遥感图像的几何校正(2013下)较难
- 格式:ppt
- 大小:4.59 MB
- 文档页数:48
何精校正。
几何粗校正是针对造成畸变的原因进行的校正,我们得到的卫星遥感数据一般都是经过几何粗校正处理的。
几何精校正是利用地面控制点进行的几何校正,它是用一种数学模型来接近描述遥感图像的几何畸变过程,并利用标准图像和畸变的遥感图像之间的一些对应点(地面控制点数据)确定几个几何畸变模型,然后利用此模型进行几何畸变的校正,这种校正不考虑畸变的具体形成原因,而只考虑如何让利用畸变模型来校正遥感图像由于几何校正后的影像可以用于提取精却的距离、多边形面积以及方向等信息,同时可以建立遥感提取的信息与地理信息系统(GIS)或空间决策支持系统(SDSS)中其他专题信息之间的联系,所以对遥感数据进行预处理,消除几何畸变是十分重要的。
二、研究方法遥感影像一般存在内部误差和外部误差,识别内外部误差源以及他们是系统误差还是随机误差非常重要。
一般来说,内部误差引起的畸变通常是系统性的、可预测的,外部误差引起的畸变通常是随机的。
系统误差通常比较容易改正,方法简单,而随机误差相对复杂,所以本文主要是讨论随机误差的几何校正。
1,内部误差的产生原因及消除方法内部误差引起的几何畸变主要包括:地球自转引起的偏差、扫描系统引起的标称地面分辨率变化、扫描系统一维高程投影差、扫描系统切向比例畸变。
对于地球自转引起的偏差,通常进行偏差校正,偏差校正就是将影像像幅中的像元向西做系统的位移调整,改正卫星传感器系统的角速度和地表线速度的相互作用。
扫描系统引起的标称地面分辨率变化主要是指亚轨道多光谱扫描系统,由于距星下点越远,地面分辨率就越低,所以大多数科学家主要使用横向扫描数据·幅中央70%的区域(星下点左右各35%)。
在星下点曝光瞬间,垂直航摄相片仅有一个位于飞行器正下方的像主点,这种透视几何关系使得所有高于周围地面的目标地物会出现从像主点向外放射状分布的不同程度的平面维系。
这就产生了扫描系统一维高程投影差。
由于扫描镜匀速旋转,传感器扫描星下点的地理距离要比影像边缘区域的短,这就使垂直于轨道方向的一个轴发生了压缩。
实验三、遥感图像的几何校正与裁剪实验内容:1.图像分幅裁剪(Subset Image)2.图像几何校正(Geometric Correction)3.图像拼接处理(Mosaic Imgaes)4.生成三维地形表面(3D Surfacing)1.图像分幅裁剪在实际工作中,经常需要根据研究工作范围对图像进行分幅裁剪,按照ERDAS IMAGINE 8.4实现图像分幅裁剪的过程,可以将图像分幅裁剪为两类型:规则分幅裁剪,不规则分幅裁剪。
1.1规则分幅裁剪(以c:\Program File\ IMAGINE 8.4\examples\lanier.img为例)规则分幅裁剪是指裁剪图像的范围是一个矩形,通过左上角和右上角两点的坐标可以确定图像的裁剪位置,过程如下:方法一:→ERDAS IMAGINE 8.4 图标面板菜单条:Main→Data Preparation(或单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标)→打开Data Preparation 对话框→单击Subset Image按钮,打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→裁剪范围(Subset Definition):ULX、ULY、LRX、LRY(注:ULX,ULY是指左上角的坐标,LRX,LRY是指右上角的坐标,缺省状态为整个图像范围)→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→OK(关闭Subset对话框,执行图像裁剪)方法二:→ERDAS IMAGINE 8.4图标面板菜单条:Main→Start IMAGINE Viewer(或单击RDAS IMAGINE 8.4图标面板工具条“Viewer”图标)→打开一个二维视窗→单击视窗工具条最左端的“打开文件”图标→打开Select Layer To Add对话框在Select Layer To Add对话框完成以下设置:→Look In:examples→File Name:lanier.img→Files of type:IMAGINE