明.10.已知三棱锥P ABC -中,90PAB PAC BAC ︒∠=∠=∠=,1PA =,2AB AC ==,M ,N 分别为PB ,PC 的中点,则直线MN 被三棱锥P ABC -外接球截得的线段长为( )A .7B .2C .33D .22【答案】A【解析】首先将三棱锥P ABC -补全如图所示的长方体,求球心到直线MN 的距离,再求 直线MN 被三棱锥P ABC -外接球截得的线段长. 【详解】由题意,将三棱锥P ABC -补全如图所示的长方体,外接球的球心长方体的对角线的中点O ,22221223R =++= ,即32R =, OM ⊥平面PAB ,ON ⊥平面PAC , OM ON ∴⊥,且1OM ON ==OMN ∴∆是等腰直角三角形,2MN =点O 到直线MN 的距离就是等腰直角三角形的高1222OH MN ==, ∴ 直线MN 被三棱锥P ABC -外接球截得的线段长为229122742R OH -=-=.故选:A 【点睛】本题考查球和几何体的组合体的综合问题,意在考查空间想象能力,作图能力,计算能力,属于中档题型,三棱锥的条件是三条棱两两垂直,或是对棱相等时都可以采用补体,将三棱锥补成长方体,再分析外接球的问题.11.已知1F ,2F 分别为双曲线22143x y -=的左、右焦点,P 为双曲线右支上一点,2F 关于直线1PF 的对称点为M ,1F 关于直线2PF 的对称点为N ,则当||MN 最小时,12F PF ∠的大小为( ) A .150︒ B .120︒C .90︒D .60︒【答案】B【解析】根据对称性得到1224PN PM PF PF a -=-==,根据余弦定理得到()212121621cos3MN PF PF F PF =+⋅-∠,由三角函数的有界性得到得到||MN 的最小值.【详解】根据对称性知:2PM PF =,1PN PF =,故1224PN PM PF PF a -=-==. 根据余弦定理:2222cos MN PM PN PM PN MPN =+-⋅∠()()()()2121212121221cos 231621cos3PF PF PF PF F PF PF PF F PF π=-+⋅--∠=+⋅-∠120PF PF ⋅>Q ,12cos31F PF ∠≤故当121cos30F PF -∠=,即1223F PF π∠=时,||MN 有最小值. 故选:B 【点睛】本题考查了双曲线内三角函数最值,余弦定理,意在考查学生的计算能力和转化能力,属于中档题型. 12.已知0a <,不等式1ln 0a x x e a x +⋅+≥对任意的实数1x >恒成立,则实数a 的最小值为( ) A .12e-B .2e -C .1e-D .e -【答案】D【解析】首先不等式变形为ln ln ax a x xe x e --≥⋅,()xf x xe=()1x >,不等式等价于()()ln a f x f x -≥,然后利用函数的单调性可得ln x a x ≥-对任意1x >恒成立,再利用参变分离ln x a x ⎛⎫-≤ ⎪⎝⎭恒成立,转化为求函数的最小值. 【详解】不等式变形为()ln x axe xa x -≥- ,即ln ln ax a x xe x e --≥⋅,设()xf x xe =()1x >,则不等式1ln 0a x x e a x +⋅+≥对任意的实数1x >恒成立, 等价于()()ln af x f x-≥对任意1x >恒成立,()()10x f x x e '=+>,则()f x 在()1,+∞上单调递增,ln a x x -∴≥ ,即ln x a x ≥-对任意1x >恒成立,ln x a x ⎛⎫∴-≤ ⎪⎝⎭恒成立,即min ln x a x ⎛⎫-≤ ⎪⎝⎭, 令()ln x g x x= ,则()()2ln 1ln x g x x -'= ()1x >, 当1x e <<时,()0g x '<,()g x 在()1,e 上单调递减, 当x e >时,()0g x '> ,()g x 在(),e +∞上单调递增,x e ∴=时,()g x 取得最小值()g e e = ,a e ∴-≤ ,即a e ≥-,a ∴的最小值是e -.故选:D 【点睛】本题考查函数,导数,不等式恒成立的综合问题,意在考查转化与化归的思想,计算能力,本题的关键和难点是不等式的变形ln ln ax a x xe x e --≥⋅,并能构造函数并转化为()()ln af x f x-≥对任意1x >恒成立.二、填空题 13.(题文)的二项展开式中的常数项为________.【答案】15【解析】试题分析:展开式的通项公式为,令,常数项为【考点】二项式定理14.