重庆市巴蜀中学2018届高三适应性月考(八,3月)数学(理)试题(解析版)
- 格式:doc
- 大小:3.97 MB
- 文档页数:18
巴蜀中学2018届高考适应性月考卷(九)文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,若,则实数的取值范围是()A. B. C. D.【答案】A【解析】【详解】分析:化简集合,利用交集的定义列不等式求解即可.详解:,若,则,即实数的取值范围是,故选A.点睛:本题主要考查交集的定义以及不等式的解法,属于简单题.2.复数z满足z•i=|﹣i|,则在复数平面内复数z对应的点的坐标为()A. (1,0)B. (0,1)C. (﹣1,0)D. (0,﹣1)【答案】D【解析】分析:先求出复数的模,两边同除以,从而可得结果.详解:,,在复数平面内复数对应的点的坐标为,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.函数的零点个数为()A. B. C. D.【答案】B【解析】分析:先判断函数的单调性,然后利用零点存在定理判断,即可得结果.详解:递增,且递增,递增,,,由两点存在定理可得,的零点个数为,故选B.点睛:判断函数零点个数的常用方法:(1) 直接法:令则方程实根的个数就是函数零点的个;(2) 零点存在性定理法:判断函数在区间上是连续不断的曲线,且再结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;(3) 数形结合法.4.已知各项均为正的等比数列中,与的等比中项为,则的最小值是()A. B. C. D.【答案】C【解析】分析:由与的等比中项为,可得,利用等比数列的性质结合基本不等式可得结果.详解:与的等比中项为,,,当且仅当时,等号成立,即的最小值是,故选C.点睛:本题主要考查利用等比数列的性质以及基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).5.在不等式的解集对应的区间上随机取一个实数,若事件“”发生的概率为,则实数()A. B. C. D.【答案】A【解析】分析:求出不等式的解集,化简不等式,利用几何概型概率公式列方程求解即可.详解:由,得,由,得,事件“”发生的概率为,,得,故选A.点睛:本题題主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.6.执行如图1所示的程序框图,若输出的值为,则图中判断框内①处应填()A. B. C. D.【答案】C【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到到输出的值为,即可得输出条件.详解:执行程序框图,输入,第一次循环,;第二次循环,;第三次循环,时,应退出循环,故图中判断框内①处应填,故选C.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7.将函数的图象左移,得到函数的图象,则在上对应的单调递增区间是()A. B. C. D.【答案】D【解析】分析:利用两角和与差的余弦公式、诱导公式以及二倍角的正弦公式与辅助角公式化简函数解析式为,根据相位变换法则可得,利用正弦函数的单调性可得结果.详解:化简,图象向在平移,可得,,令,得,在上对应的单调递增区间是,故选D.点睛:本题主要考查两角和与差的余弦公式、诱导公式以及二倍角的正弦公式,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8.已知直线是圆的一条对称轴,过点作圆的一条切线,切点为,则()A. B. C. D.【答案】B【解析】分析:利用直线是圆的一条对称轴,求得,根据两点间距离公式以及勾股定理可得结果.详解:直线是圆的一条对称轴,过圆心,,得,直线方程为,点坐标为,,由勾股定理可得,,,故选B.点睛:本题主要考查圆的标准方程以及圆的切线长的求法,意在考查数形结合思想与灵活运用所学知识解决问题的能力,属于中档题.9.实数满足约束条件且目标函数的最小值是,最大值是,则的值是()A. B. C. D.【答案】B【解析】分析:详解:,即有最小值,又有最大值,表示的可行域为封闭区域,画出可行域,如图,由图可知,可得在分别求得最小值与最大值,由,得,最小值,①由,得最大值时,由在上,得,②由①②得,故选B.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10.在直三棱柱中,,是直线上一动点,则的最小值是()A. B. C. D.【答案】C【解析】分析:将二面角展成,则四点共面,最小值就是平面内的长,利用余弦定理即可的结果.详解:将二面角展成,则四点共面,最小值就是平面内的长,在中,,,由余弦定理可得,故选C.点睛:解决立体几何中的最值问题一般有两种方法:一是几何意义,利用点到线的距离、点到面的距离、多面体展开图中两点间的距离等等,非常巧妙;二是将最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.11.设等差数列的前项和为,且,则下列结论正确的是()A. B. C. D.【答案】D【解析】分析:构造函数,利用函数的奇偶性与单调性可得,,从而可得结果.详解:构造函数,则是奇函数,且在上递增,由题知,,,可得,,,可得,故选D.点睛:本题主要考查函数的单调性与奇偶性以及等差数列的性质与求和公式,属于难题.解决该问题应该注意的事项:(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.12.已知抛物线的焦点为是抛物线上异于坐标原点的任意一点,过点的直线交轴的正半轴于点,且同在一个以为圆心的圆上,另有直线,且与抛物线相切于点,则直线经过的定点的坐标是()A. B. C. D.【答案】A【解析】分析:设,利用都在以同一个以为圆心的圆上,求得,利用导数的几何意义求得,利用两点式、化简可得直线的方程为,从而可得结果.详解:,设,都在以同一个以为圆心的圆上,,解得,,得,从而得,的方程为,化为,过点,故答案为.点睛:探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点). ②从特殊情况入手,先探求定点,再证明与变量无关.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量满足,且,则向量与的夹角是__________.【答案】【解析】分析:由,且,利用数量积的运算法则以及平面向量数量积公式可得,从而可得结果. 详解:由,得,,故答案为.点睛:本题主要考查向量的模与夹角,平面向量数量积公式及其运算法则,意在考查对基本概念与基本运算掌握的熟练程度.14.设则不等式的解集为__________.【答案】【解析】分析:对分两种情况讨论,分别求解不等式组,然后求并集即可得结果详解:,,得或,得,解集为,故答案为.点睛:本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.15.观察如下规律:,则该数列的前项和等于__________.【答案】150【解析】分析:由,发现该数列各项的共同规律,分组求和即可.详解:由,发现该数列,由个,个,个,个组成,,该数列前项,由个,个,个,个组成,即,故答案为.点睛:本题主要考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.16.设函数,其中,若存在唯一的整数,使得,则实数的取值范围是__________.【答案】【解析】分析:存在唯一的整数,使得,等价于,存在唯一的整数,使,利用导数研究函数的单调性,由于一定成立,且,只需,解不等式可得结果.详解:存在唯一的整数,使得,等价于,存在唯一的整数,使,,在上递减,在上递增,,一定成立,又,只需,即,又,即实数的取值范围是,故答案为.点睛:本题主要考查利用导数研究函数的单调性、不等式的整数解、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出函数图象以及熟练掌握函数图象的几种变换,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数.(1)求函数的最小正周期;(2)在中,角所对的边分别为,若将函数的图象向右平移个单位后得到的图象关于原点对称,且满足,求的最大值.【答案】(1);(2)4【解析】分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的周期公式可得函数的周期;(2)令由结合可得由得,利用余弦定理结合均值不等式可得结果.详解:(1).(2)令则.当且仅当时取“”,所以.点睛:以三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18.社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).年份(第年)人数((1)试求人数关于年份的回归直线方程;(2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位);(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.参考公式:,.【答案】(1);(2)59;(3)0.6【解析】分析:(1)根据表格中数据及平均数公式可求出与的值从而可得样本中心点的坐标,进而求可得公式中所需数据,求出,再结合样本中心点的性质可得,而可得关于的回归方程;(2)2018年对应的,代入(Ⅰ)(人); (3)利用列举法,所有的基本事件共个,恰好不相邻的基本事件共6个,利用古典概型概率公式可得结果.详解:(1).(2)2018年对应的,代入(Ⅰ)(人).(3)所有的基本事件共10个:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),恰好不相邻的基本事件共6个,则.点睛:求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19.如图2,已知在四棱锥中,平面平面,底面为矩形.(1)求证:平面平面;(2)若,试求点到平面的距离.【答案】(1)见解析;(2)【解析】分析:(1)由平面平面,根据面面垂直的性质可得平面,由面面垂直的判定定理可得结论;(2)取AD的中点O,则平面,由,从而利用棱锥的体积公式可得结果.详解:(1)证明:.(2)解:取AD的中点O,则,,则.又易知,所以,解出.点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20.已知焦点在轴上的椭圆,短轴的一个端点与两个焦点构成等腰直角三角形,且椭圆过点.(1)求椭圆的标准方程;(2)设依次为椭圆的上下顶点,动点满足,且直线与椭圆另一个不同于的交点为.求证:为定值,并求出这个定值.【答案】(1);(2)2【解析】分析:(1)由短轴的一个端点与两个焦点构成等腰直角三角形,可得椭圆的方程为,将代入解出,从而可得结果;(2)设为,代入,求出的坐标,利用平面向量数量积的坐标表示,消去参数即可的结果.详解:(1)椭圆的方程为,将代入解出,所以椭圆的标准方程为.(2)证明:由已知得,若斜率不存在,则;(ii)若斜率存在,设为,代入,,又,所以.点睛:本题主要考查待定待定系数法求椭圆标准方程、圆锥曲线的定值问题以及点在曲线上问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.已知函数.(1)当时,求函数图象在点处的切线方程;(2)若函数图象与轴有且仅有一个交点,求实数的值;(3)在(2)的条件下,对任意的,均有成立,求正实数的取值范围.【答案】(1);(2);(3)【解析】分析:(1)求出由的值可得切点坐标,由的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)令令,利用导数研究函数的单调性,可得,结合图象可得;(3)因为,所以令,分三种情况讨论,可筛选出符合题意的实数的取值范围.详解:(1)时,,,所以切线方程为,即.(2)令令易知在;在,,结合图象可得.(3)因为,所以令,由.(i)当时,,有;恒成立,得所以;(ii)当时,则;,所以,则,综上所述,.点睛:本题主要考查利用导数求曲线切线方程以及利用导数证明不等式,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.22.选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中采取相同的单位长度.曲线的极坐标方程是,直线的参数方程是(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)设点,若直线与曲线交于两点,求的值.【答案】(1);.(2) .【解析】分析:第一问利用极坐标与平面直角坐标之间的关系,将其极坐标方程转化为平面直角坐标方程,将参数方程消参,将其转化为普通方程;第二问将直线的参数方程代入曲线方程中,化简,结合直线参数方程中参数的几何意义结合韦达定理求得结果.详解:(Ⅰ)曲线C的直角坐标方程为,直线的普通方程为.(Ⅱ)将直线的参数方程代入曲线C的直角坐标方程得,得,,异号,.点睛:该题考查的是有关坐标系与参数方程的问题,在解题的过程中,需要明确极坐标方程与平面直角坐标方程的转换关系以及参数方程向普通方程的转化,再者就是需要明确直线的参数方程中参数的几何意义,将直线的参数方程代入曲线的方程中,结合韦达定理求得结果.23.已知函数(且).(1)当时,解不等式;(2)若的最大值为,且正实数满足,求的最小值.【答案】(1);(2)2【解析】分析:第一问首先利用零点分段法,将绝对值符号去掉,将其转化为三个不等式组,将不等式组的解集取并集,求得结果;第二问利用三角不等式求得其最小值,可以转化为,得到之后将式子变形,利用基本不等式求得结果.详解:(Ⅰ)①当时,;②当时,;③当时,综上所述,不等式的解集为.(Ⅱ)由三角不等式可得的最小值为2,当且仅当时取等号.点睛:该题考查的是有关不等式的问题,在求解的过程中,需要明确绝对值不等式的解法,再者就是利用三角不等式求得其最值,之后借助于基本不等式求得其最值,在解题的过程中,一定要注意相关的条件.。
