二次根式[下学期]--华师大版-
- 格式:pdf
- 大小:1.05 MB
- 文档页数:14
电动托盘搬运车:/[单选,A2型题,A1/A2型题]患者初病表现为手足不温,身易恶寒,指尖发青,继而发展为面色苍白,唇甲色淡,小腹冷痛,手足冷凉,脉细欲厥。
治用()。
A.当归四逆汤B.通脉四逆汤C.通脉四逆加猪胆汁汤D.四逆加人参汤E.白通[单选]以下最具表证特征的症状是()。
A.咳嗽气喘B.头痛身痛C.咽喉肿痛D.恶寒发热E.舌淡红苔薄白[单选]甲公司设立于2014年12月31日,预计2015年年底投产。
假定目前的证券市场属于成熟市场,根据优序融资理论的基本观点,甲公司在确定2015年筹资顺序时,应当优先考虑的筹资方式是()。
A.内部筹资B.发行债券C.发行优先股票[判断题]制图物体选取和形状概括都不能引起数量标志的变化。
A.正确B.错误[单选]《洛神赋图》是出自哪位画家之手()。
A、吴道子B、顾恺之C、谢赫D、李公麟[单选,A1型题]关于放射性核素显像,以下描述不正确的是()。
A.放射性药物能选择性地分布于特定的器官或病变组织B.放射性药物能均匀性地分布于特定的器官或病变组织C.放射性药物需引入患者体内D.体外描记放射性药物在于放射性核素示踪方法[单选,A2型题,A1/A2型题]李某,女,47岁,16岁初潮,45岁绝经,月经周期为30~32天,经期3天,以下正确的表达方式是()ABCDE[问答题,简答题]燃烧调整的基本要求有哪些?[填空题]蒙古人种主要分布在:包括辽阔的蒙古高原在内的整个亚洲地域和()、拉丁美洲三大洲。
[单选]对于西地那非的说法,不正确的是()A.是治疗勃起功能障碍的一线用药B.疗效与剂量成正比C.为肌内注射剂D.适用于前列腺根治术后导致的勃起功能障碍E.超量使用可引起阴茎异常勃起[单选]“以德治国”体现了()A.道德可以代替法律B.道德和法律相互对立C.道德和法律可以并存D.道德和法律相辅相成,相互促进[单选]“物流中心”的英文词汇是()A、logisticsCenterB、logisticsenterpriseC、logisticsmanagementD、logisticsinformation[单选]农村集体经济审计是基于我国农村()而产生的一种特殊的审计形式。
二次根式教案华东师大版一、教学内容本节课选自华东师大版《数学》八年级下册,内容为第十章“二次根式”的第一课时。
具体内容包括:理解二次根式的概念,掌握二次根式的性质,能够进行二次根式的简单运算。
二、教学目标1. 理解二次根式的定义,知道二次根式的性质,并能够运用性质简化二次根式。
2. 能够进行二次根式的加减运算,掌握运算规律。
3. 培养学生的观察、分析、解决问题的能力,提高学生的数学思维。
三、教学难点与重点重点:二次根式的定义,性质,加减运算。
难点:理解并运用二次根式的性质简化二次根式,熟练进行二次根式的加减运算。
四、教具与学具准备1. 教具:多媒体教学设备,PPT课件。
2. 学具:学生每人一张白纸,剪刀,胶棒。
五、教学过程1. 实践情景引入利用PPT展示一组实际生活中的问题,如计算面积、体积等,引导学生发现二次根式的存在。
2. 新课导入(1)引导学生回顾平方根的概念,为新课的学习打下基础。
(2)引入二次根式的定义,讲解二次根式的性质。
3. 例题讲解(1)讲解如何简化二次根式。
(2)讲解二次根式的加减运算。
4. 随堂练习出示几道简化二次根式和二次根式加减运算的题目,让学生当堂完成,并及时讲解。
5. 小结六、板书设计1. 二次根式的定义2. 二次根式的性质3. 二次根式的加减运算4. 例题解析5. 随堂练习七、作业设计1. 作业题目√12,√27,√48√3 + √5,2√6 + 3√22. 答案(1)√12 = 2√3,√27 = 3√3,√48 = 4√3(2)√3 + √5 = √15,2√6 + 3√2 = √24 + √18 =2√6 + 3√2八、课后反思及拓展延伸1. 反思:本节课学生对二次根式的定义、性质和运算掌握情况,对教学难点和重点的讲解是否到位。
2. 拓展延伸:研究二次根式的乘除运算,以及在实际问题中的应用。
重点和难点解析需要重点关注的细节包括:1. 实践情景引入的设计;2. 二次根式性质的理解与应用;3. 例题讲解的深度和广度;4. 随堂练习的选题和讲解;5. 作业设计的针对性和答案的准确性;6. 课后反思的内容及拓展延伸的方向。
二次根式的有关概念及性质一、二次根式的有关概念:1.二次根式:式子(a≥0)叫做二次根式。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。
如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5,都是最简二次根式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
如, , 就是同类二次根式,因为=2,=3,它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
如与,a+与a-,-与+,互为有理化因式。
二、二次根式的性质:1.(a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即=·(a≥0,b≥0)。
5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=(a≥0,b>0)。
三、例题:例1.x为何值时,下列各式在实数X围内才有意义:(1)(2)(3)(4)+(5)(6)+分析:这是一组考察二次根式基本概念的问题,要弄清每一个数学表达式的含义,根据分式和根式成立的条件去解,即要考虑到分式的分母不能为0并且偶次根号下被开方数要大于或等于零。
解:(1)∵6-x≥0,∴x≤6时原式有意义。
(2)∵x2≥0, ∴x2+3>0, ∴x取任意实数原式都有意义。
(3)∵∴∴当x<3且x≠-3时,原式有意义。
(4)∵∴∴当-≤x<时,原式有意义。
(5)∵∴∴当x≥0且x≠1时,原式有意义。
(6)∵∴∴x=2∴当x=2时,原式有意义。