Image→双击OK按钮→在二维视窗中打开lanier.img文件→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit →输出文件类型(Output Layer Type):Continuous→输出统计忽略零值:Ignore Zero In Output Stats→输出像元波段(Select Layers):2,3,4→单击From Inquire Box按钮→打开Invalid Coordinate Type对话框→单击Continue→在显示图像文件lanier.img视窗中单击工具条的“+”按钮,打开Inquire Cursor 对话框,在视窗中移动十字光标,确定裁剪范围左上角和右下角,读取其坐标分别填入Subset Image对话框的ULX,ULY中和LRX,LRY中→单击OK按钮(关闭Subset对话框,执行图像裁剪)方法三:首先在视窗中打开lanier.img文件→AOI→Tools打开AOI工具面板→单击矩形框确定裁剪范围→File→Save→AOI Layer As→打开Save AOI As对话框,输入文件名:2→单击OK(退出Save AOI As对话框)→单击ERDAS IMAGINE 8.4 图标面板工具条“DataPrep”图标 →打开Data Preparation对话框→单击Subset Image按钮→打开Subset对话框在Subset对话框中需要设置下列参数:→输入文件名(Input File):lanier.img→输出文件名(Output File):lanier_sub.img→坐标类型(Coordinate Type):Map→输出数据类型(Output Data Type):Unsigned 8 Bit→输出文件类型(Output Layer Type):Continuous →输出统计忽略零值:Ignore Zero In Output Stats →输出像元波段(Select Layers):2,3,4→单击AOI按钮→打开Choose AOI对话框→在Choose AOI对话框作如下设置:→AOI Source:File→AOI File:2→单击OK(退出Choose AOI对话框)→单击OK(退出Subset对话框,执行图像裁剪)→单击OK(退出Modeler对话框,完成图像裁剪)1.2不规则分幅裁剪不规则分幅裁剪是指裁剪图像的边界范围是个任意多边形,无法通过左上角和右下角两点的坐标确定图像的裁剪位置,而必须事先生成一个完整的闭合多边形区域,可以是一个AOI多边形,也可以是ArcInfo的一个Polygon Coverage,针对不同的情况采用不同的裁剪过程。
遥感图像处理—⼏何校正 本节将从原理和代码两个⽅⾯讲解遥感图像的⼏何校正。
原理 ⾸先介绍⼏何校正的概念:在遥感成像过程中,传感器⽣成的图像像元相对于地⾯⽬标物的实际位置发⽣了挤压、扭曲、拉伸和偏移等问题,这⼀现象叫做⼏何畸变。
⼏何畸变会给遥感图像的定量分析、变化检测、图像融合、地图测量或更新等处理带来的很⼤误差,所以需要针对图像的⼏何畸变进⾏校正,即⼏何校正。
⼏何校正分为⼏何粗校正和⼏何精校正。
粗校正是利⽤空间位置变化关系,采⽤计算公式和辅助参数进⾏的校正,叫做系统⼏何校正;精校正是在此基础上,使图像的⼏何位置符合某种地理坐标系统,与地图配准,调整亮度值,即利⽤地⾯控制点(GCP)做的⼏何精校正。
⼏何校正步骤:1.空间位置的变换(像元坐标)2.像元灰度值的重新计算,即重采样。
1. 坐标变换 坐标变换分为直接法和间接法。
1)直接法:从原始图像阵列出发,依次计算每个像元在输出图像中的坐标。
直接法输出的像元值⼤⼩不会发⽣变化,但输出图像中的像元分布不均匀。
2)间接法:从输出图像阵列出发,依次计算每个像元在原始图像中的位置,然后计算原始图像在该位置的像元值,再将计算的像元值赋予输出图像像元。
此⽅法保证校正后的图像的像元在空间上均匀分布,但需要进⾏灰度重采样。
该⽅法是最常⽤的⼏何校正⽅法。
由上图可见,直接法直接以原始图像的坐标为基准点,坐标偏移到校正后的图像,坐标的位置有很多出现在了像元的中间位置,所以直接输出像元值⼤⼩导致像元分布不均匀。
⽽对于间接法。
以输出图像的坐标为基准点,已经定义在了格点的位置上,此时反算出该点在原始图像上对应的图像坐标,坐标多数落在像元的中间位置。
这⾥采⽤最邻近法、双线性内插和三次卷积法来计算该点的灰度值,达成重采样的⽬的。