重庆市巴蜀中学2018届高三适应性月考(八,3月)数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满足,则复数的模为( )A. B. 1 C. D.【答案】C 【解析】由题意得,∴.选C . 2.已知全集,集合, ,则( )A.B.C.D.【答案】C 【解析】由题意得,,∴,∴.选C . 3.在等差数列中,是函数的两个零点,则的前10项和等于( )A.B. 15C. 30D.【答案】B 【解析】由题意得是方程的两根,∴,∴.选B.4.设是两条不同的直线,是三个不同的平面,给出下列命题:①若,则;②若,则;③若,则.其中真命题的个数是()A. 0B. 1C. 2D. 3【答案】A【解析】①中,由条件可得或相交,故①不正确;②中,由条件可得或,故②不正确;③中,由条件可得或,故③不正确.综上真命题的个数是0.选A.5.甲、乙、丙、丁四个人聚在一起讨论各自的体重(每个人的体重都不一样).甲说:“我肯定最重”;乙说:“我肯定不是最轻”;丙说:“我虽然没有甲重,但也不是最轻”丁说:“那只有我是最轻的了”.为了确定谁轻谁重,现场称了体重,结果四人中仅有一人没有说对.根据上述对话判断四人中最重的是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】用排除法进行说明.①假设甲没说对,则乙、丙、丁说的正确.故最重的是乙,第二名是甲,第三名是丙,丁最轻;或者乙最重,第二名是丙,第三名是甲,丁最轻.②假设乙没说对,则甲、丙、丁说的正确.故乙最轻,与丁最轻矛盾,故假设不成立.③假设丙没说对,则甲、乙、丁说的正确.若丙最重,则与甲的说法;若丙最轻,,则与丁最轻.故假设不成立.④假设丁没说对,则甲、乙、丙说的正确.若丁最重,则与甲最重矛盾;若丁排第二,则与甲、乙、丙的说法都得不到谁最轻均矛盾.故假设不成.综上所述可得乙最重.选B.6.已知,则的展开式中的系数为()A. B. 15 C. D. 5【答案】D【解析】由题意得,故求的展开式中的系数.∵,展开式的通项为.∴展开式中的系数为.选D.7.甲、乙、丙、丁四个人到重庆旅游,朝天门、解放碑、瓷器口三个景点,每个人只去一个景点,每个景点至少有一个人去,则甲不到瓷器口的方案有()A. 60种B. 54种C. 48种D. 24种【答案】D【解析】分两类求解.①甲单独一人时,则甲只能去另外两个景点中的一个,其余三人分为两组然后分别去剩余的两个景点,故方案有种;②甲与另外一人为一组到除瓷器口之外的两个景点中的一个,其余两人分别各去一个景点,故方案有.由分类加法计数原理可得总的方案数为24种.选D.8.如图所示的程序框图输出的结果为510,则判断框内的条件是()A. B. C. D.【答案】D【解析】由题意得该程序的功能是计算的和.∵,∴当时,,不合题意;当时,,符合题意.∴判断框中的条件为.选D.9.某三棱锥的三视图如图所示,其侧视图为直角三角形,该三棱锥的外接球表面积为,俯视图中的三角形以长度为3的边为轴旋转得到的几何体的侧面积为,则为()A. B. C. D.【答案】B【解析】由三视图可得该几何体为如图所示的三棱锥,其中底面,且底面为直角三角形,.故三棱锥外接球的球心在过的中点且与底面垂直的线上,设为点,则有,设球半径为,则有.故三棱锥的外接球表面积.俯视图中的三角形以长度为3的边为轴旋转得到的几何体为圆锥,底面圆的半径为4,高为3,母线长为5,故其侧面积.∴.选B.10.把的图象向左平移个单位(为实数),再把所得图象各点的横坐标缩短到原来的,纵坐标不变,得到的图象,若对恒成立,且,若,则的可能取值为()A. B. C. D.【答案】A【解析】由题意可得,∵对恒成立,∴是最大值或最小值,∴,故.又,∴,即,∴,∴当时,符合题意.∴.又,∴或,∴或.结合各选项可得A正确.选A.11.已知双曲线的左、右顶点分别为,为双曲线左支上一点,为等腰三角形且外接圆的半径为,则双曲线的离心率为()A. B. C. D.【答案】C【解析】由题意知等腰中,,设,则,其中必为锐角.∵外接圆的半径为,∴,∴,,∴.设点P的坐标为,则,故点P的坐标为.由点P在椭圆上得,整理得,∴.选C.点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中之间的数量关系,其中通过解三角形得到点P的坐标是解题的突破口.在得到点P的坐标后根据点在椭圆上可得间的关系,最后根据离心率的定义可得所求.12.已知在点处的切线方程为,,的前项和为,则下列选项正确的是()A. B.C. D.【答案】A【解析】由题意得,∴,解得,∴.设,则,∴在上单调递减,∴,即,令,则,∴,故.设,则,∴在上单调递增,∴,即,令,则,∴,故.综上选A.点睛:本题将函数问题和数列问题结合在一起,综合考查学生运用知识解决问题的能力,对于数列中的不等式问题,一般的解法要借助于函数的单调性进行解决.为此并结合题意需要构造两个函数来解决问题,在得到函数的单调性后通过取特殊值的方法转化为数列的问题处理,解决此类问题需要学生具有较强的观察能力和分析问题的能力.二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知满足约束条件(),则的最大值为_______.【答案】【解析】画出不等式组表示的可行域如图阴影部分所示.表示可行域内的点到原点距离的平方.由图形可得,可行域内的点A到原点的距离最大,且A点的坐标为,且.∴.答案:14.抛物线上一点的纵坐标为3,则点到抛物线焦点的距离为_______.【答案】【解析】由题意得抛物线的准线为,∴点到抛物线的距离为.由抛物线的定义可得点到抛物线焦点的距离为.答案:15.数列中,,(),则数列的通项公式为_______.【答案】【解析】∵,∴,∴,∴,又,∴数列是首项为,公比为的等比数列,∴,∴.答案:点睛:(1)已知和的关系解题时的突破口是当时,这一结论的灵活应用,然后根据所求的问题转化为的问题或的问题解决.(2)本题中,在得到后还需要通过构造的方法得到,逐步得到等比数列,然后通过等比数列的通项公式可得数列的通项公式.16.三角形中一点满足,的长度为1,边上的中点与的连线分别交于点,若,则的长度为_______.【答案】【解析】设,则.由题意得,∴,又,∴.即的长度为.答案:三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,角所对的边分别为,已知,,且.(1)若,求的值;(2)若,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)由及正弦定理得,故可得,于是,故.然后根据余弦定理及可得,再由可得,解得.(2)由题意得,设,可得,求得的取值范围后根据函数的单调性可得实数的取值范围.试题解析:(1)∵,∴,由正弦定理得,∴.又,,∴,∴.由余弦定理得,又,∴,∴或(舍去),又,∴,∴.(2)由(1)得为锐角,故.又,∴,设,∵,∴,∴在上单调递减,∴,∴实数的取值范围为.18.某营养协会对全市18岁男生的身高作调查,统计显示全市18岁男生的身高服从正态分布,现某校随机抽取了100名18岁男生的身高分析,结果这100名学生的身高全部介于到之间.现将结果按如下方式分为6组,第一组,第二组,…,第六组,得到如图所示的频率分布直方图.(1)若全市18岁男生共有人,试估计该市身高在以上的18岁男生人数;(2)求的值,并计算该校18岁男生的身高的中位数(精确到小数点后三位);(3)若身高以上的学生校服需要单独定制,现从这100名学生中身高在以上的同学中任意抽取3人,这三人中校服需要单独定制的人数记为,求的分布列和期望.附:,则;,则;,则.【答案】(1);(2),;(3)分布列见解析,.【解析】试题分析:(1)根据正态分布得到,故,从而可得身高在以上的18岁男生人数.(2)根据频率分布直方图中所有小长方形的面积和为1可求得,然后根据中位数的意义可求得中位数的估计值.(3)由频率分布直方图可得身高在内的为人,身高在内的为人.从而可得随机变量的所有可能取值,并根据古典概型求得对应的概率,于是可得分布列,从而可得期望.试题解析:(1)由题意得,∴,∴可估计该市身高在以上的18岁男生人数为(人)(2)由频率分布直方图可得,∴.设中位数为,则,∴.即中位数为.(3)由题意得身高在内的人数为人,身高在内的人数为人,由题意得随机变量的所有可能取值为0,1,2,3.,,,,故的分布列如下:0123∴.点睛:(1)利用频率分布直方图估计样本的数字特征的方法①中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值.②平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.③众数:最高的矩形的中点的横坐标.(2)对于正态分布,一定要注意三个特殊区间上的概率.解题时关键要会利用正态曲线的对称性求解随机变量在一些特殊区间上取值的概率.19.如图,在正四棱锥中,底边,侧棱,为侧棱上的点.(1)若平面,求二面角的余弦值的大小;(2)若,侧棱上是否存在一点,使得平面,若存在,求的值;若不存在,试说明理由.【答案】(1);(2)存在,.【解析】试题分析:(1)根据题意可建立空间直角坐标系,然后根据两平面法向量夹角的余弦值求得二面角的余弦值.(2)先假设存在满足题意的点使得平面,然后根据题意求得平面的法向量,由,可得,从而可得当时,平面.试题解析:(1)如图,连接,设交于,由题意知平面,又,故两两垂直.以为坐标原点,分别为轴,建立如图所示的空间直角坐标系.∵,,∴.(1)由题意得,,,∴,,∵平面,∴平面的一个法向量,又平面的一个法向量,∴,由图形知二面角为锐角,∴所求二面角的余弦值为.(2)假设在棱上存在一点使得平面.在上取点,连接,设平面的法向量为,由题意得,又点,,,,由,得,令,则,设,则,由平面,可得,解得,∴当时,平面.点睛:(1)利用法向量求二面角或其余弦值时,在求得两法向量的夹角的余弦值后,还要根据图形判断二面角是锐角还是钝角,最后才能得到结论.(2)立体几何中的探索性问题可通过坐标法来解,求解时要注意将所求的位置关系的问题转化为向量的共线或数量积的运算来处理.20.设椭圆方程为,离心率为,是椭圆的两个焦点,为椭圆上一点且,的面积为.(1)求椭圆的方程;(2)已知点,直线不经过点且与椭圆交于两点,若直线与直线的斜率之和为1,证明直线过定点,并求出该定点.【答案】(1);(2)证明见解析,.【解析】试题分析:(1)由离心率可得,根据的面积为得到,然后在焦点三角形中利用余弦定理并结合定义可得,进而得到,,于是得到椭圆的方程.(2)由题意设直线方程为,联立椭圆方程后得到二次方程,由根与系数的关系及可得,故直线方程为,即,可得过定点.试题解析:(1)由题意得,故.∵,∴,又,,在中,由余弦定理得,∴,解得,∴.∴,∴椭圆的方程为.(2)由题意设直线方程为,由消去y整理得,∵直线与椭圆交于两点,∴.设点,,则,由题意得,即,∴整理得,∴直线方程为,即,∴直线过定点.点睛:定点问题的解题策略(1)直线过定点.将直线方程化为的形式,当时与无关,即恒成立,故直线过定点.(2)曲线过定点.利用方程对任意参数恒成立得出关于的方程组,以方程组的为坐标的点即为所求的定点.21.已知函数().(1)若时,不单调,求的取值范围;(2)设,若,时,时,有最小值,求最小值的取值范围.【答案】(1);(2).【解析】试题分析:(1)根据不单调可得导函数在区间上有解,然后通过分离参数的方法将问题转化为求在上的取值范围的问题解决,然后利用基本不等式可得所求.(2)由题意可得,利用导数可得在上单调递增,又,故可得在上存在零点,从而可得.然后再利用导数求出函数的值域即可得到所求.试题解析:(1)∵,∴,∵时,不单调,∴方程在上有解,∴在上有解,又,(当且仅当时等号才成立,故此处无等号)∴.∴实数的取值范围为.(2)由题意得,∴.设,则,又,,∵,∴单调递增,又,∴存在,使得.且当时,,单调递减,当时,,单调递增,∴.设,,则,∴在上单调递减,又,∴.故最小值的取值范围为.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.在直角坐标坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程.(1)当时,交于两点,求;(2)已知点,点为曲线上任意一点,求的最大值.【答案】(1);(2).【解析】试题分析:(1)第(1)问,先把直线的参数方程化为普通方程,再解圆里的三角形得到弦长得到|AB|的值.(2)先写出的三角函数表达式,再利用三角函数求它的最大值.试题解析:(1)消去得:,由得:,圆心为,半径,圆心到直线的距离,,∴.(2)设点,则,,,又,∴的最大值为.选修4-5:不等式选讲23.设.(1)若,解关于的不等式;(2)求证:.【答案】(1)或;(2)证明见解析.【解析】试题分析:(1)第(1)问,直接利用零点讨论法解(2)第(2)问,利用三角绝对值不等式证明.试题解析:(1)当时,,①当时,,∴;②当时,,∴无解;③当时,,∴,综上所述,或.(2)证明:,当且仅当时取等号.。