若变量,x y 满足约束条件1,1,1,y x y y x ≤⎧⎪+≥⎨⎪≥-⎩则2z x y =+的最大值是_______.【答案】5【解析】画出可行域分析最大值点即可. 【详解】由题画出可行域,将目标函数2z x y =+化为2y x z =-+, 易得在(2,1)处取得最大值为2215z =⨯+=.故答案为:5 【点睛】本题主要考查了线性规划的一般方法,属于基础题型.15.若a r,b r,c r 均为单位向量,a r,b r的夹角为60︒,且c ma nb =-rr r,则mn 的最大值为________. 【答案】1【解析】()22222c ma nbm n mna b =-=+-⋅r rr rr ,再利用基本不等式求mn 的最大值.【详解】()22222c ma nbm n mna b =-=+-⋅r rr rr111cos602a b ⋅=⨯⨯=o rr ,221m n mn ∴+-=, 222m n mn +≥Q ,21mn mn ∴-≤ ,即1mn ≤ ,等号成立的条件是m n = ,mn ∴的最大值为1.故答案为:1 【点睛】本题考查向量数量积,基本不等式求最值的综合应用,属于基础题型.16.已知抛物线22(0)y px p =>与直线:4320l x y p --=在第一、四象限分别交于A ,B 两点,F 是抛物线的焦点,若||||AF FB λ=u u u r u u u r,则λ=________.【答案】4【解析】首先判断直线l 过抛物线的焦点,方程联立求点,A B 的坐标,并得到AF ,BF 的值,求λ. 【详解】直线:l 当0y =时,2p x =, ∴直线l 过抛物线的焦点,,,A F B 三点共线,联立直线与抛物线方程,224320y pxx y p ⎧=⎨--=⎩ ,得2281720x px p -+=, 解得:2A x p = ,8B p x =, 522A p AF x p ∴=+=,528B p BF x p =+=,4AF FBλ==u u u r u u u r .故答案为:4 【点睛】本题考查直线与抛物线的简单综合问题,焦半径公式,意在考查计算能力,属于基础题型.三、解答题17.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且22cos a b c B =+. (1)求角C 的大小;(2)若5a b +=,c =,求ABC V 的面积. 【答案】(1)3π;(2【解析】(1)首先根据正弦定理,边角互化得到2sin sin 2sin cos A B C B =+,再利用三角恒等变形得到cos C 的值;(2)根据余弦定理得2213a b ab =+-,变形求ab 和三角形的面积. 【详解】(1)在ABC ∆中,由正弦定理可得2sin sin 2sin cos A B C B =+,()sin sin A B C =+Q ,可得()2sin sin 2sin cos B C B C B +=+ 得:2sin cos sin B C B =,sin 0B ≠Q ,1cos 2C ∴=, 0C π<<Q ,3C π∴=;(2)由余弦定理得2222cos c a b ab C =+-, 代入可得()222133a b ab a b ab =+-=+-,()231312ab a b ∴=+-= ,4ab ∴= ,1sin 2ABC S ab C ∆∴==【点睛】本题考查正余弦定理解三角形,意在考查转化与化归的思想,属于基础题型.18.某学校有30位高级教师,其中60%人爱好体育锻炼,经体检调查,得到如下列联表.(1)根据以上信息完成22⨯列联表,并判断有多大把握认为“身体好与爱好体育锻炼有关系”? (2)现从身体一般的教师中抽取3人,记3人中爱好体育锻炼的人数为ξ,求ξ的分布列及数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.临界值表:【答案】(1)详见解析;(2)分布列见解析,35E ξ=【解析】(1)首先求22⨯列联表,并计算27.879K >,得到答案;(2)由题意可知0,1,2ξ=,并按照超几何分布概型求概率,并写出分布列和数学期望. 【详解】(1)由题意可知爱好体育锻炼的人有3060%18⨯=人,22⨯列联表如下表所示,()223016842107.87920101812K ⨯-⨯==>⨯⨯⨯∴有99.5%的把握认为“身体好与爱好体育锻炼有关系”.