第五讲(1)——遥感图像几何处理
- 格式:ppt
- 大小:5.84 MB
- 文档页数:33
1.几何校正:几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,同时也是将图像投影到平面上,使其符合地图投影系统的过程。
2.图像镶嵌:指在一定的数学基础控制下,把多景相邻遥感影像拼接成一个大范围、无缝的图像的过程。
3.图像裁剪:图像裁剪的目的是将研究之外的区域去除。
常用方法是按照行政区划边界或自然区划边界进行图像裁剪。
在基础数据生产中,还经常要进行标准分幅裁剪。
按照ENVI 的图像裁剪过程,可分为规则裁剪和不规则裁剪。
4.图像分类:遥感图像分类也称为遥感图像计算机信息提取技术,是通过模式识别理论,分析图像中反映同类地物的光谱、空间相似性和异类地物的差异,进而将遥感图像自动分成若干地物类别。
5.正射校正:正射校正是对图像空间和几何畸变进行校正生成多中心投影平面正射图像的处理过程。
6.面向对象图像分类技术:是集合邻近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。
7.DEM:数字高程模型是用一组有序数值阵列形式表示地面高程的一种实体地面模型。
8.立体像对:从两个不同位置对同一地区所摄取的一对相片。
9.遥感动态监测:从不同时间或在不同条件获取同一地区的遥感图像中,识别和量化地表变化的类型、空间分布情况和变化量,这一过程就是遥感动态监测过程。
10.高光谱分辨率遥感:是用很窄而连续的波谱通道对地物持续遥感成像的技术。
在可见光到短波红外波段,其波谱分辨率高达纳米数量级,通常具有波段多的特点,波谱通道多达数十甚至数百个,而且各波谱通道间往往是连续的,因此高光谱遥感又通常被称为"成像波谱遥感"。
11.端元波谱:端元波谱作为高光谱分类、地物识别和混合像元分解等过程中的参考波谱,与监督分类中的分类样本具有类似的作用,直接影响波谱识别与混合像元分解结果的精度。
12.可视域分析:可视域分析工具利用DEM数据,可以从一个或多个观察源来确定可见的地表范围,观测源可以是一个单点,线或多边形13.三维可视化:ENVI的三维可视化功能可以将DEM数据以网格结构、规则格网或点的形式显示出来或者将一幅图像叠加到DEM数据上。
如何进行遥感图像的几何校正与分类处理遥感图像是通过人造卫星、航空器或遥感器获取的地球表面的图像信息。
在进行遥感图像的处理和分析时,几何校正和分类处理是其中重要的步骤。
本文将重点探讨如何进行遥感图像的几何校正和分类处理,并介绍相关的方法和技术。
一、遥感图像的几何校正遥感图像的几何校正是指将图像中的像素点与地球表面上真实位置进行对应,以消除因成像过程中的非完美性而引入的误差。
几何校正的目的是提高图像的空间分辨率和地理位置精度,从而能够更准确地用于地表特征的分析和监测。
1. 预处理在进行几何校正之前,需要先对遥感图像进行预处理,包括去除大气影响、辐射校正和减噪等。
这些预处理步骤有助于提高图像的质量和准确性。
2. 控制点的选择几何校正过程中需要选择一些已知地理位置的控制点,用于图像与地理坐标系统的对应。
这些控制点可以是地面标志物、地理信息系统(GIS)数据或其他已知位置的遥感图像。
控制点的选择应均匀分布在图像中,并要尽量选择在不同地貌和地物类型上的点,以提高校正的准确性。
3. 变换模型的选择几何校正过程中需要选择适合图像特性和误差来源的变换模型。
常用的变换模型包括线性变换模型、多项式模型和地面控制点法等。
选择合适的变换模型可以提高校正的准确性和效率。