重庆市巴蜀中学2018届高三适应性月考(八,3月)数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满足,则复数的模为()A. B. 1 C. D.【答案】C【解析】由题意得,∴.选C.2.已知全集,集合,,则()A. B. C. D.【答案】C【解析】由题意得,,∴,∴.选C.3.在等差数列中,是函数的两个零点,则的前10项和等于()A. B. 15 C. 30 D.【答案】B【解析】由题意得是方程的两根,∴,∴.选B.4.设是两条不同的直线,是三个不同的平面,给出下列命题:①若,则;②若,则;③若,则.其中真命题的个数是()A. 0B. 1C. 2D. 3【答案】A【解析】①中,由条件可得或相交,故①不正确;②中,由条件可得或,故②不正确;③中,由条件可得或,故③不正确.综上真命题的个数是0.选A.5.甲、乙、丙、丁四个人聚在一起讨论各自的体重(每个人的体重都不一样).甲说:“我肯定最重”;乙说:“我肯定不是最轻”;丙说:“我虽然没有甲重,但也不是最轻”丁说:“那只有我是最轻的了”.为了确定谁轻谁重,现场称了体重,结果四人中仅有一人没有说对.根据上述对话判断四人中最重的是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】用排除法进行说明.①假设甲没说对,则乙、丙、丁说的正确.故最重的是乙,第二名是甲,第三名是丙,丁最轻;或者乙最重,第二名是丙,第三名是甲,丁最轻.②假设乙没说对,则甲、丙、丁说的正确.故乙最轻,与丁最轻矛盾,故假设不成立.③假设丙没说对,则甲、乙、丁说的正确.若丙最重,则与甲的说法;若丙最轻,,则与丁最轻.故假设不成立.④假设丁没说对,则甲、乙、丙说的正确.若丁最重,则与甲最重矛盾;若丁排第二,则与甲、乙、丙的说法都得不到谁最轻均矛盾.故假设不成.综上所述可得乙最重.选B.6.已知,则的展开式中的系数为()A. B. 15 C. D. 5【答案】D【解析】由题意得,故求的展开式中的系数.∵,展开式的通项为.∴展开式中的系数为.选D.7.甲、乙、丙、丁四个人到重庆旅游,朝天门、解放碑、瓷器口三个景点,每个人只去一个景点,每个景点至少有一个人去,则甲不到瓷器口的方案有()A. 60种B. 54种C. 48种D. 24种【答案】D【解析】分两类求解.①甲单独一人时,则甲只能去另外两个景点中的一个,其余三人分为两组然后分别去剩余的两个景点,故方案有种;②甲与另外一人为一组到除瓷器口之外的两个景点中的一个,其余两人分别各去一个景点,故方案有.由分类加法计数原理可得总的方案数为24种.选D.8.如图所示的程序框图输出的结果为510,则判断框内的条件是()A. B. C. D.【答案】D【解析】由题意得该程序的功能是计算的和.∵,∴当时,,不合题意;当时,,符合题意.∴判断框中的条件为.选D.9.某三棱锥的三视图如图所示,其侧视图为直角三角形,该三棱锥的外接球表面积为,俯视图中的三角形以长度为3的边为轴旋转得到的几何体的侧面积为,则为()A. B. C. D.【答案】B【解析】由三视图可得该几何体为如图所示的三棱锥,其中底面,且底面为直角三角形,.故三棱锥外接球的球心在过的中点且与底面垂直的线上,设为点,则有,设球半径为,则有.故三棱锥的外接球表面积.俯视图中的三角形以长度为3的边为轴旋转得到的几何体为圆锥,底面圆的半径为4,高为3,母线长为5,故其侧面积.∴.选B.10.把的图象向左平移个单位(为实数),再把所得图象各点的横坐标缩短到原来的,纵坐标不变,得到的图象,若对恒成立,且,若,则的可能取值为()A. B. C. D.【答案】A【解析】由题意可得,∵对恒成立,∴是最大值或最小值,∴,故.又,∴,即,∴,∴当时,符合题意.∴.又,∴或,∴或.结合各选项可得A正确.选A.11.已知双曲线的左、右顶点分别为,为双曲线左支上一点,为等腰三角形且外接圆的半径为,则双曲线的离心率为()A. B. C. D.【答案】C【解析】由题意知等腰中,,设,则,其中必为锐角.∵外接圆的半径为,∴,∴,,∴.设点P的坐标为,则,故点P的坐标为.由点P在椭圆上得,整理得,∴.选C.点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中之间的数量关系,其中通过解三角形得到点P的坐标是解题的突破口.在得到点P的坐标后根据点在椭圆上可得间的关系,最后根据离心率的定义可得所求.12.已知在点处的切线方程为,,的前项和为,则下列选项正确的是()A. B.C. D.【答案】A【解析】由题意得,∴,解得,∴.设,则,∴在上单调递减,∴,即,令,则,∴,故.设,则,∴在上单调递增,∴,即,令,则,∴,故.综上选A.点睛:本题将函数问题和数列问题结合在一起,综合考查学生运用知识解决问题的能力,对于数列中的不等式问题,一般的解法要借助于函数的单调性进行解决.为此并结合题意需要构造两个函数来解决问题,在得到函数的单调性后通过取特殊值的方法转化为数列的问题处理,解决此类问题需要学生具有较强的观察能力和分析问题的能力.二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知满足约束条件(),则的最大值为_______.【答案】【解析】画出不等式组表示的可行域如图阴影部分所示.表示可行域内的点到原点距离的平方.由图形可得,可行域内的点A到原点的距离最大,且A点的坐标为,且.∴.答案:14.抛物线上一点的纵坐标为3,则点到抛物线焦点的距离为_______.【答案】【解析】由题意得抛物线的准线为,∴点到抛物线的距离为.由抛物线的定义可得点到抛物线焦点的距离为.答案:15.数列中,,(),则数列的通项公式为_______.【答案】【解析】∵,∴,∴,∴,又,∴数列是首项为,公比为的等比数列,∴,∴.答案:点睛:(1)已知和的关系解题时的突破口是当时,这一结论的灵活应用,然后根据所求的问题转化为的问题或的问题解决.(2)本题中,在得到后还需要通过构造的方法得到,逐步得到等比数列,然后通过等比数列的通项公式可得数列的通项公式.16.三角形中一点满足,的长度为1,边上的中点与的连线分别交于点,若,则的长度为_______.【答案】【解析】设,则.由题意得,∴,又,∴.即的长度为.答案:三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,角所对的边分别为,已知,,且.(1)若,求的值;(2)若,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)由及正弦定理得,故可得,于是,故.然后根据余弦定理及可得,再由可得,解得.(2)由题意得,设,可得,求得的取值范围后根据函数的单调性可得实数的取值范围.试题解析:(1)∵,∴,由正弦定理得,∴.又,,∴,∴.由余弦定理得,又,∴,∴或(舍去),又,∴,∴.(2)由(1)得为锐角,故.又,∴,设,∵,∴,∴在上单调递减,∴,∴实数的取值范围为.18.某营养协会对全市18岁男生的身高作调查,统计显示全市18岁男生的身高服从正态分布,现某校随机抽取了100名18岁男生的身高分析,结果这100名学生的身高全部介于到之间.现将结果按如下方式分为6组,第一组,第二组,…,第六组,得到如图所示的频率分布直方图.(1)若全市18岁男生共有人,试估计该市身高在以上的18岁男生人数;(2)求的值,并计算该校18岁男生的身高的中位数(精确到小数点后三位);(3)若身高以上的学生校服需要单独定制,现从这100名学生中身高在以上的同学中任意抽取3人,这三人中校服需要单独定制的人数记为,求的分布列和期望.附:,则;,则;,则.【答案】(1);(2),;(3)分布列见解析,.【解析】试题分析:(1)根据正态分布得到,故,从而可得身高在以上的18岁男生人数.(2)根据频率分布直方图中所有小长方形的面积和为1可求得,然后根据中位数的意义可求得中位数的估计值.(3)由频率分布直方图可得身高在内的为人,身高在内的为人.从而可得随机变量的所有可能取值,并根据古典概型求得对应的概率,于是可得分布列,从而可得期望.试题解析:(1)由题意得,∴,∴可估计该市身高在以上的18岁男生人数为(人)(2)由频率分布直方图可得,∴.设中位数为,则,∴.即中位数为.(3)由题意得身高在内的人数为人,身高在内的人数为人,由题意得随机变量的所有可能取值为0,1,2,3.,,,,故的分布列如下:0123∴.点睛:(1)利用频率分布直方图估计样本的数字特征的方法①中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值.②平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.③众数:最高的矩形的中点的横坐标.(2)对于正态分布,一定要注意三个特殊区间上的概率.解题时关键要会利用正态曲线的对称性求解随机变量在一些特殊区间上取值的概率.19.如图,在正四棱锥中,底边,侧棱,为侧棱上的点.(1)若平面,求二面角的余弦值的大小;(2)若,侧棱上是否存在一点,使得平面,若存在,求的值;若不存在,试说明理由.【答案】(1);(2)存在,.【解析】试题分析:(1)根据题意可建立空间直角坐标系,然后根据两平面法向量夹角的余弦值求得二面角的余弦值.(2)先假设存在满足题意的点使得平面,然后根据题意求得平面的法向量,由,可得,从而可得当时,平面.试题解析:(1)如图,连接,设交于,由题意知平面,又,故两两垂直.以为坐标原点,分别为轴,建立如图所示的空间直角坐标系.∵,,∴.(1)由题意得,,,∴,,∵平面,∴平面的一个法向量,又平面的一个法向量,∴,由图形知二面角为锐角,∴所求二面角的余弦值为.(2)假设在棱上存在一点使得平面.在上取点,连接,设平面的法向量为,由题意得,又点,,,,由,得,令,则,设,则,由平面,可得,解得,∴当时,平面.点睛:(1)利用法向量求二面角或其余弦值时,在求得两法向量的夹角的余弦值后,还要根据图形判断二面角是锐角还是钝角,最后才能得到结论.(2)立体几何中的探索性问题可通过坐标法来解,求解时要注意将所求的位置关系的问题转化为向量的共线或数量积的运算来处理.20.设椭圆方程为,离心率为,是椭圆的两个焦点,为椭圆上一点且,的面积为.(1)求椭圆的方程;(2)已知点,直线不经过点且与椭圆交于两点,若直线与直线的斜率之和为1,证明直线过定点,并求出该定点.【答案】(1);(2)证明见解析,.【解析】试题分析:(1)由离心率可得,根据的面积为得到,然后在焦点三角形中利用余弦定理并结合定义可得,进而得到,,于是得到椭圆的方程.(2)由题意设直线方程为,联立椭圆方程后得到二次方程,由根与系数的关系及可得,故直线方程为,即,可得过定点.试题解析:(1)由题意得,故.∵,∴,又,,在中,由余弦定理得,∴,解得,∴.∴,∴椭圆的方程为.(2)由题意设直线方程为,由消去y整理得,∵直线与椭圆交于两点,∴.设点,,则,由题意得,即,∴整理得,∴直线方程为,即,∴直线过定点.点睛:定点问题的解题策略(1)直线过定点.将直线方程化为的形式,当时与无关,即恒成立,故直线过定点.(2)曲线过定点.利用方程对任意参数恒成立得出关于的方程组,以方程组的为坐标的点即为所求的定点.21.已知函数().(1)若时,不单调,求的取值范围;(2)设,若,时,时,有最小值,求最小值的取值范围.【答案】(1);(2).【解析】试题分析:(1)根据不单调可得导函数在区间上有解,然后通过分离参数的方法将问题转化为求在上的取值范围的问题解决,然后利用基本不等式可得所求.(2)由题意可得,利用导数可得在上单调递增,又,故可得在上存在零点,从而可得.然后再利用导数求出函数的值域即可得到所求.试题解析:(1)∵,∴,∵时,不单调,∴方程在上有解,∴在上有解,又,(当且仅当时等号才成立,故此处无等号)∴.∴实数的取值范围为.(2)由题意得,∴.设,则,又,,∵,∴单调递增,又,∴存在,使得.且当时,,单调递减,当时,,单调递增,∴.设,,则,∴在上单调递减,又,∴.故最小值的取值范围为.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.在直角坐标坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程.(1)当时,交于两点,求;(2)已知点,点为曲线上任意一点,求的最大值.【答案】(1);(2).【解析】试题分析:(1)第(1)问,先把直线的参数方程化为普通方程,再解圆里的三角形得到弦长得到|AB|的值.(2)先写出的三角函数表达式,再利用三角函数求它的最大值.试题解析:(1)消去得:,由得:,圆心为,半径,圆心到直线的距离,,∴.(2)设点,则,,,又,∴的最大值为.选修4-5:不等式选讲23.设.(1)若,解关于的不等式;(2)求证:.【答案】(1)或;(2)证明见解析.【解析】试题分析:(1)第(1)问,直接利用零点讨论法解(2)第(2)问,利用三角绝对值不等式证明.试题解析:(1)当时,,①当时,,∴;②当时,,∴无解;③当时,,∴,综上所述,或.(2)证明:,当且仅当时取等号.。
巴蜀中学2018届高考适应性月考卷(六)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若,则的共轭复数对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】本题首先可以对复数进行化简,得到,然后根据共轭复数的相关性质得出以及对应的点坐标,最后得出结果。
【详解】由题意可得:,则,据此可得对应的点为,在第四象限,故选D。
【点睛】本题考查了复数的相关性质,主要考查复数的运算法则以及共轭复数的相关性质,考查运算能力,是简单题。
2.设集合,,则()A. B. C. D.【答案】C【解析】求解一元二次方程可得:,求解指数不等式可得:,结合交集的定义可得:.本题选择C选项.3.在双曲线中,分别为的左、右焦点,为双曲线上一点且满足=,则A. 108B. 112C. 116D. 120【答案】C【解析】由双曲线的定义可得:,结合题意有:,两式平方相加可得:116 .本题选择C选项.4.由数字0,1,2,3组成的无重复数字的4位数,比2018大的有()个A. 10B. 11C. 12D. 13【答案】B【解析】千位数字为3时满足题意的数字个数为:,千位数字为2时,只有2013不满足题意,则满足题意的数字的个数为,综上可得:2018大的有6+5=11个.本题选择B选项.5.已知正实数,满足(),则下列一定成立的是()A. B. C. D.【答案】D【解析】利用排除法:由指数函数的单调性可得:,由反比例函数的单调性可得:,选项A错误;,选项B错误;当时,,选项C错误;本题选择D选项.6.执行如图所示的程序框图,若输入的为,为,输出的数为3,则有可能为()A. 11B. 12C. 13D. 14【答案】B【解析】结合流程图,若输出的数字为,则经过循环结构之后的,由于,结合循环结构的特点可得:输入的数字除以5的余数为2,结合选项可得:有可能为12.本题选择B选项.7.设实数,满足则的最小值为()A. B. C. D.【答案】C【解析】绘制不等式组表示的平面区域如图所示,目标函数边上坐标原点与可行域内点距离的平方,据此可得,目标函数在点处取得最小值:.本题选择C选项.点睛:(1)本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.(2)解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.8.已知,,则()A. B. C. D.【答案】C【解析】由题意可得:,,据此可得:,结合两角和差正余弦公式有:.本题选择C选项.9.若的内角满足,则的最小值是()A. B. C. D.【答案】B【解析】由题意结合正弦定理有:,结合余弦定理可得:当且仅当时等号成立.综上可得:的最小值是.本题选择B选项.10.已知平面上有3个点,,,在处放置一个小球,每次操作时将小球随机移动到另一个点处,则4次操作之后,小球仍在点的概率为()A. B. C. D.