(2)身体一般的人数有10人,任取3人,其中爱好体育锻炼的人有2人, 则0,1,2ξ=()383107015C P C ξ===,()12283107115C C P C ξ=== ,()21283101215C C P C ξ=== ,ξ0 1 2P 715715 11577130121515155E ξ∴=⨯+⨯+⨯=. 【点睛】本题考查独立性检验,超几何概率类型求分布列和数学期望,意在考查对数据的分析,理解题意,抽象概括为数学问题,属于基础题型.19.如图,三棱锥S ABC -中,90ASC ABC ︒∠=∠=,30CAB ︒∠=,60CAS ︒∠=,30SB =,43AC =.(1)求证:平面ASC ⊥平面ABC ; (2)M 是线段AC 上一点,若534AM =A SM B --的大小. 【答案】(1)详见解析;(2)135o【解析】(1)过点S 作SH AC ⊥于点H ,连接BH ,要证明面面垂直,转化为证明线面垂直,即证明SH ⊥平面ABC ;(2)以点H 为坐标原点,,HA HS 所在直线分别为x 轴,z 轴,在平面ABC 上垂直于AC 的直线为y 轴,建立空间直角坐标系,分别求平面ASM 和平面SMB 的一个法向量为n r ,m r,利用公式cos ,m n <>r r求二面角的大小. 【详解】(1)证明:过点S 作SH AC ⊥于点H ,连接BH ,在Rt ASC ∆中,由90ASC ∠=o ,60CAS ∠=o ,43AC =可得3AS =6SC =,在Rt AHS ∆中,由SH AC ⊥,60CAS ∠=o ,可得3SH =,3AH =,在Rt ABC ∆中,由43AC =30CAB ∠=o ,可得6AB =,在ABH ∆中,由余弦定理可得22262621BH =+-⨯=o,即BH =,在SHB ∆中,3SH =,BH =SB =,222SB SH BH ∴=+SH BH ∴⊥又SH AC ⊥,BH AC H =I ,SH ∴⊥平面ABC , SH ⊂Q 平面ASC ,∴平面ASC ⊥平面ABC .(2)如图所示,以点H 为坐标原点,,HA HS 所在直线分别为x 轴,z 轴,在平面ABC 上垂直于AC 的直线为y 轴,建立空间直角坐标系,则()0,0,3S,()B -,M ⎛⎫ ⎪ ⎪⎝⎭,则34SM ⎛⎫=-- ⎪ ⎪⎝⎭u u u r,()3SB =--u u r ,易知平面ASM 的一个法向量为()0,1,0n =r,设平面SMB 的一个法向量为(),,m x y z r=, 则00m SM m SB ⎧⋅=⎨⋅=⎩u u u vr u u v r,即304330x z y z ⎧--=⎪⎨⎪-+-=⎩, 令1z =,得()7,1m =--r,于是cos ,2m n m n m n ⋅<>===-r r r rr r ,又二面角A SM B --为钝角,所以二面角A SM B --为135o .【点睛】本题考查面面垂直的证明,二面角,意在推理证明,利用空间向量解决空间角,属于中档题型,本题第一问的关键是作辅助线,并且根据三边长度满足勾股定理,证明SH BH⊥.20.如图,B,A是椭圆22:14xC y+=的左、右顶点,P,Q是椭圆C上都不与A,B重合的两点,记直线BQ,AQ,AP的斜率分别是BQk,AQk,APk.(1)求证:14BQ AQk k⋅=-;(2)若直线PQ过定点6,05⎛⎫⎪⎝⎭,求证:4AP BQk k=.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)设()11,Q x y,代入斜率公式求14BQ AQk k⋅=-;(2)设直线PQ的方程是65x my=+,与椭圆方程联立,利用根与系数的关系表示1AP AQk k⋅=-,再根据(1)的结论证明.【详解】(1)设()11,Q x y21211122111111422444BQ AQxy y yk kx x x x-⋅=⋅===-+---;(2)设直线PQ 的方程是65x my =+,设()()1122,,,P x y Q x y 与椭圆方程联立,226514x my x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 得:()22126440525m y my ++-= , ()1221254m y y m +=-+ ,()12264254y y m =-+ ,12121212442255AP AQ y y y y k k x x my my ⋅=⋅=--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭ ()()()()2122221212226425441664481652525254254m y y m m m y y m y y m m -+==-++-++++()2226416448164m m m -==--+++ ,1AP AQ k k ∴⋅=- ,由(1)可知14BQ AQ k k ⋅=-, 两式消去AQ k ,解得:4AP BQ k k =. 