第七章 遥感图像的几何处理
- 格式:pdf
- 大小:473.43 KB
- 文档页数:35
如何进行遥感图像的几何校正与分类处理遥感图像是通过人造卫星、航空器或遥感器获取的地球表面的图像信息。
在进行遥感图像的处理和分析时,几何校正和分类处理是其中重要的步骤。
本文将重点探讨如何进行遥感图像的几何校正和分类处理,并介绍相关的方法和技术。
一、遥感图像的几何校正遥感图像的几何校正是指将图像中的像素点与地球表面上真实位置进行对应,以消除因成像过程中的非完美性而引入的误差。
几何校正的目的是提高图像的空间分辨率和地理位置精度,从而能够更准确地用于地表特征的分析和监测。
1. 预处理在进行几何校正之前,需要先对遥感图像进行预处理,包括去除大气影响、辐射校正和减噪等。
这些预处理步骤有助于提高图像的质量和准确性。
2. 控制点的选择几何校正过程中需要选择一些已知地理位置的控制点,用于图像与地理坐标系统的对应。
这些控制点可以是地面标志物、地理信息系统(GIS)数据或其他已知位置的遥感图像。
控制点的选择应均匀分布在图像中,并要尽量选择在不同地貌和地物类型上的点,以提高校正的准确性。
3. 变换模型的选择几何校正过程中需要选择适合图像特性和误差来源的变换模型。
常用的变换模型包括线性变换模型、多项式模型和地面控制点法等。
选择合适的变换模型可以提高校正的准确性和效率。
4. 校正方法和工具进行几何校正时,可以使用遥感软件如ENVI、ERDAS等提供的功能和工具。
这些软件提供了多种校正方法和算法,如影像配准、几何校正、快速校正等。
根据具体需求和图像特性选择合适的校正方法和工具,并进行参数设置和调整。
二、遥感图像的分类处理遥感图像的分类处理是指将图像中的像素按照其所代表的地物类型进行分类和划分。
分类处理的目的是将图像中的信息有效地提取出来,并用于地表特征的研究、资源调查和环境监测等。
1. 数据预处理在进行分类处理之前,需要对遥感图像进行数据预处理,包括辐射校正、几何校正、噪声抑制等。
这些预处理步骤可以提高分类的准确性和可靠性。
遥感图像处理—⼏何校正 本节将从原理和代码两个⽅⾯讲解遥感图像的⼏何校正。
原理 ⾸先介绍⼏何校正的概念:在遥感成像过程中,传感器⽣成的图像像元相对于地⾯⽬标物的实际位置发⽣了挤压、扭曲、拉伸和偏移等问题,这⼀现象叫做⼏何畸变。
⼏何畸变会给遥感图像的定量分析、变化检测、图像融合、地图测量或更新等处理带来的很⼤误差,所以需要针对图像的⼏何畸变进⾏校正,即⼏何校正。
⼏何校正分为⼏何粗校正和⼏何精校正。
粗校正是利⽤空间位置变化关系,采⽤计算公式和辅助参数进⾏的校正,叫做系统⼏何校正;精校正是在此基础上,使图像的⼏何位置符合某种地理坐标系统,与地图配准,调整亮度值,即利⽤地⾯控制点(GCP)做的⼏何精校正。
⼏何校正步骤:1.空间位置的变换(像元坐标)2.像元灰度值的重新计算,即重采样。
1. 坐标变换 坐标变换分为直接法和间接法。
1)直接法:从原始图像阵列出发,依次计算每个像元在输出图像中的坐标。
直接法输出的像元值⼤⼩不会发⽣变化,但输出图像中的像元分布不均匀。
2)间接法:从输出图像阵列出发,依次计算每个像元在原始图像中的位置,然后计算原始图像在该位置的像元值,再将计算的像元值赋予输出图像像元。
此⽅法保证校正后的图像的像元在空间上均匀分布,但需要进⾏灰度重采样。
该⽅法是最常⽤的⼏何校正⽅法。
由上图可见,直接法直接以原始图像的坐标为基准点,坐标偏移到校正后的图像,坐标的位置有很多出现在了像元的中间位置,所以直接输出像元值⼤⼩导致像元分布不均匀。
⽽对于间接法。
以输出图像的坐标为基准点,已经定义在了格点的位置上,此时反算出该点在原始图像上对应的图像坐标,坐标多数落在像元的中间位置。
这⾥采⽤最邻近法、双线性内插和三次卷积法来计算该点的灰度值,达成重采样的⽬的。
2. 重采样 图像数据经过坐标变换之后,像元中⼼的位置发⽣改变,其在原始图像的位置不⼀定是整数⾏\列,需要根据输出图像各像元在原始图像中对应的位置,对原始图像重采样,建⽴新的栅格矩阵。
图像几何校正遥感图像的几何纠正是指消除影像中的几何形变,产生一幅符合某种地图投影或图形表达要求的新影像。
一般常见的几何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。
遥感影像中需要改正的几何形变主要来自相机系统误差、地形起伏、地球曲率以及大气折射等。
几何纠正包括两个核心环节:一是像素坐标的变换,即将影像坐标转变为地图或地面坐标;二是对坐标变换后的像素亮度值进行重采样。
一、影像到影像的几何纠正1、打开并显示图像文件在ENVI主菜单栏中,选择File →Open Image F ile,打开参考影像(这里以SPOT图像为例)和需校正影像(这里以TM图像为例)。
它们将分别显示在Display窗口,如图2.12所示。
图2.12 待纠正影像和参考影像显示图2、启动几何纠正模块(1)在ENVI主菜单中,选择Map→Registration→Select GCPs:Image to Image,弹出Image to Image Registration几何纠正模块对话框。