【答案】D【解析】由于可知,所有可能的放置方法为:共有种可能的放置方法,其中满足题意的方法有种,由古典概型计算公式可得:小球仍在点的概率为.本题选择D选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.11.已知,在的图象上存在一点,使得在处作图象的切线,满足的斜率为,则的取值范围为()A. B.C. D.【答案】A【解析】结合函数的解析式有:,当且仅当时等号成立,据此可得:恒成立,即:,整理可得:,求解分式不等式可得的取值范围为.本题选择A选项.12.已知抛物线:的焦点为,,两点在抛物线上,且,过点,分别引抛物线的切线,,,相交于点,则()A. B. C. D.【答案】A【解析】由焦点弦的性质有:,结合可得:,设两点的坐标为:,结合有直线方程:,联立直线方程可得交点坐标为,则,结合焦点弦的性质可知:直线的斜率:,即,结合射影定理有:,据此可得:.本题选择A选项.点睛:(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.,,,则__________.【答案】【解析】由题意可得:.14.在的展开式中的系数为__________.【答案】【解析】由题意结合二项式展开式的通项公式有:,满足题意时:,其系数为:.15.已知函数,则函数在时的最大值为__________.【答案】【解析】由题意结合三角函数的性质有:,,据此可得,当时,函数取得最大值:.16.已知数列中,,,则__________.【答案】【解析】由递推关系可得:,则:,即列的通项公式为:,则:.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列是公差不为0的等差数列,,.(1)求的通项公式及的前项和的通项公式;(2),求数列的通项公式,并判断与的大小.【答案】(1),.(2),.【解析】试题分析:(1)由题意结合数列的通项公式可得关于公差的方程,解方程有,则数列的通项公式为,前n项和.(2)结合(1)的结论有,据此裂项求和可得,据此有.试题解析:(1)设,公差为,则,解得,所以,.(2),从而,故.18.已知锐角三角形的内角,,的对边分别为,,,若的面积为.(1)求证:,,成等比数列;(2)求的最大值,并给出取得最大值时的条件.【答案】(1)证明见解析;(2)答案见解析.【解析】试题分析:(1)由题意结合面积公式有:,则,角化边可得,故,,成等比数列.(2)由题意结合余弦定理和(1)的结论有:,则,由均值不等式的结论可得当为等边三角形时等号成立.试题解析:(1)证明:,即,由正弦定理可得,故,,成等比数列.(2)解:依题意得,又为的一个内角,从而,当且仅当为等边三角形时等号成立.19.赛季的欧洲冠军联赛八分之一决赛的首回合较量将于北京时间2018年2月15日3:45在伯纳乌球场打响.由罗领衔的卫冕冠军皇家马德里队(以下简称“皇马”)将主场迎战刚刚创下欧冠小组赛最多进球记录的法甲领头羊巴黎圣日曼队(以下简称“巴黎”),激烈对决,一触即发.比赛分上,下两个半场进行,现在有加泰罗尼亚每题测皇马,巴黎的每半场进球数及概率如表:(1)按照预测,求巴黎在比赛中至少进两球的概率;(2)按照预测,若设为皇马总进球数,为巴黎总进球数,求和的分布列,并判断和的大小.【答案】(1);(2)答案见解析.【解析】试题分析:(1) 设为巴黎总进球数,由题意可得.(2)由题意首先求得A,H的分布列,然后结合分布列计算数学期望可得.试题解析:(1)设为巴黎总进球数,则.(2)和的分布列如下:则.20.已知椭圆:的右焦点为,设过的直线的斜率存在且不为0,直线交椭圆于,两点,若中点为,为原点,直线交于点.(1)求证:;(2)求的最大值.【答案】(1)证明见解析;(2).【解析】试题分析:(1)设直线的斜率为(),联立直线方程与椭圆方程可得.结合韦达定理可得线段中点的坐标为.据此计算可得直线的斜率为,则.(2)考查.换元令,则.结合二次函数的性质可得时,取最大值3,此时取最大值.试题解析:(1)证明:设直线的斜率为(),则直线的方程为,联立方程组消去可得.设,,则于是有,所以线段中点的坐标为.又直线的斜率,因此直线的方程为,它与直线的交点,故直线的斜率为,于是.因此.(2)解:记.令,则.因为,所以.故当时,即时,取最大值3.从而当时,取最大值.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.设函数,其中,,为常数.(1)若,,试讨论函数的单调区间;(2)若函数在上单调递增,且,证明:,并求的最小值(用,的代数式表示).【答案】(1)答案见解析;(2)证明见解析.【解析】试题分析:(1)函数的定义域为,求导可得.据此分类讨论:若,,在上单调递增;若,,在上单调递减;若,,在上单调递减,在上单调递增;若,,在上单调递增,在上单调递减;(2)函数在上单调递增,则对任意实数均成立,取实数,,有,据此讨论可得.证明问题来说明c的最小值为:构造函数,,可证明,则恒成立,据此可得成立.试题解析:(1)解:依题意得的定义域为,当时,.若,,则,从而在上单调递增;若,,则,从而在上单调递减;若,,令,得,列表如下:若,,令得,列表如下:(2)证明:函数在上单调递增,则对任意实数均成立,取实数,,则两式相加得:,令,则,从而.又由,当时,,若,则不恒成立,又,从而,从而.下证.记,,,由于,在点处的切线方程为:.接下来,我们证明,构造函数,.当时,,单调递减;当时,,单调递增;从而,故成立.考虑到直线与直线斜率相等,即它们平行,又由于恒成立,从而恒成立,即,即.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系中,直线:(为参数,其中为直线的倾斜角)与曲线:(为参数)相交于不同的两点,.(1)当时,求直线与曲线的普通方程;(2)若,其中,求直线的斜率.【答案】(1)直线的普通方程为,曲线的普通方程为.(2).【解析】试题分析:(1)由题意结合参数方程可得直线的普通方程为,曲线的普通方程为.(2) 联立直线的参数方程与椭圆方程可得,结合参数的几何意义可得,则直线的斜率.试题解析:(1)当时,直线的普通方程为,曲线的普通方程为.(2)把代入,得,,得,∴,∴斜率.23.已知函数,若的解集为.(1)求解集;(2)已知非零实数,,满足,求证:.【答案】(1);(2)证明见解析.【解析】试题分析:(1)由题意零点分段求解不等式可得不等式的解集;(2)由题意结合柯西不等式有,当且仅当时取等号.则题中的不等式得证.试题解析:(1)解:,即或或即或或,即解集.(2)证明:∵,由柯西不等式得,当且仅当时取等号,即时取等号.。
重庆市巴蜀中学2018届高三适应性月考(九)数学试题(理)【参考答案】一、选择题12.【解析】几何体还原为如图1所示的三棱锥A BCD -,把此几何体补全为如图2所示的三棱柱,所以三棱锥的外接球即为三棱柱111A B C AB C -的外接球,在ABC △中,202084c o s 2205A +-==⨯, 3sin 5A =,∴2sin BC r A ==∴2228629R r =+=,∴2344π4π9S R ==∴,故选A .二、填空题16.【解析】设π02ABO θθ⎛⎫∠=∈ ⎪⎝⎭,,,则(2cos 2sin 2cos )C θθθ+,,(2sin 2sin 2cos )D θθθ+,,E∵为CD 的中点,(2sin cos 2cos sin )E θθθθ++,,∴26sin 8sin cos OE OD θθθ=++∴ 24cos 54sin 2cos25)θθθθϕ=+-=+,其中π04ϕ⎛⎫∈- ⎪⎝⎭,,故当π22θϕ+=时,OE OD 的最大值为5+ 三、解答题17.解:(Ⅰ)112n n n a a --=+∵,2122n n n a a ---=+, ,212a a =+,12112(12)222321(2)12n n n n a a n ---=++++=+=+- ≥∴.1n =∵时,11321a ==+,21n n a =+∴.(Ⅱ)1212log (1)log (211)1n n n b a n ++=-=+-=+,令122112(1)(2)12n n n c b b n n n n +⎛⎫===- ⎪+⨯+++⎝⎭,n b ∴的前n 项和为2(21)322n n n n++⨯+=.n c 的前n 项和为1111111122233412222n n n n n ⎛⎫⎛⎫-+-++-=-= ⎪ ⎪++++⎝⎭⎝⎭ ,2322n n n nT n +=++∴.18.解:(Ⅰ)2250(2510105)4006.349 6.6353515203063K ⨯⨯-⨯==≈<⨯⨯⨯,∴不能有99%的把握认为“使用支付宝与年龄有关”.(Ⅱ)12位中,使用支付宝的人数为251210255⨯=+(人),不使用支付宝的人数为5122255⨯=+(人),2131210210102331212C C +C C C 211=C C 22P ==-∴.(Ⅲ)1119(0.2)22436P X ==⨯==,11112(0.3)223336P X ==⨯⨯==,2111510(0.4)22631836P X ⎛⎫==⨯⨯+== ⎪⎝⎭,1114(0.5)236936P X ==⨯⨯==,111(0.6).6636P X ==⨯=X ∴的分布列如下:()0.20.30.40.50.636363636363E X =⨯+⨯+⨯+⨯+⨯=.19.(Ⅰ)证明:∵底面ABCD 为直角梯形, AD BC ∥∴,BC ∵⊂平面PBC ,AD ⊄平面PBC ,AD ∥∴平面PBC ,AD ∵⊂平面ADEF ,EF =平面ADEF平面PBC , AD EF ∥∴.(Ⅱ)解:PA ∵⊥平面ABCD ,BAAD ⊥, PCA ∠∴为直线PC 与平面ABCD 所成的线面角,AC =∵tan PA PCA AC ∠==∴,2PA =.∴以A 点为原点,AB ,AD ,AP 为x y z ,,轴建立空间直角坐标系, B ∴(2,0,0),C (2,1,0),D (0,2,0),P (0,0,2),设(22)CE CP λλλλ==--,,,则(2212)E λλλ--,,, ∴(2212)DE λλλ=---,,. 设平面PBC 的法向量为()n x y z =,,,则(010)(212)BC CP ⎧=⎪⎨=--⎪⎩ ,,,,,⇒0220y x y z =⎧⎨--+=⎩,,令1x =,则01y z ==,,(101)n =,,∴,1sin |cos |3DE n θλ=〈〉==⇒=,,∴∴当E 在线段PC 靠近C 的三分点位置时,直线DE 与平面PBC 所成的线面角为45°.20. 解:(Ⅰ)∵右顶点为(20),,∴2a =,122MF MF ==,∵121sin 2MO b b MF F MF a ∠===,2122424sin 2MF R b MF F b ====∠,∴1b =,∴椭圆的标准方程为2214x y +=.(Ⅱ)设直线l 的方程为my x b =+,1122()()A x y B x y ,,,,与椭圆联立得222(4)240m y mby b +-+-=, ∴21212222444mb b y y y y m m -+==++,. ∵以AB 为直径的圆经过点N ,∴0NA NB =, ∵1122(2)(2)NA x y NB x y =-=-,,,,∴1212122()40x x x x y y -+++=,①∵121228()24b x x m y y b m -+=+-=+,2222121212244()4b m x x m y y mb y y b m -=-++=+, 代入①式得2516120b b ++=,∴65b =-或2b =-(舍去),故直线l 过定点605⎛⎫⎪⎝⎭,.∴121622||255ABN S y y ⎛⎫=⨯-⨯-== ⎪⎝⎭△,令222564()[0)(4)t h t t m t +==∈+∞+,,,则228()0251281120425h t t t t ⎛⎫'>⇒++<⇒∈-- ⎪⎝⎭,,∴()h t 在[0)t ∈+∞,上单调递减,max ()(0)4h t h ==,∴0m =时,max 1625ABN S =△.21.(Ⅰ)解:当3a =时,()(3)e x f x x =-,()e (3)e (2)e x x xf x x x '=+-=-, ∴(0)3(0)2f f =-'=-,,故切线方程为23y x =--.设切线与()g x 相切的切点为00(23)x x --,, 故满足方程组0020000()21()232g x x b g x x bx x '=-=-⎧⎪⎨=-=--⎪⎩,,解得0x =2b =. (Ⅱ)证明:()()e xf x x a =-,21()(1)2g x x a x =--,∴21()()e (1)2x h x x a ax a a x =--+-,()e ()e (1)(e )[(1)]x x x h x x a ax a a a x a '=+--+-=---,令()ln 1m a a a =-+,则1()101m a a a '=->⇒<,∴()m a 在(01)a ∈,上单调递增,在(1)a ∈+∞,上单调递减. ∵max ()(1)0m a m ==,∴ln 10a a -+≤,即ln 1a a -≤恒成立,∴()01h x x a '>⇒>-或ln x a <,∴()h x 在(ln 1)x a a ∈-,上单调递减,在(1)x a ∈-+∞,上单调递增, ∴12min 1()(1)e (1)2a h x h a a a -=-=-+-.只需证104a ⎛⎫∈ ⎪⎝⎭,时,min ()0h x <即可, 令121()e (1)2a a a a ϕ-=-+-,则121()e (341)2a a a a ϕ-'=-+-+,1()e320a a a ϕ-"=-+-<恒成立,∴()a ϕ'在104a ⎛⎫∈ ⎪⎝⎭,上单调递减. ∵11(0)02e ϕ'=->,3413e 0432ϕ-⎛⎫'=-< ⎪⎝⎭,∴0010()04a a ϕ⎛⎫∃∈'= ⎪⎝⎭,,使得,∴()a ϕ在0(0)a a ∈,上单调递增,014a a ⎛⎫∈ ⎪⎝⎭,上单调递减, ∴1232max 00000011()()e (1)(551)0.22a a a a a a a a ϕϕ-==-+-=-+-<,故证毕22. 解:(Ⅰ)曲线C 的直角坐标方程为22(2)(2)8x y -+-=, 直线l的普通方程为1y =-.(Ⅱ)将直线l 的参数方程代入曲线C的直角坐标方程得221221282t ⎛⎫⎛⎫+-++-= ⎪ ⎪ ⎪⎝⎭⎝⎭,得270t -=,121270t t t t +=-< ∴,12t t ,∴异号,12121212111111||||||||t t PA PB t t t t t t +-=-=+== .23.解:(Ⅰ)①当12x ≤时,1()122f x x x =-⇒-≥≤;②当112x <<时,16()43127f x x x x =-⇒<≥≤;③当1x ≥时,1()1122f x x x =⇒≥≤,≤综上所述,不等式的解集为6(2]27x ⎡⎤∈-∞-⎢⎥⎣⎦ ,,.(Ⅱ)由三角不等式可得||21||2|||(21)(2)||1|1x x a x x a a a ------=-=-≤,∴12(1)1a M a a b c +=-=--=⇒121b c +=⇒2cb c =-,∴2121122122212c c b c c c c +=+=-+=------≥,2112b c +--∴的最小值为2,当且仅当1232c c c -==-⇒时取等号.。