【点睛】本题考查直线与椭圆的位置关系的综合应用,定值和定点,意在考查转化与化归的思想和计算能力,属于中档题型,第二问中设而不求的基本方法也使得求解过程变得简单,在解决圆锥曲线与动直线问题中,韦达定理,弦长公式都是解题的基本工具.21.已知函数()ln xe f x a x x-=.(1)当0a =时,求函数()f x 在()0,∞+上的最小值;(2)若202e a <≤,求证:()0f x >.【答案】(1)()min f x e =(2)证明见解析【解析】(1)由0a =得()()0xe f x x x>=,对其求导,解对应的不等式,判断单调性,即可得出最值;(2)先对函数求导,得到()()21--'=x x e ax f x x,根据202ea <≤,判断函数()f x 的单调性,求出最小值,再由导数的方法研究()f x 最小值的范围,即可证明结论成立. 【详解】(1)当0a =时,由()()0x e f x x x >=,得()()21x x e f x x-'=, 当()0,1x ∈时,()0f x '<,()f x 在()0,1上单调递减;当()1,+x ∈∞时,()0f x '>,()f x 在()1,+∞上单调递增,∴()()min 1f x f e ==. (2)由题意,函数的定义域为()0,+∞,()()()2211x x x e x e ax a f x x xx ---'=-=, 令()()1xg x x e ax =--,0x >,则()xg x xe a '=-,设()xt x xe a =-,则()()+10xt x x e '=>, 易知()g x '在()0,+∞上单调递增,∵202e a <≤,∴()00g a '=-<,()2220g e a '=->,所以存在唯一的()10,2x ∈,使()10g x '=,当()10,x x ∈时,()()0,g x g x '<单调递减,当()1+x x ∈∞,时,()0g x '>,()g x 单调递增, 又∵()0=1g -,()2220g e a =-≥,∴当()10,x x ∈时,()()00g x g <<,即()g x 在()10,x 上无零点, ∴存在唯一的(]01,2x x ∈,使()00g x =,即()0001=xx e ax -,∵()10g a =-<,∴012x <<,则000=1x e ax x -. 当()00,x x ∈时,()0g x <,即()0f x '<,()f x 单调递减; 当()0,+x x ∈∞时,()0g x >,即()0f x '>,()f x 单单调递增. ∴()()00000min0001ln =ln ln 11x e af x f x a x a x a x x x x ⎛⎫==--=- ⎪--⎝⎭,012x <<.令()1ln 1h x x x =--,则()h x 在()1+¥,上单调递减,∵012x <<∴()()021ln20h x h >=->,又∵0a >∴()min 0f x >,从而()0f x >. 【点睛】本题主要考查求函数的最值,以及由导数的方法证明不等式恒成立,通常需要对函数求导,用导数的方法研究函数的单调性,极值,最值等即可,属于常考题型. 22.在直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=. (1)求曲线1C 的极坐标方程和2C 的直角坐标方程; (2)曲线1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)1C :2cos ρθ=,2C :2240x y y +-=;(2)5【解析】(1)先消参得1C 的普通方程,再由cos ,sin x y ρθρθ==进行转换即可; (2)两曲线联立求得交点坐标,再由两点间距离公式求解即可. 【详解】(1)曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),转换为直角坐标方程为:22(1)1x y -+=,即222x y x +=,转化为极坐标方程为:2cos ρθ=.曲线2C 的极坐标方程为4sin ρθ=,两边同乘ρ,得24sin ρρθ=,即2240x y y +-=;(2)联立2222240x y x x y y ⎧+=⎨+-=⎩,得00x y =⎧⎨=⎩或4585x y ⎧=⎪⎪⎨⎪=⎪⎩. 