2. 重采样 图像数据经过坐标变换之后,像元中⼼的位置发⽣改变,其在原始图像的位置不⼀定是整数⾏\列,需要根据输出图像各像元在原始图像中对应的位置,对原始图像重采样,建⽴新的栅格矩阵。
实验二遥感图像的几何校正一、目的和要求:通过实验,理解遥感图像几何校正的基本原理和意义,掌握遥感图像几何校正的基本方法和步骤,熟悉ERDAS软件中图像几何校正的操作流程。
二、实验内容在ERDAS软件中,采用二元二次多项式校正模型对遥感图像进行几何精校正。
三、原理和方法1.选取地面控制点地面控制点应在图像上有明显的、清晰的定位识别标志,如道路交叉点、农田边界等;应不随时间而变化;地面控制点应当均匀分布在整幅图像,且有一定的数量保证,至少应超过多项式系数的个数。
2.建立多项式校正模型一般次数越高,校正精度越高,但要求控制点的数量也多,而且计算量较大,因此常用的校正模型为二次多项式,具体可根据实际情况确定。
3.灰度值重采样4.验证校正精度检查校正后的精度,要求误差控制在0.5个像元以内,当误差较大时,调整校正式或控制点。
四、实验步骤1.显示图像文件(Display Image Files)首先,在ERDAS图标面板中点击Viewer图标两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下:ERDAS图标面板菜单条:Session→Title Viewers然后,在Viewer1中打开需要校正的Lantsat图像:tmAtlanta,img在Viewer2中打开作为地理参考的校正过的SPOT图像:panAtlanta,img 2.启动几何校正模块(Geometric Correction Tool)Viewer1菜单条:Raster→ Geometric Correction→打开Set Geometric Model对话框(图1-1)→选择多项式几何校正模型:Polynomial→OK→同时打开Geo Correction Tools对话框(图1-2)和Polynomial Model Properties对话框(图1-3)。
在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数:→定义多项式次方(Polynomial Order):→定义投影参数:(Projection):→Apply→Close→打开GCP Tool Referense Setup 对话框(图1-4)图1-1 Set Geometric Model对话框图1-2 Geo Correction Tools对话框图1-3 Polynomial Properties对话框图1-4 GCP Tool Referense Setup 对话框3.启动控制点工具(Start GCP Tools)图1-5 Viewer Selection Instructions首先,在GCP Tool Referense Setup对话框(图1-4)中选择采点模式:→选择视窗采点模式:Existing Viewer→OK→打开Viewer Selection Instructions指示器(图1-5)→在显示作为地理参考图像的Viewer2中点击左键→打开Reference Map Information 提示框(图1-6);→OK→此时,整个屏幕进入控制点采点状态(图1-7)。
多项式几何校正原理:(1) 图像坐标的空间变换有几何畸变的遥感图像与没有几何畸变的遥感图像,其对应像元的坐标是不一样的,如图1右边为无几何畸变的图像像元分布图,像元是均匀且等距分布;左边为有几何畸变的遥感图像像元分布图,像元是非均匀且不等距的分布。
为在有几何畸变的图像上获取无几何畸变的像元坐标,需要进行两图像坐标系统的空间转换。
图1 图像几何校正示意图在数学方法上,对于不同二维笛卡儿坐标系统间的空间转换,通常采用的是二元n次多项式,表达式如下:其中x, y为变换前图像坐标, u, v为变换后图像坐标, aij , bij为多项式系数, n = 1, 2, 3, ⋯。
二元n次多项式将不同坐标系统下的对应点坐标联系起来, ( x, y )和( u, v )分别对应不同坐标系统中的像元坐标。
这是一种多项式数字模拟坐标变换的方法,一旦有了该多项式,就可以从一个坐标系统推算出另一个坐标系统中的对应点坐标。
如何获取和建立二元n次多项式,即二元n次多项式系数中a和b的求解,是几何校正成败的关键。