4. 校正方法和工具进行几何校正时,可以使用遥感软件如ENVI、ERDAS等提供的功能和工具。
这些软件提供了多种校正方法和算法,如影像配准、几何校正、快速校正等。
根据具体需求和图像特性选择合适的校正方法和工具,并进行参数设置和调整。
二、遥感图像的分类处理遥感图像的分类处理是指将图像中的像素按照其所代表的地物类型进行分类和划分。
分类处理的目的是将图像中的信息有效地提取出来,并用于地表特征的研究、资源调查和环境监测等。
1. 数据预处理在进行分类处理之前,需要对遥感图像进行数据预处理,包括辐射校正、几何校正、噪声抑制等。
这些预处理步骤可以提高分类的准确性和可靠性。
遥感图像处理1. 简介遥感图像处理是指利用遥感技术获取的卫星或无人机等遥感图像数据进行处理和分析的过程。
遥感图像处理可以应用于多个领域,包括地理信息系统(GIS)、环境监测、农业、城市规划等。
本文将介绍遥感图像处理的基本概念、常用方法和应用案例。
2. 遥感图像处理的基本概念遥感图像处理涉及多个概念和技术,以下是一些常用的基本概念:2.1 遥感图像遥感图像是通过遥感设备获取的图像数据,可以是卫星图像、航空摄影图像或无人机图像等。
遥感图像通常包含多个波段,每个波段代表不同的光谱信息。
2.2 遥感图像预处理遥感图像预处理是指对原始遥感图像数据进行校正、矫正和增强的过程。
预处理的目的是提高图像质量、减少噪声和伪影,并使得图像更适合进行后续处理和分析。
2.3 遥感图像分类遥感图像分类是指将遥感图像根据像素的特征或属性进行划分和分类的过程。
常见的遥感图像分类方法包括基于统计学的分类、基于机器学习的分类和基于深度学习的分类。
2.4 遥感图像变化检测遥感图像变化检测是指对多个时间点的遥感图像进行比较,以检测地物、景观或环境发生的变化。
遥感图像变化检测可以用于监测自然灾害、环境变化等。
2.5 遥感图像分析遥感图像分析是指对遥感图像进行解译和分析,提取图像中的有用信息和特征。
遥感图像分析可以用于土地利用/覆盖分类、植被指数计算等应用。
3. 遥感图像处理的常用方法遥感图像处理常用的方法包括图像增强、图像配准、图像融合和目标检测等。
3.1 图像增强图像增强是指通过对图像进行滤波、对比度拉伸、直方图均衡化等处理,以增强图像的可视化效果和信息提取能力。
常用的图像增强方法包括直方图均衡化、滤波(如中值滤波、高斯滤波)和锐化等。
3.2 图像配准图像配准是指将两幅或多幅遥感图像在坐标系、旋转、尺度和形变等方面进行校正和匹配的过程。
常用的图像配准方法包括特征点匹配、地物匹配和基于控制点的配准方法。
3.3 图像融合图像融合是指将多幅具有不同光谱或分辨率的遥感图像融合成一幅多光谱和高分辨率的遥感图像。
遥感图像的几何校正原理遥感图像的几何校正原理是指通过对遥感图像进行几何变换,将图像投影到地球表面上的正确位置,以确保图像的几何特征和空间位置的精确性。
遥感图像的几何校正原理是遥感技术中极为重要的一个环节,它涉及到传感器投影模型的建立以及图像的几何校正方法和参数计算等多个方面。
遥感图像的几何校正原理主要包括以下几个方面:1. 传感器的几何投影模型:遥感图像是通过传感器获取到的,而传感器的几何投影模型是校正的基础。
传感器的几何投影模型是描述传感器观测到的像元在地面坐标系中的位置的数学模型,通常包括摄影几何模型和几何投影模型。
摄影几何模型主要用于航片和卫星图像的几何定位,几何投影模型主要用于平面影像和正射影像的几何定位。
根据传感器的类型和几何特性,选择合适的几何投影模型进行校正。