(2)选择显示参考影像(SPOT文件)的Display为基准图像的(Base Image),显示需校正影像(TM文件)的Display为待纠正图像(Warp Image)(如图2.13所示)。
(3)点击OK按钮,弹出Ground Control Point Selection对话框,进行地面控制点的采集,如图2.14所示。
图2.14 地面控制点选择对话框图2.13 选择基准影像与待纠正影像3、采集地面控制点在图像几何纠正过程中,采集地面控制点是一项重要和繁重的工作,直接影响最后的纠正结果,在实际操作中要特别认真和具有耐心。
(1)在Ground Control Point Selection对话框中,选择Options→ Set Point Colors,设置或修改GCP在可用和不可用状态的颜色。
(2)在两个Display中移动方框位置,寻找明显的地物特征点作为输入GCP。
遥感图像的几何校正原理遥感图像的几何校正原理是指通过对遥感图像进行几何变换,将图像投影到地球表面上的正确位置,以确保图像的几何特征和空间位置的精确性。
遥感图像的几何校正原理是遥感技术中极为重要的一个环节,它涉及到传感器投影模型的建立以及图像的几何校正方法和参数计算等多个方面。
遥感图像的几何校正原理主要包括以下几个方面:1. 传感器的几何投影模型:遥感图像是通过传感器获取到的,而传感器的几何投影模型是校正的基础。
传感器的几何投影模型是描述传感器观测到的像元在地面坐标系中的位置的数学模型,通常包括摄影几何模型和几何投影模型。
摄影几何模型主要用于航片和卫星图像的几何定位,几何投影模型主要用于平面影像和正射影像的几何定位。
根据传感器的类型和几何特性,选择合适的几何投影模型进行校正。
2. 地面控制点的选择:地面控制点是指已知准确地理坐标的地物特征点,通过对图像与地面控制点的匹配,可以确定图像与地面坐标系之间的几何关系。
地面控制点的选择应具有代表性和充分的空间分布,以保证校正的几何精度。
常用的地面控制点包括地面标志物、地物边界等。
3. 图像配准和校正:图像配准是指将图像与地面控制点进行匹配,确定图像在地面坐标系中的位置。
图像校正是通过几何变换将图像投影到正确位置,保证图像的几何特征和空间位置的准确性。
常用的图像校正方法包括多项式变换、分段线性变换和二次变换等。
多项式变换是基于一阶、二阶或高阶多项式函数进行校正的方法,它可以实现图像的平移、旋转、缩放和错切等变换。
分段线性变换是将图像分成若干个区域,然后在每个区域内进行线性变换。
二次变换是将图像分成若干个二次曲面,然后在每个二次曲面内进行变换。
4. 校正参数的计算:校正参数是指用于实现图像校正的参数,一般包括平移、旋转、缩放和错切等参数。
校正参数的计算是校正过程中的关键一步,一般通过最小二乘法、迭代法和控制点测量法等方法来求解。
最小二乘法是一种常用的数学优化方法,通过最小化图像与控制点之间的误差,求解校正参数。
遥感图像的几何校正遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的影响,造成图像相对于地面目标发生几何畸变,这种畸变表现为像元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等,而我们通常得到的遥感影像通常都存在几何畸变,所以就需要我们针对几何畸变进行的误差校正,而这种校正就叫几何校正。
几何校正的校正原理建立图像坐标和地面坐标之间的数学关系,即输入图像和输出图像间的坐标转换关系,通过计算机对离散结构的数字图像中的每一个像元逐个进行校正处理。
今天我会使用ENVI4.2为大家演示两种几何校正,图象对地图的校正、图象对图象的校正。
1、图象对地图的校正:适用于地形示意图及野外GPS采点首先,打开ENVI长条菜单栏Map / Registration / image to map,选择投影方式和像元大小注:选点须准确,最好在四倍放大时参照周围地物尽量准确定位,然后将其放大至20倍甚至更多倍数,进一步确定。
步骤4:加完足够多的点后,达到要求精度,Option / Warp file(控制点较均匀分布于全图,18个点以上,RMS Error一般应达到一个像元以内的精度)步骤5:输入待校正的图象,可以选择子集,点击OK,输出保存即可保存控制点文件:控制点对话框File—Save GCPs to ASCII,见下图。
如需再次使用该点文件,则通过前面所说步骤,打开控制点对话框,点击Restore GCPs from ASCII即可。
2、图象对图象的校正:步骤1:同时展示两幅图象,选择主菜单栏Map / Registration / image to image,选择Base image和Warp image图象所在在窗口,Base image:有地理座标的图像。
Warp image:待校正图像步骤2:设置点的颜色步骤3:在base image中选择控制点,在warp image中选择同一控制点,精确定位,Add point步骤4:加完足够多的点后,达到要求精度,Option / Warp file其余步骤同前图象对地图的校正。