数学上有一套完善的计算方法,核心是通过已知若干存在于不同图像上的同名点坐标,建立求解n次多项式系数的方程组,采用最小二乘法,得出二元n次多项式系数。
不同的二元n次多项式,反映了几何畸变的遥感图像与无几何畸变的遥感图像间的像元坐标的对应关系, 其中哪种多项式是最佳的空间变换模拟式,能达到图像间坐标的完全配准,是需要考虑和分析的。
在二元n次多项式数字模拟中,从提高几何校正精度的角度考虑,需要兼顾的因素主要有引起几何畸变的原因和产生数学运算误差因素。
归纳起来有三个方面的考虑因素: 一是多项式中n值的选择, n值与几何畸变的复杂程度密切相关。
当n = 1,上述的坐标空间变换成为二元一次多项式,可以进行线性的坐标变换,解决比例尺、中心移动、歪斜等方面的几何畸变, 实用于第2级别以上的遥感数据。
n值的不同选择,可以得到不同的空间变换式,当n≥2,上述的坐标空间变换成为二元非线性多项式,解决遥感器偏航、俯仰、滚动等因素引起的几何畸变。
遥感图像解译中的几何纠正方法随着遥感技术的不断发展,遥感图像的获取和应用越来越普遍。
然而,由于拍摄角度、地面形态等因素的影响,遥感图像存在几何形变的问题。
为了解决这个问题,人们提出了许多几何纠正方法。
本文将介绍几种常见的遥感图像几何纠正方法,并探讨它们的优劣势。
一、多项式拟合法多项式拟合法是一种常用的几何纠正方法。
它通过将原始图像中的像素位置与现实世界中的地理位置进行对应,建立像素坐标与地理坐标之间的映射关系。
随后,利用多项式拟合的方法,根据已知的像素位置和地理位置对应关系,推导出一个几何变换模型,从而对图像进行几何纠正。
多项式拟合法的优点是简单易行,适用于各种图像,并且能够有效地减小几何变形。
然而,它也存在一定的局限性,例如对于大范围的图像,多项式拟合法在极端情况下可能会引入较大的误差。
二、控制点法控制点法是一种基于已知控制点坐标的几何纠正方法。
首先,需要在原始图像和现实世界中选取一些已知位置的控制点。
然后,根据这些已知控制点的像素坐标和地理坐标,建立起坐标之间的对应关系。
最后,通过将图像中的像素位置与地理位置对应起来,根据已知控制点的坐标对图像进行几何纠正。
控制点法的优点是准确性高,适用于各种尺度的图像。
然而,它的缺点是需要大量的已知控制点,并且对于图像中没有控制点的区域,无法进行几何纠正。
三、地形校正法地形校正法是一种考虑地面形态的几何纠正方法。
遥感图像的获取往往会受到地面形态的影响,导致图像中的距离和角度存在失真。
地形校正法通过获取地面高程数据,并将其与遥感图像相结合,对图像进行几何纠正。
地形校正法的优点是能够考虑地面形态,提高几何纠正的精度。
然而,它的缺点是需要获取地面高程数据,成本较高且工作量较大。
同时,在平坦地区或缺乏高程数据的地区,地形校正法可能不能有效实施。
综上所述,遥感图像解译中的几何纠正方法有多种选择。
每种方法都有其独特的优劣势,适用于不同的情况。
在实际应用中,可以根据需求和条件选取合适的几何纠正方法,以提高图像的几何精度和应用效果。
遥感图像几何校正第4讲遥感图像几何校正遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的影响,造成图像相对于地面目标发生几何畸变,这种畸变表现为像元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等,针对几何畸变进行的误差校正就叫几何校正。
几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。
在开始介绍ENVI的几何校正操作之前,首先对ENVI的几何校正几个功能要点做一个说明。
1几何校正方法(1)利用卫星自带地理定位文件进行几何校正对于重返周期短、空间分辨率较低的卫星数据,如A VHRR、MODIS、SeaWiFS等,地面控制点的选择有相当的难度。
这时,可以利用卫星传感器自带的地理定位文件进行几何校正,校正精度主要受地理定位文件的影响。
(2) image to image几何校正通过从两幅图像上选择同名点(或控制点)来配准另外一幅栅格文件,使相同地物出现在校正后的图像相同位置(3)image to map几何校正通过地面控制点对遥感图像几何进行平面化的过程。
(4)image to image 自动图像配准根据像元灰度值或者地物特征自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配置过程。