重庆市巴蜀中学2018年高考数学三诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的1.设U=R ,若集合A={0,1,2},B={x|x 2﹣2x ﹣3>0},则A∩∁U B=( )A .{0,1}B .{0,2}C .{1,2}D .{0,1,2}2.已知复数z 满足z (1+i )=i 2016,则|z|=( )A .1B .C .D .23.已知a=30.6,b=log 2,c=cos300°,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a4.下列命题中真命题的个数为( )①两个变量x ,y 的相关系数r 越大,则变量x ,y 的相关性越强;②从4个男生3个女生中选取3个人,则至少有一个女生的选取种数为31种.③命题p :∀x ∈R ,x 2﹣2x ﹣1>0的否定为¬p:∃x 0∈R ,x 02﹣2x 0﹣1≤0.A .0B .1C .2D .35.执行如图所示的程序框图,若输入A 的值为2,则输入的P 值为( )A .2B .3C .4D .56.直线l :kx ﹣y+1=0被圆x 2+y 2﹣4y=0截得的最短弦长为( )A .B .3C .D .27.已知x 、y 满足,则z=|3x+y|的最大值为( )A .1B .6C .7D .108.已知f (x )=Asin (2x+ϕ),(A >0,|ϕ|<),对任意x 都有f (x )≤f ()=2,则g (x )=Acos(2x+ϕ)在区间[0,]上的最大值与最小值的乘积为( )A .B .C .﹣1D .09.在区间[﹣1,1]内任取两个数x 、y ,记事件“x +y ≤1”的概率为p 1,事件“|x ﹣y|≤1”的概率为p 2,事件“y≤x 2”的概率为p 3,则( )A .p 1<p 2<p 3B .p 2<p 3<p 1C .p 1<p 3<p 2D .p 3<p 2<p 110.某三棱锥的三视图如图所示,则该三棱锥的外接球的表面积是( )A .2πB .4πC .π D .5π11.已知双曲线C :﹣=1(a >0,b >0),焦距为2c ,若l 1:y=(x ﹣c )与C 的左右两支交于一点,l 2:y=2(x+c )与C 的左支交于两点,则双曲线的离心率的范围是( )A .(1,3)B .(2,3)C .(1,2)D .(,3)12.定义在R 上的偶函数f (x )的导函数为f'(x ),对定义域内的任意x ,都有2f (x )+xf'(x )<2成立,则使得x 2f (x )﹣4f (2)<x 2﹣4成立的x 的范围为( )A .{x|x ≠±2}B .(﹣2,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣∞,﹣2)∪(0,2)二、填空题:本大题共4个小题,每小题5分,共20分13.已知=(3,﹣4),=(3,t ),向量在方向上的投影为﹣3,则t=______.14.已知(x+)n 的展开式中仅有第4项的二项式系数最大,则其展开式各项系数之和等于______.15.在四棱柱ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=3,直线AD 1,DC 1所成角的正弦值为______.16.△ABC 中,∠A=π,AB=2,BC=,D 在BC 边上,AD=BD ,则AD=______.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n }的前n 项和为S n ,且S n =2a n +n ﹣4(n ∈N *)(1)求{a n }的通项公式;(2)设T n 为数列{}的前n 项,证明:1≤T n <(n ∈N *).18.某汽车公司为调查4S 店个数与该公司汽车销量的关系,对同等规模的A ,B ,C ,D ,E 五座城市的4S(2)现要从A ,B ,E 三座城市的9家4S 店中选取4家做深入调查,求A 城市中被选中的4S 店个数X 的分布列和期望.( =, =﹣).19.在三棱柱ABC ﹣A 1B 1C 1中,已知AB=AC=AA 1=,BC=4,A 1在底面ABC 的射影是线段BC 的中点O . (Ⅰ)证明:在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(Ⅱ)求二面角A 1﹣B 1C ﹣C 1的余弦值.20.如图,已知椭圆C 1: +y 2=1,曲线C 2:y=x 2﹣1与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于A ,B 两点,直线MA ,MB 分别与C 1相交于D ,E 两点,直线MA ,MB 的斜率分别为k 1,k 2(1)求k 1k 2的值;(2)记△MAB ,△MDE 的面积分别为S 1,S 2,若=λ,求λ的取值范围.21.已知f(x)=(2﹣a)x﹣2(1+lnx)+a,g(x)=.(1)若a=1,求函数f(x)在(1,f(1))处的切线方程;(2)若对任意给定的x0∈(0,e],在(0,e2]上方程f(x)=g(x)总存在两个不等的实数根,求实数a的取值范围.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cosθ.(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(2,1),求|PA|+|PB|.[选修4-5:不等式选讲]23.已知正实数a,b,x,y满足a+b=1(1)求a2+2b2的最小值;(2)求证:(ax+by)(ay+bx)≥xy.重庆市巴蜀中学2018年高考数学三诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的B=()1.设U=R,若集合A={0,1,2},B={x|x2﹣2x﹣3>0},则A∩∁UA.{0,1} B.{0,2} C.{1,2} D.{0,1,2}【考点】交、并、补集的混合运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:B={x|x2﹣2x﹣3>0}={x|x>3或x<﹣1},B={x|﹣1≤x≤3},则∁U则A∩∁B={0,1,2},U故选:D2.已知复数z满足z(1+i)=i2016,则|z|=()A.1 B.C.D.2【考点】复数代数形式的乘除运算.【分析】由z(1+i)=i2016,得,然后利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算即可得答案.【解答】解:由z(1+i)=i2016,得==.则|z|=.故选:B.3.已知a=30.6,b=log,c=cos300°,则a,b,c的大小关系为()2A.a<b<c B.b<c<a C.c<a<b D.c<b<a【考点】对数值大小的比较.【分析】分别估算每个数的大小,然后比较.【解答】解:a=30.6>1,b=log<0,c=cos300°=cos60°=0.5>0,2故b<c<a;故选B.4.下列命题中真命题的个数为( )①两个变量x ,y 的相关系数r 越大,则变量x ,y 的相关性越强;②从4个男生3个女生中选取3个人,则至少有一个女生的选取种数为31种.③命题p :∀x ∈R ,x 2﹣2x ﹣1>0的否定为¬p:∃x 0∈R ,x 02﹣2x 0﹣1≤0.A .0B .1C .2D .3【考点】命题的真假判断与应用.【分析】①根据相关性系数的性质进行判断,②利用排列组合的公式进行求解即可③根据全称命题的否定是特称命题进行判断.【解答】解:①两个变量x ,y 的相关系数|r|越大,则变量x ,y 的相关性越强,故①错误,②从4个男生3个女生中选取3个人,则至少有一个女生的选取种数﹣=35﹣4=31种,故②正确, ③命题p :∀x ∈R ,x 2﹣2x ﹣1>0的否定为¬p:∃x 0∈R ,x 02﹣2x 0﹣1≤0,正确,故③正确,故正确的是②③,故选:C .5.执行如图所示的程序框图,若输入A 的值为2,则输入的P 值为( )A .2B .3C .4D .5【考点】循环结构.【分析】根据输入A 的值,然后根据S 进行判定是否满足条件S ≤2,若满足条件执行循环体,依此类推,一旦不满足条件S ≤2,退出循环体,求出此时的P 值即可.【解答】解:S=1,满足条件S ≤2,则P=2,S=1+=满足条件S ≤2,则P=3,S=1++=满足条件S ≤2,则P=4,S=1+++=不满足条件S ≤2,退出循环体,此时P=4故选:C6.直线l :kx ﹣y+1=0被圆x 2+y 2﹣4y=0截得的最短弦长为( )A.B.3 C.D.2【考点】直线与圆的位置关系.【分析】利用配方法将圆的方程化为标准式,求出圆心坐标和半径,判断出直线l过定点且在圆内,可得当l⊥PC时直线l被圆截得的弦最短,由弦长公式求出即可.【解答】解:由x2+y2﹣4y=0得x2+(y﹣2)2=4,∴圆心坐标是C(0,2),半径是2,∵直线l:kx﹣y+1=0过定点P(0,1),且在圆内,∴当l⊥PC时,直线l被圆x2+y2﹣4y=0截得的最短弦长为2=2,故选:A.7.已知x、y满足,则z=|3x+y|的最大值为()A.1 B.6 C.7 D.10【考点】简单线性规划.【分析】画出约束条件的可行域,确定目标函数经过的点,利用几何意义求出目标函数的最大值,【解答】解:作出不等式组表示的可行域如图:目标函数z=|3x+y|经过可行域内的点A时,z最大,可得A(3,1)时,取得最大值|3×3+1|=10.故选:D.8.已知f(x)=Asin(2x+ϕ),(A>0,|ϕ|<),对任意x都有f(x)≤f()=2,则g(x)=Acos(2x+ϕ)在区间[0,]上的最大值与最小值的乘积为()A .B .C .﹣1D .0【考点】三角函数的最值.【分析】求出f (x )的表达式,从而求出g (x )的表达式,根据三角函数的性质求出g (x )的最大值和最小值即可,从而求出其乘积即可.【解答】解:f (x )=Asin (2x+ϕ),(A >0,|ϕ|<),若对任意x 都有f (x )≤f ()=2,则A=2,f ()=2sin (2×+φ)=2,∴φ=,∴g (x )=2cos (2x+),x ∈[0,],2x+∈[,],∴2x+=时,g (x )最大,最大值是,2x+=π时,g (x )最小,最小值是﹣2,故g (x )max •g(x )min =﹣2,故选:A .9.在区间[﹣1,1]内任取两个数x 、y ,记事件“x +y ≤1”的概率为p 1,事件“|x ﹣y|≤1”的概率为p 2,事件“y≤x 2”的概率为p 3,则( )A .p 1<p 2<p 3B .p 2<p 3<p 1C .p 1<p 3<p 2D .p 3<p 2<p 1【考点】几何概型.【分析】作出每个事件对应的平面区域,求出对应的面积,利用几何概型的概率公式进行计算比较即可.【解答】解:分别作出事件对应的图象如图(阴影部分)则阴影部分的面积S 1=4﹣=,S 2=4﹣×2=3,S 3==()=, ∴S 3<S 2<S 1,即P 3<P 2<P 1,故选:D .10.某三棱锥的三视图如图所示,则该三棱锥的外接球的表面积是( )A .2πB .4πC .πD .5π【考点】由三视图求面积、体积.【分析】几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入球的表面积公式计算即可.【解答】解:由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为1,底面为等腰直角三角形,斜边长为2,如图:∴△ABC 的外接圆的圆心为斜边AC 的中点D ,OD ⊥AC ,且OD ⊂平面SAC ,∵SA=1,AC=2,∴SC 的中点O 为外接球的球心,∴半径R=,∴外接球的表面积S=4π×=5π.故选:D .11.已知双曲线C :﹣=1(a >0,b >0),焦距为2c ,若l 1:y=(x ﹣c )与C 的左右两支交于一点,l 2:y=2(x+c )与C 的左支交于两点,则双曲线的离心率的范围是( )A .(1,3)B .(2,3)C .(1,2)D .(,3)【考点】双曲线的简单性质.【分析】根据双曲线的性质结合直线和双曲线的位置关系,得到直线斜率和渐近线斜率之间的关系即可得到结论.【解答】解:双曲线的渐近线方程为y=±x ,焦点坐标F 1(﹣c ,0),F 2(c ,0),则直线l 1:y=(x ﹣c )过双曲线的右焦点F 2(c ,0),l 2:y=2(x+c )过双曲线的左焦点F 1(﹣c ,0),若l 1:y=(x ﹣c )与C 的左右两支交于一点,则直线的斜率满足.l 2:y=2(x+c )与C 的左支交于两点,则直线的斜率2满足<2,即<<2,则离心率e===,∵<<2,∴3<()2<8,4<1+()2<9,则2<<3,即2<e <3,故离心率的取值范围是(2,3),故选:B12.定义在R上的偶函数f(x)的导函数为f'(x),对定义域内的任意x,都有2f(x)+xf'(x)<2成立,则使得x2f(x)﹣4f(2)<x2﹣4成立的x的范围为()A.{x|x≠±2} B.(﹣2,2)C.(﹣∞,﹣2)∪(2,+∞) D.(﹣∞,﹣2)∪(0,2)【考点】利用导数研究函数的单调性.【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,进行求解即可.