2. 地面控制点的选择:地面控制点是指已知准确地理坐标的地物特征点,通过对图像与地面控制点的匹配,可以确定图像与地面坐标系之间的几何关系。
地面控制点的选择应具有代表性和充分的空间分布,以保证校正的几何精度。
常用的地面控制点包括地面标志物、地物边界等。
3. 图像配准和校正:图像配准是指将图像与地面控制点进行匹配,确定图像在地面坐标系中的位置。
图像校正是通过几何变换将图像投影到正确位置,保证图像的几何特征和空间位置的准确性。
常用的图像校正方法包括多项式变换、分段线性变换和二次变换等。
多项式变换是基于一阶、二阶或高阶多项式函数进行校正的方法,它可以实现图像的平移、旋转、缩放和错切等变换。
分段线性变换是将图像分成若干个区域,然后在每个区域内进行线性变换。
二次变换是将图像分成若干个二次曲面,然后在每个二次曲面内进行变换。
4. 校正参数的计算:校正参数是指用于实现图像校正的参数,一般包括平移、旋转、缩放和错切等参数。
校正参数的计算是校正过程中的关键一步,一般通过最小二乘法、迭代法和控制点测量法等方法来求解。
最小二乘法是一种常用的数学优化方法,通过最小化图像与控制点之间的误差,求解校正参数。
遥感图像的几何校正原理遥感图像的几何校正是指通过对图像进行空间几何变换,将其投影到地球表面,使得图像中的每一点对应到地球表面上的一个准确位置。
这样做的目的是为了消除图像中由于遥感器在获取图像时的姿态、高度、地球自转等因素造成的图像畸变,并且使得图像能够与地理信息系统中的地图数据进行精确叠加,从而实现对地理空间信息的准确提取和分析。
在遥感图像处理中,几何校正是非常重要的一环,对于后续的遥感信息提取、地图制图和空间分析等应用具有重要的意义。
遥感图像的几何校正原理主要包括以下几个方面:1. 姿态校正:遥感器在获取图像时往往会受到外部因素的影响,导致姿态不稳定,从而引起图像中的位置畸变。
因此,需要对图像进行姿态校正,使得图像中的每一个像素能够按照准确的空间位置进行定位。
姿态校正的主要方法包括使用姿态角信息进行校正、使用GPS/惯导等辅助信息进行姿态测量以及使用地面控制点进行姿态精确校正。
2. 像元定位:在遥感图像中,像元是指图像中的一个最小单元,通常对应于地面上的一个小区域。
在进行几何校正时,需要将图像中的像元与地球表面上的实际位置进行对应,这就需要确定每个像元的准确位置,即像元的定位。
像元定位的主要方法包括使用地面控制点进行像元定位、通过建立像元坐标系系统进行像元定位以及通过地形起伏对像元进行补偿。
3. 系统误差校正:在遥感图像获取过程中,会受到一些系统误差的影响,例如大气、地形或者地面表面的变化等因素会导致图像中的位置畸变。
因此,需要进行系统误差校正,以消除这些系统误差对图像的影响,从而提高图像的精度和准确度。
系统误差校正的主要方法包括对图像进行大气校正、进行地形效应校正以及通过地面控制点进行系统误差校正。
4. 投影变换:在进行几何校正时,需要对图像进行投影变换,将其投影到地球表面上的准确位置。
投影变换的最常用方法是采用地图投影方法,将图像投影到地图数据的坐标系上,从而实现图像与地图数据的叠加和精确对应。
第5章遥感图像的几何处理§5.1 遥感传感器的构像方程遥感图像的构像方程是指地物点在图像上的图像坐标(x,y)和其在地面对应点的大地坐标(X、Y、Z)之间的数学关系。
根据摄影测量原理,这两个对应点和传感器成像中心成共线关系,可以用共线方程来表示。
这个数学关系是对任何类型传感器成像进行几何纠正和对某些参量进行误差分析的基础。