(5)image registration workflow流程化工具将具有不同坐标系、不同地理位置的图像配准到同一坐标系下,使图像中相同地理位置包含相同的地物。
2控制点选择方式ENVI提供以下选择方式:从栅格图像上选择如果拥有需要校正图像区域的经过校正的影像、地形图等栅格数据,可以从中选择控制点,对应的控制点选择模式为Image to Image。
从矢量数据中选择如果拥有需要校正图像区域的经过校正的矢量数据,可以从中选择控制点,对应的模式为Image to Map。
从文本文件中导入事先已经通过GPS测量、摄影测量或者其他途径获得了控制点坐标数据,保存为以[Map (x,y), Image (x,y)]格式提供的文本文件可以直接导入作为控制点,对应的控制点选择模式为Image to Image 和Image to Map。
遥感图像的几何校正一、实验目的通过实习操作,掌握遥感图像几何校正的基本原理和和方法,理解遥感图像几何校正的意义。
二、实验环境操作系统:Windows Vista软件:Erdas Imagine 8.4三、实验内容ERDAS软件中图像预处理模块下的图像几何校正。
几何校正的必要性:由于遥感平台位置和运动状态的变化、地形起伏、地球表面曲率、大气折射、地球自转等因素的影响,遥感图像在几何位置上会发生变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变,称为遥感图像的几何畸变。
产生畸变的图像给定量分析及位置配准造成困难,因此在遥感数据接收后需要对图像进行几何校正以使其能够反映出接近真实的地理状况。
几何校正的原理:遥感影像相对于地图投影坐标系统进行配准校正,即要找到遥感影像与地图投影坐标系统之间的数学函数关系,通过这种函数关系可计算出原遥感影像中每个像元在地图投影坐标系统上的位置从而得到校正后的图像。
Erdas软件中提供了7中几何校正的模型,具体如下:表 1 几何校正计算机模型与功能模型功能Affine 图像仿射变换(不做投影变换)Polynomial 多项式变换(同时作投影变换)Reproject 投影变换(转换调用多项式变换)Rubber Sheeting 非线性变换、非均匀变换Camera 航空影像正射校正Landsat Landsat卫星图像正射校正Spot Spot卫星图像正射校正在本次实验中采用的是Polynomial(多项式变换)的模型,通过在遥感影像和参考图像上分别选取相应的控制点,求出二元二次多项式函数:25243210'25243210'yb x b xy b y b x b b y y a x a xy a y a x a a x +++++=+++++=,得到变换后的图像坐标(x ′,y ′)与参考图像坐标的关系,从而对图像进行几何校正。
四、实验步骤运行Erdas Imagine 软件第一步:显示图像文件1) 在Erdas 图标面板中单击Viewer 图标两次,打开两个视窗:Viewer 1和 Viewer 2; 2) 在Viewer 1视窗下打开需要校正的遥感影像wucesourse.img ,在Viewer 2 视窗下打开参考图像wucepoint.img ;第二步:启动几何校正模块(Set Geometric Model )单击Viewer 1视窗菜单栏中的Raster →Geometric Correction →打开Set Geometric Model 对话框(见图1) →选择多项式几何校正模型 Polynomial →OK→打开Geometric Correction Tools 对话框(见图2)和Polynomial Model Properties 对话框(见图3)→在Polynomial Model Properties 对话框中定义多项式次方(Polynomial Order )为2(见图3)→单击Apply →单击Close→打开GCP Tool Reference Setup 对话框(见图4)图1 Set Geometric Model 对话框 图2 Geometric Correction Tools 对话框图 3 Polynomial Model Properties对话框图4 GCP Tool Reference Setup 对话框第三步:启动控制点工具首先在GCP Tool Reference Setup 