【解答】解:当x>0时,由2f(x)+xf'(x)<2得2f(x)+xf′(x)﹣2<0可知:两边同乘以x得:2xf(x)﹣x2f′(x)﹣2x<0设g(x)=x2f(x)﹣x2则g′(x)=2xf(x)+x2f′(x)﹣2x<0,恒成立:∴g(x)在(0,+∞)单调递减,由x2f(x)﹣4f(2)<x2﹣4∴x2f(x)﹣x2<4f(2)﹣4即g(x)<g(2),∵f(x)是偶函数,∴g(x)=x2f(x)﹣x2也是偶函数,则不等式g(x)<g(2)等价为g(|x|)<g(2),即|x|>2;则x>2或x<﹣2,即实数x的取值范围为(﹣∞,﹣2)∪(2,+∞),故选:C二、填空题:本大题共4个小题,每小题5分,共20分13.已知=(3,﹣4),=(3,t),向量在方向上的投影为﹣3,则t= 6 .【考点】平面向量数量积的运算.【分析】根据投影的定义即可求出.【解答】解:∵ =(3,﹣4),=(3,t),∴•=9﹣4t,||=5,∵向量在方向上的投影为﹣3,∴==﹣3,解得t=6,故答案为:614.已知(x+)n的展开式中仅有第4项的二项式系数最大,则其展开式各项系数之和等于729 .【考点】二项式系数的性质.【分析】由(x+)n的展开式中仅有第4项的二项式系数最大,可得n=6.令x=1,即可得出.【解答】解:∵(x+)n的展开式中仅有第4项的二项式系数最大,∴n=6.令x=1,可得:则其展开式各项系数之和=36=729.故答案为:729.15.在四棱柱ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=3,直线AD 1,DC 1所成角的正弦值为 .【考点】异面直线及其所成的角.【分析】取四棱柱ABCD ﹣A 1B 1C 1D 1为直棱柱,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线AD 1,DC 1所成角的正弦值.【解答】解:取四棱柱ABCD ﹣A 1B 1C 1D 1为直棱柱,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,建立空间直角坐标系,∵AB=BC=1,AA 1=3,∴A (1,0,0),D 1(0,0,3),D (0,0,0),C 1(0,1,3),=(﹣1,0,3),=(0,1,3),设直线AD 1,DC 1所成角为θ,cos θ===,∴sin θ==.∴直线AD 1,DC 1所成角的正弦值为.故答案为:.16.△ABC 中,∠A=π,AB=2,BC=,D 在BC 边上,AD=BD ,则AD= .【考点】三角形中的几何计算.【分析】在△ABC 中,根据条件的正弦定理求出角B 、C ,由边角关系和内角和定理求出∠BAD 、∠ADB ,在△ABD 中,由正弦定理和特殊角的三角函数值求出AD .【解答】解:如图所示:∵在△ABC 中,∠A=π,AB=2,BC=,∴由正弦定理得,则sin ∠C===,∵∠A 是钝角,且0<∠C <π,∴∠C=,则∠B=π﹣∠A ﹣∠C==,∵AD=BD ,∴∠BAD=∠B=,则∠ADB=π﹣∠B ﹣∠BAD=,在△ABD 中,由正弦定理得,∴AD====,故答案为:.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n }的前n 项和为S n ,且S n =2a n +n ﹣4(n ∈N *)(1)求{a n }的通项公式;(2)设T n 为数列{}的前n 项,证明:1≤T n <(n ∈N *).【考点】数列与不等式的综合;数列递推式.【分析】(1)当n ≥2时利用a n =S n ﹣S n ﹣1计算可知a n =2a n ﹣1﹣1,进而可构造首项、公比均为2的等比数列{a n ﹣1},计算即得结论;(2)通过(1)放缩可知<,进而利用等比数列的求和公式计算即得结论.【解答】(1)解:∵S n =2a n +n ﹣4,∴当n=1时,a 1=3,当n ≥2时,a n =S n ﹣S n ﹣1=(2a n +n ﹣4)﹣(2a n ﹣1+n ﹣5),即a n =2a n ﹣1﹣1,变形,得:a n ﹣1=2(a n ﹣1﹣1),∴数列{a n ﹣1}是首项、公比均为2的等比数列,∴a n ﹣1=2n ,即a n =1+2n ;(2)证明:由(1)可知: =<,当n ≥2时,T n <1++…+=﹣<,又∵T n ≥T 1=1,∴1≤T n <(n ∈N *).18.某汽车公司为调查4S 店个数与该公司汽车销量的关系,对同等规模的A ,B ,C ,D ,E 五座城市的4S(1)根据该统计数据进行分析,求y 关于x 的线性回归方程;(2)现要从A ,B ,E 三座城市的9家4S 店中选取4家做深入调查,求A 城市中被选中的4S 店个数X 的分布列和期望.( =, =﹣).【考点】线性回归方程.【分析】(I )根据回归系数公式计算回归系数,得出回归方程;(II )X 的取值为0,1,2,3,分别计算各取值的概率,得出X 的分布列和数学期望.【解答】解:(1)由==4, ==30,==2.7,=﹣=30﹣2.7×4=19.2,y 关于x 的回归方程为=2.7x+19.2,(2)X 的可能取值0,1,2,3,P (X=0)==,P (X=1)==,P (X=2)==,P (X=3)==,E (X )=0×+1×+2×+3×=,E (X )=.19.在三棱柱ABC ﹣A 1B 1C 1中,已知AB=AC=AA 1=,BC=4,A 1在底面ABC 的射影是线段BC 的中点O . (Ⅰ)证明:在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(Ⅱ)求二面角A 1﹣B 1C ﹣C 1的余弦值.【考点】二面角的平面角及求法.【分析】(Ⅰ)连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,所以,OE ⊥BB 1,证明BC ⊥OE ,可得结论,AE=;(Ⅱ)建立空间直角坐标系,求出平面B 1CC 1的一个法向量、平面A 1B 1C 的法向量,利用向量的夹角公式求二面角A 1﹣B 1C ﹣C 1的余弦值.【解答】解:(Ⅰ)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,所以,OE ⊥BB 1 因为A 1O ⊥平面ABC ,所以BC ⊥平面AA 1O ,所以BC ⊥OE ,所以OE ⊥平面BB 1CC又AO==1,AA 1=得AE==.(Ⅱ)解:如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,﹣2,0),A 1(0,0,2)由=,得点E 的坐标是(,0,),由(Ⅰ)知平面B 1CC 1的一个法向量为=(,0,)设平面A 1B 1C 的法向量是=(x ,y ,z ),由得可取=(2,1,﹣1),所以cos <,>==.20.如图,已知椭圆C 1: +y 2=1,曲线C 2:y=x 2﹣1与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于A ,B 两点,直线MA ,MB 分别与C 1相交于D ,E 两点,直线MA ,MB 的斜率分别为k 1,k 2(1)求k 1k 2的值;(2)记△MAB ,△MDE 的面积分别为S 1,S 2,若=λ,求λ的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】(1)设过原点的直线l :y=tx ,联立,得x 2﹣ty ﹣1=0,从而求出=0,由此能求出k 1k 2.(2)设直线MA :y=k 1x ﹣1,直线MB :y=﹣x ﹣1,联立,得A (),联立,得D (,),同理,得B (﹣,﹣1),E (,),由此能求出λ的取值范围.【解答】解:(1)设A (x 1,y 1),B (x 2,y 2),E (x 3,y 3),E (x 4,y 4),过原点的直线l :y=tx ,联立,得x 2﹣ty ﹣1=0,=(x 1,y 1+1),=(x 2,y 2+1),=x 1x 2+(y 1+1)(y 2+1)=(t 2+1)x 1x 2+t (x 1+x 2)+1=0,∴⊥,∴k 1k 2=﹣1.(2)设直线MA :y=k 1x ﹣1,直线MB :y=﹣x ﹣1,联立,得A (),联立,得D (,),同理,得B (﹣,﹣1),E (,),=(),=(﹣,),=(,),=(,),∴S 1=||,S 2=|×+×|=,∴λ==(4k 12++17)≥.当且仅当,即k 1=±1时,取等号,∴λ的取值范围[,+∞).21.已知f (x )=(2﹣a )x ﹣2(1+lnx )+a ,g (x )=.(1)若a=1,求函数f (x )在(1,f (1))处的切线方程;(2)若对任意给定的x 0∈(0,e],在(0,e 2]上方程f (x )=g (x 0)总存在两个不等的实数根,求实数a 的取值范围.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f (1),f′(1),求出切线方程即可;(2)求出g (x )的范围,得到f (x )=g (x 0)⇔(2﹣a )(x ﹣1)﹣g (x 0)=2lnx ,记h (x )=(2﹣a )(x ﹣1)﹣g (x 0),根据函数的单调性求出a 的范围即可.【解答】解:(1)a=1时,f (x )=x ﹣2(1+lnx )+1,f′(x )=1﹣=,f (1)=0,f′(1)=﹣1,故切线方程是:y=﹣x+1;(2)g′(x )=(1﹣x )e 1﹣x ,g (x )在(0,1)递增,在(1,e )递减,而g (0)=0,g (1)=1,g (e )=e 2﹣e >0,∴g (x )∈(0,1],f (x )=g (x 0)⇔(2﹣a )(x ﹣1)﹣g (x 0)=2lnx ,记h (x )=(2﹣a )(x ﹣1)﹣g (x 0),h (1)=﹣g (x 0)<0,h′(x )=(2﹣a )﹣,①a≥2﹣时,h (x )在(0,e 2]递减,不可能有两个零点,②a<2﹣时,h (x )在(0,)递减,在(,e 2]递增,h ()>a ﹣2﹣(a ﹣3)﹣g (x 0)≥0,h (x )有2个零点,必有h (e 2)≥0⇒a ≤2﹣,综上:a ≤2﹣.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数).在极坐标系 (与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=4cos θ. (Ⅰ)求圆C 的直角坐标方程;(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为(2,1),求|PA|+|PB|.【考点】直线的参数方程;简单曲线的极坐标方程.【分析】(I )将ρ=4cos θ两边同乘ρ,根据直角坐标与极坐标的对应关系得出直角坐标方程;(II )将直线的参数方程代入圆的普通方程,根据参数的几何意义与根与系数的关系得出|PA|+|PB|.【解答】解:(I )∵ρ=4cos θ,∴ρ2=4ρcos θ,∴圆C 的直角坐标方程为x 2+y 2=4x ,即(x ﹣2)2+y 2=4.(II )设点A 、B 对应的参数分别为t 1,t 2,将代入(x ﹣2)2+y 2=4整理得,∴,即t 1,t 2异号.∴|PA|+|PB|=|t 1|+|t 2|=|t 1﹣t 2|==.[选修4-5:不等式选讲]23.已知正实数a ,b ,x ,y 满足a+b=1(1)求a 2+2b 2的最小值;(2)求证:(ax+by )(ay+bx )≥xy .【考点】不等式的证明.【分析】(1)方法一、求得0<a <1,化原式=3(a ﹣)2+,由二次函数的最值求法,可得最小值;方法二、运用柯西不等式可得[a 2+(b )2][12+()2]≥(a•1+b•)2,化简即可得到最小值;(2)将不等式的左边展开,合并,运用重要不等式x 2+y 2≥2xy ,整理即可得证.【解答】解:(1)解法一、由a+b=1,可得b=1﹣a ,且a >0,b >0,可得0<a <1,则a 2+2b 2=a 2+2(1﹣a )2=3a 2﹣4a+2=3(a ﹣)2+,当a=∈(0,1)时,取得最小值; 解法二、由柯西不等式可得(a 2+2b 2)(1+)=[a 2+(b )2][12+()2]≥(a•1+b•)2=(a+b )2=1,即有a 2+2b 2≥,当且仅当a=2b=,取得最小值; (2)证明:由正实数a ,b ,x ,y 满足a+b=1,可得(ax+by )(ay+bx )=abx 2+aby 2+a 2xy+b 2xy=ab (x 2+y 2)+(a 2+b 2)xy≥2abxy+(a 2+b 2)xy=xy (a 2+b 2+2ab )=xy (a+b )2=xy ,则(ax+by )(ay+bx )≥xy .。