不妨设(0,0)A ,48(,)55B,则5AB ==.【点睛】本题主要考查了极坐标与直角坐标的互化,考查了两点间的距离的求解,属于基础题. 23.已知函数()22f x x x m =-++. (1)当1m =时,解不等式()3f x ≤;(2)若不等式()3f x ≤的解集不是空集,求实数m 的取值范围. 【答案】(1)4[0,]3;(2)42m -≤≤【解析】(1)分段讨论去绝对值求解不等式即可;(2)讨论m 和-1的大小,求函数的最小值,只需最小值满足不等式即可. 【详解】(1)1m =时,()32213f x x x ≤⇔-++≤11223x x x ≤-⎧⇔⎨---+≤⎩或111223x x x -<<⎧⎨+-+≤⎩或12213x x x ≥⎧⎨-++≤⎩,解得:40x 3≤≤, 所以不等式的解集为4[0,]3.(2)①当1m <-时,22,1()22,122,x x m x f x x x m x m x x m x m -+--<⎧⎪=---≤≤-⎨⎪-++>-⎩,即32,1()2,132,x m x f x x m x m x m x m -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩. ∴1x =时,()f x 取得最小值1m --,∴13m --≤,解得41m -≤<-, ②当01x ≠时,33,1()3133,1x x f x x x x -≤⎧=-=⎨->⎩,所以1x =时,()f x 取得最小值0,03≤,故01x ≠符合,③当1m >-时,32,()2,132,1x m x m f x x m m x x m x -+-<-⎧⎪=-++-≤≤⎨⎪-+>⎩,所以1x =时,()f x 取得最小值1m +,∴13m +≤,即得12m -<≤, 综上:42m -≤≤. 【点睛】本题主要考查了绝对值不等式的求解及含绝对值函数的最值的求解,涉及分类讨论的思想,属于中档题.。
重庆2020届高三下学期适应性考试数学(理)试题满分150分。
考试时间120分钟★祝考试顺利★注意事项:1.答题前,请考生认真阅读答题卡上的注意事项。
务必将自己的姓名、考号填写在答题卡上指定位置,贴好考号条形码或将考号对应数字涂黑。
用2B铅笔将试卷类型A填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.非选择答题用0.5毫米黑色墨水签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的清洁。
考试结束后,监考人员将答题卡和试卷一并收回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B.C. D.2.已知复数,则下列关系式中正确的是()A. B.C. D.3.已知,则()A. B. C. D.4.已知双曲线的离心率为,则双曲线的渐近线方程为()A. B.C. D.5.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. 1 C. D.6.已知函数是定义域为的奇函数,当时,,则不等式的解集为()A. B.C. D.7.甲乙2人从4门课程中各自选修2门课程,并且所选课程中恰有1门课程相同,则不同的选法方式有()A. 36种B. 30种C. 24种D. 12种8.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为()A. B. C. 2 D.9.在中,给出下列说法:①若,则一定有;②恒有;③若,则为锐角三角形.其中正确说法的个数有()A. 0B. 1C. 2D. 310.已知函数,其中,,恒成立,且在区间上恰有两个零点,则的取值范围是()A. B. C. D.11.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为()A. B. C. D.12.已知不等式(,且)对任意实数恒成立,则的最大值为()A. B. C. D.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知,若,(均为正实数),则类比以上等式,可推测的值,进而可得___________.14.若直线把圆分成面积相等的两部分,的最小值为______.15.抛物线的焦点为,其准线为直线,过点作直线的垂线,垂足为,则的角平分线所在的直线斜率是_______.16.数列满足,则数列的前750项和________.三、解答题:共70分。