对话框(图4)中选择采点模式:→选择Existing Viewer→OK→打开Viewer Selection Instructions指示器(见图5)→在参考图像Viewer2中单击左键→打开Reference Map Information 提示框(见图6)→OK→弹出Approximate Statistics 提示框(见图7)→OK→此时,整个屏幕将自动变化为如图8所示的状态,表明控制点工具已启动,进入控制点采点状态图5 Viewer Selection Instructions 指示器图6 Reference Map Information 提示框图7 Approximate Statistics 提示框图8 控制点采点第四步:采集地面控制点1)在Viewer1中移动关联方框的位置,寻找明显的地物特征点,单击Geometric CorrectionTools对话框中的图标,进入控制点选取状态,点击所选择的地物特征点;然后在Viewer2中移动关联方框的位置,寻找对应的地物特征点,同样点击,再单击相应的地物特征点;2)重复以上步骤6次直至6个控制点选择完毕(二次多项式需要6个点来确定);3)单击下方GCP Tool对话框中的图标,在Viewer1中选择第7个点,从而得到RMSError(见图9),从中判断上一步所选控制点的准确性(一般要求RMS Error要小于0.5,若没有达到要求应重新选点或者对所选点进行调整)图9 RMS Error 图10 多项式第五步:计算转换模型在控制点采集过程中,随着控制点采集的完成,转换模型就自动生成,单击Geometric Correction Tools对话框中的图标→Transformation可以查阅多项式参数(见图10)第六步:图像重采样重采样过程是指依据未校正图像的像元值,计算生成一幅校正图像的过程在Geometric Correction Tools对话框中选择图标→在弹出的Resample对话框(见图11)中输入重采样后的图像文件名guangzhou123.img →OK图11→在Viewer中打开guangzhou123.img即可看到几何校正后的图像实验完毕五、实验结果与讨论校正前遥感影像校正后遥感影像参考图像通过以上三幅图像的对比,可以发现校正后的图像相对于校正前的图像房屋、道路等图像信息发生了变化,像元的坐标发生了变化,而其变化后的地物特征更加接近参考图像的地物特征。
如何进行遥感图像的几何校正与纠正遥感图像是通过无人机、卫星等远距离设备获取的地球表面的影像数据。
这些图像在应用于地理信息系统(GIS)、自然资源管理、城市规划等领域时,需要进行几何校正与纠正。
本文将介绍什么是遥感图像的几何校正与纠正,以及如何进行这一过程。
一、什么是遥感图像的几何校正与纠正遥感图像的几何校正与纠正是指将采集到的图像数据与真实地理空间进行对应,消除由于图像采集时摄像设备、地球曲率等因素引起的形变、偏移等问题,使图像具备准确的地理位置信息。
这项工作是遥感技术应用的重要环节,对于后续的数据分析和信息提取至关重要。
二、遥感图像的几何校正与纠正方法1. 外方位元素法外方位元素法是利用航片或图像外方位元素(像空间坐标与地面坐标之间的变换参数)进行几何校正与纠正的方法。
在这种方法中,需要准确确定图像的摄影中心、摄影距离以及摄影方位角等相关参数,通过计算来修正图像的几何形变。
外方位元素法准确性较高,适用于相对高精度的项目。
2. 控制点法控制点法是通过在图像上选择一系列已知地理位置的控制点,在地面实地测量其坐标,然后通过像点与地理坐标的对应关系,进行几何校正与纠正的方法。
该方法的关键在于控制点的选择与测量精度,控制点越多、分布更均匀,纠正效果越好。
3. 数字高程模型(DEM)法数字高程模型法是通过使用数字高程模型数据,将遥感图像与地面实际高程进行对照校正的方法。
通过图像与DEM之间的高差计算,对图像进行几何校正与纠正。
这种方法适用于大范围的地形起伏、高程变化较大的区域。
三、遥感图像的几何校正与纠正注意事项1. 数据预处理在进行几何校正与纠正之前,需要对采集到的遥感图像进行预处理。
预处理包括影像增强、去噪、边缘检测等步骤,以提高图像质量和准确性。
2. 参考数据选择在进行校正与纠正时,需要选择适当的参考数据,以确保纠正结果的准确性。
参考数据可以包括航片、已经准确校正的图像、已知地理坐标点等。
3. 校正模型选择校正模型选择是几何校正与纠正的关键步骤之一。