重庆市巴蜀中学2018届高三(上)适应性月考数学试卷(三)(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣1,0,1,2},B={x|x2﹣x≤0},则A∩B=()A.{x|0≤x≤1} B.{0,1} C.{0,1,2} D.{﹣1,0} 2.(5分)已知复数z满足z(1+i)=2﹣i,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知角α与120°终边相同,则sinα=()A.B.﹣C.﹣D.4.(5分)已知向量=(1,k),=(k,1),则“∥”是“k=﹣1”的()A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)已知数列{a n}中,a1=1,且a n+1=2a n+1,则a4=()A.7 B.9 C.15 D.176.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+4πB.8π﹣16 C.16+8πD.8+8π7.(5分)已知双曲线﹣=1的一个焦点与抛物线x2=4y的焦点重合,且双曲线的离心率等于,则该双曲线的方程为()A.5y2﹣x2=1 B.﹣=1C.﹣=1 D.5x2﹣=18.(5分)若正整数N除以正整数m后的余数为n,则记为N=n(mod m),例如10=4(mod 6),如图的程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的n为()A.14 B.17 C.26 D.329.(5分)已知光线从点A(1,0)出发,经直线x=2反射后与圆C:x2+(y﹣3)2=1相切于点B,则光线从点A到点B的路程为()A.2 B.C.D.410.(5分)定义在R上的函数f(x)=x5+e x+1,若a=f(),b=f(ln),c=f(e),则比较a,b,c的大小关系为()A.a>b>c B.a>c>b C.c>a>b D.b>a>c11.(5分)甲乙丙丁四个好朋友在一起玩游戏,游戏规定每一局结束以后四人之间要换位置,第一次前后两行互换位置,第二次左右两列互换位置,然后以此类推(如图).已知第1局时甲乙丙丁分别坐在1、2、3、4号位置,则第10局游戏时,甲坐在()号位置.A.1 B.2 C.3 D.412.(5分)正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=1,则正四棱柱各面上到点A的距离不超过2的点组成区域面积为()A.+B.3π+C.2π+2D.+2二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知x>0,y>0,2x+3y=,则xy的最大值为.14.(5分)已知x,y满足,则z=2x+y的最小值为.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,a=1,sin B=2sin A,C=60°,则边长c=.16.(5分)已知函数f(x)=的定义域为[0,+∞),值域为[0,2],则a+b=.三、解答题(共6小题,满分70分)17.(10分)设函数f(x)=|x+a|(x∈R),且f(x)≤3的解集为x∈[﹣5,1].(Ⅰ)求a的值;(Ⅱ)若x∈[﹣1,+∞),f(2x)≥x+b2﹣3恒成立,求实数b的取值范围.18.(12分)已知等差数列{a n}中,a1=1,前n项和为S n,{b n}为各项均为正的等比数列,b1=2,且b2+S2=7,a2+b3=10.(Ⅰ)求a n与b n;(Ⅱ)定义新数列{c n},满足cn=(n∈N*),求{c n}的前20项的和T20.19.(12分)为迎接“双十一”的到来,某电商决定对公司旗下两个网站商铺服务情况进行调查,公司随机选取了其中100家(其中A,B网站各50家),请第三方公司进行评估调查,数据整理如下表:(Ⅰ)已知一家商铺得分超过85分(包含85分)就被网站评定为“紫钻商铺”,得分为[60,85)之间就评定为“蓝钻商铺”,[0,60)之间评定为“白钻商铺”.请你估算A网站5000家商铺中有多少家“蓝钻商铺”?(Ⅱ)结合(Ⅰ)条件,完成下列2×2列联表,判断能否有95%以上的把握认为“服务优秀”与网站监管力度有关?附:K2=20.(12分)如图,在四棱锥P﹣ABCD中,四边形ABCD为平行四边形,点E为P A中点,AB=2,AD=4.(Ⅰ)求证:PC∥平面BDE;(Ⅱ)若平面P AD⊥平面P AB,△P AB为等边三角形,PD=AD,求四棱锥P﹣ABCD的体积.21.(12分)已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,F1(﹣2,0),且以F1F2为直径的圆经过上顶点A.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点O作两条相互垂直的直线分别于椭圆C交于P,Q和M,N,求四边形PMQN 的内切圆半径.22.(12分)已知函数f(x)=.(Ⅰ)若f(x)在x=x0处的切线倾斜角为钝角,求x0的取值范围;(Ⅱ)g(x)=a(1﹣x)﹣(﹣<a<0),求证:f(1﹣x)与g(x)的图象在x∈(0,1)上存在唯一交点.【参考答案】一、选择题1.B【解析】集合A={﹣1,0,1,2},B={x|x2﹣x≤0}={x|0≤x≤1},则A∩B={0,1}.故选B.2.D【解析】∵复数z满足z(1+i)=2﹣i,∴z====﹣,它在复平面内的对应点为(,﹣),故选D.3.A【解析】角α与120°终边相同,∴α=k×360°+120°,k∈Z,∴sinα=sin(k×360°+120°)=sin120°=.故选:A.4.C【解析】若“∥”,则1﹣k2=0,k=±1,∴“∥”不是“k=﹣1”的充分条件.若“k=﹣1”,则=(1,﹣1),=(﹣1,1),∴,即∥,∴“k=﹣1”是“∥”的必要条件.故选:C.5.C【解析】∵a1=1,且a n+1=2a n+1,变形为a n+1+1=2(a n+1),∴数列{a n+1}是等比数列,首项与公比都为2.∴a n+1=2n,即a n=2n﹣1,则a4=24﹣1=15.故选:C.6.C【解析】由几何体的三视图得:该几何体是一个底面边长为2,高为4的正棱柱和四个底面半径为1,高为4的半圆柱的组合体,该几何体的体积为:V=2×2×4+2×π×12×4=16+8π.故选:C.7.A【解析】根据题意,抛物线x2=4y的焦点为(0,1),则双曲线的焦点为(0,1),则双曲线的焦点在x轴上,且c=1,又由双曲线的离心率e=,即e==,又由c=1,则a=,则b2=c2﹣a2=,则双曲线的方程为:5y2﹣x2=1,故选:A.8.B【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出同时满足条件:①被3除余2,②被5除余2,即被15除余2,最小两位数,故输出的n为17,故选:B9.B【解析】根据题意,设点E与点A(1,0)关于直线x=2对称,则E的坐标为(3,0),过点E作圆的切线,切点也应该B,则光线从点A到点B的路程即切线EB的长,又由圆C:x2+(y﹣3)2=1,其圆心为(0,3),半径为1,则|BE|==;即光线从点A到点B的路程为;故选:B.10.C【解析】根据题意,函数f(x)=x5+e x+1,其导数f(x)=5x4+e x>0,即函数f(x)为增函数,又由ln<ln=<1<,则有c>a>b,故选:C.11.D【解析】由图得,甲原来的座位编号为a0=1,设每次变换后的甲座位编号为a n,则a1=3,a2=4,a3=2,依此类推得a4=4,a5=3,a6=1,…,∴此数列的项周期性出现,且周期是4,即a n+4=a n,∴a10=a4×2+2=a2=4.故选:D.12.A【解析】取A1K=A1M=,可得AM=AK==2,在面ABCD内,满足题意的点构成的区域为个圆,半径为2,面积为×π×4=π;在面ABB1A1内,满足题意的点构成的区域为直角三角形AA1K和圆心角为30°的扇形,半径为2,面积为×1×+××4=+;在面ADD1A1内,满足题意的点构成的区域为直角三角形AA1M和圆心角为30°的扇形,半径为2,面积为×1×+××4=+;在面A1B1C1D1内,满足题意的点构成的区域为个圆,半径为,面积为×π×3=,其余两个面内不存在满足题意的点,则构成的所有区域的面积为++π+=+.故选:A.二、填空题13.【解析】根据题意,x>0,y>0,2x+3y=,则xy=(2x)(3y)≤()2=,当且仅当2x=3y时,等号成立,即xy的最大值为;故答案为:.14.8【解析】作出x,y满足,所表示的平面区域,作出直线2x+y=0,对该直线进行平移,可以发现经过点A(3,2)时,Z取得最小值8;故答案为:8.15.【解析】a=1,sin B=2sin A,C=60°,由正弦定理可得b=2a=2,由余弦定理可得,c2=a2+b2﹣2ab cos C=1+4﹣4cos60°=3,可得c=,故答案为:.16.4【解析】由函数f(x)==∵定义域为[0,+∞),若b≠0,函数y=b e x∈R,不可能得到值域为[0,2],∴b=0.可知f(x)=则f(′x)=令f′(x)=0,可得x=﹣1(舍去),或x=1.当a>0时,f(x)在(0,1)递增,(1,+∞)递减,则f(x)max=f(1)=2,即,可得a=4当a=0时,f(x)恒等于0,显然不成立;当a<0时,f(x)(0,+∞)递减,则f(x)max=f(1)=0,即,可得a=0,与a<0矛盾,显然不成立;∴综上a的值为4,b的值为0.那么:a+b=4故答案为:4三、解答题17.解:(Ⅰ)∵|x+a|≤3,∴﹣3﹣a≤x≤3﹣a,而f(x)≤3的解集为x∈[﹣5,1],∴,解得:a=2;(Ⅱ)若x∈[﹣1,+∞),f(2x)≥x+b2﹣3恒成立,则b2﹣3≤2|x+1|﹣x=x+2,而y=x+2在[﹣1,+∞)递增,y min=1,故b2﹣3≤1,解得:﹣2≤b≤2.18.解:(Ⅰ)等差数列{a n}中,a1=1,前n项和为S n,{b n}为各项均为正的等比数列,b1=2,b2+S2=7,a2+b3=10.则:,解得:q=2或﹣1(舍去),则:d=1,故数列:a n=1+(n﹣1)=n,.(Ⅱ)定义数列c n=,则:T20=1+3+…+19+(22+24+…+220)=100+=﹣.19.解:(Ⅰ)由题意知,A网站50家商铺得分在[60,85)之间有8+10+16×=26(家),估算A网站5000家商铺中有“蓝钻商铺”5000×=2600(家);(Ⅱ)结合(Ⅰ)条件,填写2×2列联表如下,计算K2==≈1.604<3.841,所以没有95%以上的把握认为“服务优秀”与网站监管力度有关.20.证明:(Ⅰ)连结AC,交BD于O,连结OE.因为ABCD是平行四边形,所以OA=OC.因为E为侧棱P A的中点,所以OE∥PC.因为PC⊂平面BDE,OE⊂平面BDE,所以PC∥平面BDE.(Ⅱ)因为E为P A中点,PD=AD,所以P A⊥DE.∵平面P AD⊥平面P AB,平面P AD∩平面P AB=P A,DE⊂面P AD,∴DE⊥平面P AB,V P﹣ADB=V D﹣ABP==.∵.21.解:(I)∵以F1F2为直径的圆经过上顶点A.左焦点为F1(﹣2,0),∴b=c=2.∴a2=b2+c2=8.∴椭圆C的方程为=1.(II)由题意可知:直线PQ,MN的斜率都存在且不为0.四边形PMQN为菱形.设直线MN的方程为:y=kx,则直线PQ的方程为:y=﹣x.联立,化为:x2=,y2=.可得:|OM|2=x2+y2=+=.同理可得:|OP|2=.∴|PM|2=|OM|2+|OP|2=+==.∴四边形PMQN的内切圆半径r满足:r2==.解得r=.22.(Ⅰ)解:由f(x)=,得f′(x)=,∴f(x)在x=x0处的切线的斜率为,∵f(x)在x=x0处的切线倾斜角为钝角,∴<0,且,解得x0>e;(Ⅱ)证明:由f(x)=,得f(1﹣x)=,令h(x)=f(1﹣x)﹣g(x)==,h′(x)==.令t(x)=a(1﹣x)2+ln(1﹣x)+2,t′(x)=﹣2a(1﹣x)﹣,∵﹣<a<0,∴t′(x)<0在x∈(0,1)上恒成立,即t(x)在(0,1)上为减函数,当x→0时,t(x)>0,当x→1时,t(x)→﹣∞,∴存在x0∈(0,1),使t(x0)=0,则.当x∈(0,x0)时,h′(x)>0,h(x)为增函数,当x∈(x0,1)时,h′(x)<0,h(x)为减函数,又h(0)=1﹣a>0,当x→1时,h(x)→﹣∞,∴h(x)在(0,1)上有零点,综上,可知h(x)在(0,1)上有唯一零点,即f(1﹣x)与g(x)的图象在x∈(0,1)上存在唯一交点.。
巴蜀中学2018届高考适应性月考卷(五)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合)B. C.【答案】B故选B.2. )B. C.【答案】B故选B.3. 平面向量满足,,,则向量与的夹角为()【答案】C4.等于()【答案】A,则双曲线的离心率.故选A.5. 我国汉代数学家赵爽为了证明勾股定理,创制了一幅弦图,后人称其为“赵爽弦图”.弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图(1)).若直得到图(2)所示的“数学风车”,在该“数学风车”内随机取一点,则此点取自黑色部分的概率是()【答案】C,设小正方形的边长为,由全等直角三角形得,“数学风车”的面积为机取一点,则此点取自黑色部分的概率是故选C.6. 某商场失窃,四个保安因涉嫌而被传讯.四人的供述如下:甲:我们四人都没有作案.乙:我们中有人作案.丙:乙和丁至少有一人没有作案.丁:我没有作案.如果四人中有两人说的是真话,有两人说的是假话,则以下哪项断定成立()A. 说假话的是乙和丁B. 说假话的是乙和丙C. 说假话的是甲和丙D. 说假话的是甲和丁【答案】D【解析】若说假话的是乙和丁,即“我们中没有人作案”与“我作案了”相矛盾,故排除选项A,说假话的是乙和丙,即“我们中没有人作案”与甲所说“我们四人都没有作案”、丁所说“我没有作案”相符,则丙所说“乙和丁至少有一人没有作案”也为真话,与丙说假话矛盾,故排除选项B;若说假话的是甲和丙,则乙所说“我们中有人作案”为真话,但无法判定丁所说“我没有作案”的真假,故排除选项C;若说假话的是甲和丁,即丁作的案,则乙所说为真话,丙所说“乙和丁至少有一人没有作案”也为真话,即选项D正确.故选D.7. )B. C.【答案】B,所以,即函数在上的值域是故选B.点睛:本题考查三角恒等变换、三角函数在给定区间上的值域;求与三角函数有关的值域或最值问题,主要有以下题型,要注意总结:(1)(2)(3).8. 执行如图所示的程序框图,若输出的的值为3,则输入的的取值范围是()D.【答案】C因为输出的值为3故选C.9. 某天上午的课程表要排入语文、数学、英语和两节自习共5节课,如果第1节不排数学,且语文和英语不相邻,那么不同的排课表的方法有()种.A. 24B. 48C. 30D. 60【答案】C【解析】先将数学和两节自习进行排列,留有4个空安排语文和英语,排法.故选C.10. ,,下列结论正确的是()D.【答案】C,即故选C.点睛:本题考查函数的奇偶性、单调性和对数的大小比较;的大小,与平常的中间值(1,0,)不同,11. 设直线与抛物线相交于相切于点2条,则的取值范围是()【答案】D,因为直线与圆相切,所以,即,即点且,因为满足条件的直线只有两条,所以故选D.12. 已知函数)不确定【答案】A,下面判定的符号:令,则,则递增,,,若,则故选A.点睛:本题考查导数的几何意义、利用导数研究函数的单调性和最值;在利用导数的几何意义求曲线的切线时,要注意“曲线在某点处的切线”和“过某点的切线”的不同,“曲线在某点处的切线”,即该点一定在曲线上且是切点,但“过某点的切线”则该点不一定在曲线上,也不一定是切点.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. __________.【答案】5,即二项式展开式中的常数项是.14. 的前项和为,则.【答案】311为首项、公比为2的等比数列,则点睛:本题考查利用数列的是一个分段函数,一定要注意验证当若满足,写成一个解析式,否则写成分段函数.15. __________.【解析】作出可行域(如图所示)到原点的距离点睛:本题考查二元一次不等式组和平面区域、非线性目标函数的最优解;利用可行域求非线性目标函数的最优解涉及的目标函数主要有以下几种:(1)平方;(2).16. 在四边形,则四边形__________.【解析】由余弦定理,,,即取得最大值12,即,解得,即四边形的面积的最大值是三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17..的前项和【解析】试题分析:(Ⅰ)根据题意列出关于等差数列的首项和公差的方程组求出等差数列的通项公式即可,再利用等比数列的通项公式求解;(Ⅱ)利用错位相减法进行求和.试题解析:.1,公比为3的等比数列,∴.点睛:本题考查等差数列、等比数列及错位相减法求和;错位相减法是一种重要的求和方法,,求和方法是等式两边同乘以等比数列的公比,对齐相减,转化为部分项成等比数列进行求和.18. 如图,所有棱长均为2,的中点..【解析】试题分析:(Ⅰ)利用等腰三角形的“三线合一”与正方形的对角线垂直得到线线垂直,进而利用线面垂直的判定定理和性质进行证明(Ⅱ)利用垂直关系建立空间直角坐标系,求出相关点的坐标和直线的方向向量,进而求出两个平面的法向量,利用空间向量的夹角公式进行求解.试题解析:为底边的中点,故由于正三棱柱的所有棱长都相等,,故,19. 作为加班拍档、创业伴侣、春运神器,曾几何时,方便面是我们生活中重要的“朋友”,然而这种景象却在近5年出现了戏剧性的逆转。