其中主要的坐标系有:1.传感器坐标系S-UVW,S为传感器投影中心,作为传感器坐标系的坐标原点,U轴的方向为遥感平台的飞行方向,V轴垂直于U,W轴则垂直于UV平面,该坐标系描述了像点在空间的位置。
2.地面坐标系O-XYZ,主要采用地心坐标系统。
当传感器对地成像时,Z轴与原点处的天顶方向一致,XY平面垂直于Z轴。
3.图像(像点)坐标系o-xyf,(x,y)为像点在图像上的平面坐标,f为传感器成像时的等效焦距,其方向与S-UVW方向一致。
上述坐标系统都是三维空间坐标系,而最基本的坐标系统是图像坐标系统o-xy 和地图坐标系统Om-XmYm,它们是二维的平面坐标系统,是遥感图像几何处理的出发点和归宿。
在地面坐标系与传感器坐标系之间建立的转换关系称为通用构像方程。
设地面点P在地面坐标系中的坐标为(X,Y,Z)P,P在传感器坐标系中的坐标为(U,V,W)P,传感器投影中心S在地面坐标系中的坐标为(X,Y,Z)s,传感器的姿态角为,则通用构像方程为:(5-1)式中:A为传感器坐标系相对地面坐标系的旋转矩阵,是传感器姿态角5.1.2 中心投影构像方程的函数。
根据中心投影特点,图象坐标(x,y,-f)和传感器系统坐标(U,V,W)P之间由如下关系:(5-2)λp为成像比例尺分母,f为摄影机主距,中心投影像片坐标与地面点大地坐标的关系即构像方程为:(5-3)其中:具体表达式为:由像点坐标可以解算大地(平面)坐标,称为正算公式:(5-4)当已知大地坐标可以反求象点坐标,称为反算公式,有:(5-5)公式5-5即为描述像点、传感器投影中心和地物点之间关系的共线方程。
如何进行遥感图像的几何校正与纠正遥感图像是通过无人机、卫星等远距离设备获取的地球表面的影像数据。
这些图像在应用于地理信息系统(GIS)、自然资源管理、城市规划等领域时,需要进行几何校正与纠正。
本文将介绍什么是遥感图像的几何校正与纠正,以及如何进行这一过程。
一、什么是遥感图像的几何校正与纠正遥感图像的几何校正与纠正是指将采集到的图像数据与真实地理空间进行对应,消除由于图像采集时摄像设备、地球曲率等因素引起的形变、偏移等问题,使图像具备准确的地理位置信息。
这项工作是遥感技术应用的重要环节,对于后续的数据分析和信息提取至关重要。
二、遥感图像的几何校正与纠正方法1. 外方位元素法外方位元素法是利用航片或图像外方位元素(像空间坐标与地面坐标之间的变换参数)进行几何校正与纠正的方法。
在这种方法中,需要准确确定图像的摄影中心、摄影距离以及摄影方位角等相关参数,通过计算来修正图像的几何形变。
外方位元素法准确性较高,适用于相对高精度的项目。
2. 控制点法控制点法是通过在图像上选择一系列已知地理位置的控制点,在地面实地测量其坐标,然后通过像点与地理坐标的对应关系,进行几何校正与纠正的方法。
该方法的关键在于控制点的选择与测量精度,控制点越多、分布更均匀,纠正效果越好。
3. 数字高程模型(DEM)法数字高程模型法是通过使用数字高程模型数据,将遥感图像与地面实际高程进行对照校正的方法。
通过图像与DEM之间的高差计算,对图像进行几何校正与纠正。
这种方法适用于大范围的地形起伏、高程变化较大的区域。
三、遥感图像的几何校正与纠正注意事项1. 数据预处理在进行几何校正与纠正之前,需要对采集到的遥感图像进行预处理。
预处理包括影像增强、去噪、边缘检测等步骤,以提高图像质量和准确性。
2. 参考数据选择在进行校正与纠正时,需要选择适当的参考数据,以确保纠正结果的准确性。
参考数据可以包括航片、已经准确校正的图像、已知地理坐标点等。
3. 校正模型选择校正模型选择是几何校正与纠正的关键步骤之一。