重庆市巴蜀中学2018届高三适应性月考(八,3月)数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满足,则复数的模为()A. B. 1 C. D.【答案】C【解析】由题意得,∴.选C.2.已知全集,集合,,则()A. B. C. D.【答案】C【解析】由题意得,,∴,∴.选C.3.在等差数列中,是函数的两个零点,则的前10项和等于()A. B. 15 C. 30 D.【答案】B【解析】由题意得是方程的两根,∴,∴.选B.4.设是两条不同的直线,是三个不同的平面,给出下列命题:①若,则;②若,则;③若,则.其中真命题的个数是()A. 0B. 1C. 2D. 3【答案】A【解析】①中,由条件可得或相交,故①不正确;②中,由条件可得或,故②不正确;③中,由条件可得或,故③不正确.综上真命题的个数是0.选A.5.甲、乙、丙、丁四个人聚在一起讨论各自的体重(每个人的体重都不一样).甲说:“我肯定最重”;乙说:“我肯定不是最轻”;丙说:“我虽然没有甲重,但也不是最轻”丁说:“那只有我是最轻的了”.为了确定谁轻谁重,现场称了体重,结果四人中仅有一人没有说对.根据上述对话判断四人中最重的是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】用排除法进行说明.①假设甲没说对,则乙、丙、丁说的正确.故最重的是乙,第二名是甲,第三名是丙,丁最轻;或者乙最重,第二名是丙,第三名是甲,丁最轻.②假设乙没说对,则甲、丙、丁说的正确.故乙最轻,与丁最轻矛盾,故假设不成立.③假设丙没说对,则甲、乙、丁说的正确.若丙最重,则与甲的说法;若丙最轻,,则与丁最轻.故假设不成立.④假设丁没说对,则甲、乙、丙说的正确.若丁最重,则与甲最重矛盾;若丁排第二,则与甲、乙、丙的说法都得不到谁最轻均矛盾.故假设不成.综上所述可得乙最重.选B.6.已知,则的展开式中的系数为()A. B. 15 C. D. 5【答案】D【解析】由题意得,故求的展开式中的系数.∵,展开式的通项为.∴展开式中的系数为.选D.7.甲、乙、丙、丁四个人到重庆旅游,朝天门、解放碑、瓷器口三个景点,每个人只去一个景点,每个景点至少有一个人去,则甲不到瓷器口的方案有()A. 60种B. 54种C. 48种D. 24种【答案】D【解析】分两类求解.①甲单独一人时,则甲只能去另外两个景点中的一个,其余三人分为两组然后分别去剩余的两个景点,故方案有种;②甲与另外一人为一组到除瓷器口之外的两个景点中的一个,其余两人分别各去一个景点,故方案有.由分类加法计数原理可得总的方案数为24种.选D.8.如图所示的程序框图输出的结果为510,则判断框内的条件是()A. B. C. D.【答案】D【解析】由题意得该程序的功能是计算的和.∵,∴当时,,不合题意;当时,,符合题意.∴判断框中的条件为.选D.9.某三棱锥的三视图如图所示,其侧视图为直角三角形,该三棱锥的外接球表面积为,俯视图中的三角形以长度为3的边为轴旋转得到的几何体的侧面积为,则为()A. B. C. D.【答案】B【解析】由三视图可得该几何体为如图所示的三棱锥,其中底面,且底面为直角三角形,.故三棱锥外接球的球心在过的中点且与底面垂直的线上,设为点,则有,设球半径为,则有.故三棱锥的外接球表面积.俯视图中的三角形以长度为3的边为轴旋转得到的几何体为圆锥,底面圆的半径为4,高为3,母线长为5,故其侧面积.∴.选B.10.把的图象向左平移个单位(为实数),再把所得图象各点的横坐标缩短到原来的,纵坐标不变,得到的图象,若对恒成立,且,若,则的可能取值为()A. B. C. D.【答案】A【解析】由题意可得,∵对恒成立,∴是最大值或最小值,∴,故.又,∴,即,∴,∴当时,符合题意.∴.又,∴或,∴或.结合各选项可得A正确.选A.11.已知双曲线的左、右顶点分别为,为双曲线左支上一点,为等腰三角形且外接圆的半径为,则双曲线的离心率为()A. B. C. D.【答案】C【解析】由题意知等腰中,,设,则,其中必为锐角.∵外接圆的半径为,∴,∴,,∴.设点P的坐标为,则,故点P的坐标为.由点P在椭圆上得,整理得,∴.选C.点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中之间的数量关系,其中通过解三角形得到点P的坐标是解题的突破口.在得到点P的坐标后根据点在椭圆上可得间的关系,最后根据离心率的定义可得所求.12.已知在点处的切线方程为,,的前项和为,则下列选项正确的是()A. B.C. D.【答案】A【解析】由题意得,∴,解得,∴.设,则,∴在上单调递减,∴,即,令,则,∴,故.设,则,∴在上单调递增,∴,即,令,则,∴,故.综上选A.点睛:本题将函数问题和数列问题结合在一起,综合考查学生运用知识解决问题的能力,对于数列中的不等式问题,一般的解法要借助于函数的单调性进行解决.为此并结合题意需要构造两个函数来解决问题,在得到函数的单调性后通过取特殊值的方法转化为数列的问题处理,解决此类问题需要学生具有较强的观察能力和分析问题的能力.二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知满足约束条件(),则的最大值为_______.【答案】【解析】画出不等式组表示的可行域如图阴影部分所示.表示可行域内的点到原点距离的平方.由图形可得,可行域内的点A到原点的距离最大,且A点的坐标为,且.∴.答案:14.抛物线上一点的纵坐标为3,则点到抛物线焦点的距离为_______.【答案】【解析】由题意得抛物线的准线为,∴点到抛物线的距离为.由抛物线的定义可得点到抛物线焦点的距离为.答案:15.数列中,,(),则数列的通项公式为_______.【答案】【解析】∵,∴,∴,∴,又,∴数列是首项为,公比为的等比数列,∴,∴.答案:点睛:(1)已知和的关系解题时的突破口是当时,这一结论的灵活应用,然后根据所求的问题转化为的问题或的问题解决.(2)本题中,在得到后还需要通过构造的方法得到,逐步得到等比数列,然后通过等比数列的通项公式可得数列的通项公式.16.三角形中一点满足,的长度为1,边上的中点与的连线分别交于点,若,则的长度为_______.【答案】【解析】设,则.由题意得,∴,又,∴.即的长度为.答案:三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,角所对的边分别为,已知,,且.(1)若,求的值;(2)若,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)由及正弦定理得,故可得,于是,故.然后根据余弦定理及可得,再由可得,解得.(2)由题意得,设,可得,求得的取值范围后根据函数的单调性可得实数的取值范围.试题解析:(1)∵,∴,由正弦定理得,∴.又,,∴,∴.由余弦定理得,又,∴,∴或(舍去),又,∴,∴.(2)由(1)得为锐角,故.又,∴,设,∵,∴,∴在上单调递减,∴,∴实数的取值范围为.18.某营养协会对全市18岁男生的身高作调查,统计显示全市18岁男生的身高服从正态分布,现某校随机抽取了100名18岁男生的身高分析,结果这100名学生的身高全部介于到之间.现将结果按如下方式分为6组,第一组,第二组,…,第六组,得到如图所示的频率分布直方图.(1)若全市18岁男生共有人,试估计该市身高在以上的18岁男生人数;(2)求的值,并计算该校18岁男生的身高的中位数(精确到小数点后三位);(3)若身高以上的学生校服需要单独定制,现从这100名学生中身高在以上的同学中任意抽取3人,这三人中校服需要单独定制的人数记为,求的分布列和期望.附:,则;,则;,则.【答案】(1);(2),;(3)分布列见解析,.【解析】试题分析:(1)根据正态分布得到,故,从而可得身高在以上的18岁男生人数.(2)根据频率分布直方图中所有小长方形的面积和为1可求得,然后根据中位数的意义可求得中位数的估计值.(3)由频率分布直方图可得身高在内的为人,身高在内的为人.从而可得随机变量的所有可能取值,并根据古典概型求得对应的概率,于是可得分布列,从而可得期望.试题解析:(1)由题意得,∴,∴可估计该市身高在以上的18岁男生人数为(人)(2)由频率分布直方图可得,∴.设中位数为,则,∴.即中位数为.(3)由题意得身高在内的人数为人,身高在内的人数为人,由题意得随机变量的所有可能取值为0,1,2,3.,,,,故的分布列如下:∴.点睛:(1)利用频率分布直方图估计样本的数字特征的方法①中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值.②平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.③众数:最高的矩形的中点的横坐标.(2)对于正态分布,一定要注意三个特殊区间上的概率.解题时关键要会利用正态曲线的对称性求解随机变量在一些特殊区间上取值的概率.19.如图,在正四棱锥中,底边,侧棱,为侧棱上的点.(1)若平面,求二面角的余弦值的大小;(2)若,侧棱上是否存在一点,使得平面,若存在,求的值;若不存在,试说明理由.【答案】(1);(2)存在,.【解析】试题分析:(1)根据题意可建立空间直角坐标系,然后根据两平面法向量夹角的余弦值求得二面角的余弦值.(2)先假设存在满足题意的点使得平面,然后根据题意求得平面的法向量,由,可得,从而可得当时,平面.试题解析:(1)如图,连接,设交于,由题意知平面,又,故两两垂直.以为坐标原点,分别为轴,建立如图所示的空间直角坐标系.∵,,∴.(1)由题意得,,,∴,,∵平面,∴平面的一个法向量,又平面的一个法向量,∴,由图形知二面角为锐角,∴所求二面角的余弦值为.(2)假设在棱上存在一点使得平面.在上取点,连接,设平面的法向量为,由题意得,又点,,,,由,得,令,则,设,则,由平面,可得,解得,∴当时,平面.点睛:(1)利用法向量求二面角或其余弦值时,在求得两法向量的夹角的余弦值后,还要根据图形判断二面角是锐角还是钝角,最后才能得到结论.(2)立体几何中的探索性问题可通过坐标法来解,求解时要注意将所求的位置关系的问题转化为向量的共线或数量积的运算来处理.20.设椭圆方程为,离心率为,是椭圆的两个焦点,为椭圆上一点且,的面积为.(1)求椭圆的方程;(2)已知点,直线不经过点且与椭圆交于两点,若直线与直线的斜率之和为1,证明直线过定点,并求出该定点.【答案】(1);(2)证明见解析,.【解析】试题分析:(1)由离心率可得,根据的面积为得到,然后在焦点三角形中利用余弦定理并结合定义可得,进而得到,,于是得到椭圆的方程.(2)由题意设直线方程为,联立椭圆方程后得到二次方程,由根与系数的关系及可得,故直线方程为,即,可得过定点.试题解析:(1)由题意得,故.∵,∴,又,,在中,由余弦定理得,∴,解得,∴.∴,∴椭圆的方程为.(2)由题意设直线方程为,由消去y整理得,∵直线与椭圆交于两点,∴.设点,,则,由题意得,即,∴整理得,∴直线方程为,即,∴直线过定点.点睛:定点问题的解题策略(1)直线过定点.将直线方程化为的形式,当时与无关,即恒成立,故直线过定点.(2)曲线过定点.利用方程对任意参数恒成立得出关于的方程组,以方程组的为坐标的点即为所求的定点.21.已知函数().(1)若时,不单调,求的取值范围;(2)设,若,时,时,有最小值,求最小值的取值范围.【答案】(1);(2).【解析】试题分析:(1)根据不单调可得导函数在区间上有解,然后通过分离参数的方法将问题转化为求在上的取值范围的问题解决,然后利用基本不等式可得所求.(2)由题意可得,利用导数可得在上单调递增,又,故可得在上存在零点,从而可得.然后再利用导数求出函数的值域即可得到所求.试题解析:(1)∵,∴ ,∵时,不单调,∴方程在上有解,∴在上有解,又,(当且仅当时等号才成立,故此处无等号)∴.∴实数的取值范围为.(2)由题意得,∴.设,则,又,,∵,∴单调递增,又,∴存在,使得.且当时,,单调递减,当时,,单调递增,∴.设,,则,∴在上单调递减,又,∴.故最小值的取值范围为.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.选修4-4:坐标系与参数方程22.在直角坐标坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程.(1)当时,交于两点,求;(2)已知点,点为曲线上任意一点,求的最大值.【答案】(1);(2).【解析】试题分析:(1)第(1)问,先把直线的参数方程化为普通方程,再解圆里的三角形得到弦长得到|AB|的值.(2)先写出的三角函数表达式,再利用三角函数求它的最大值.试题解析:(1)消去得:,由得:,圆心为,半径,圆心到直线的距离,,∴.(2)设点,则,,,又,∴的最大值为.选修4-5:不等式选讲23.设.(1)若,解关于的不等式;(2)求证:.【答案】(1)或;(2)证明见解析.【解析】试题分析:(1)第(1)问,直接利用零点讨论法解(2)第(2)问,利用三角绝对值不等式证明.试题解析:(1)当时,,①当时,,∴;②当时,,∴无解;③当时,,∴,综上所述,或.(2)证明:,当且仅当时取等号.。