任务2国内外高速铁路安全与防灾系统概述.
- 格式:doc
- 大小:321.50 KB
- 文档页数:8
高速铁路防灾安全监控系统高速铁路防灾安全监控系统文档1. 引言高速铁路是现代交通的重要组成部分,对于国家经济发展和人民生活起到了至关重要的作用。
然而,随着高速铁路的不断发展,其安全问题也越来越突出。
为了保障高速铁路的运行安全,我们需要建立一套高效可靠的监控系统,及时发现和处理各类安全隐患。
本文将详细介绍高速铁路防灾安全监控系统的设计原理和功能。
2. 设计原理高速铁路防灾安全监控系统的设计原理基于数据采集、数据传输与处理、数据分析与决策三个主要环节。
(1) 数据采集:系统依靠各类传感器、摄像头等设备,对高速铁路进行全方位、多角度的监测。
传感器可以监测温度、湿度、震动等物理参数,摄像头可以获取实时的图像信息。
通过这些设备,可以及时获得高速铁路的运行状态,并发现潜在的安全隐患。
(2) 数据传输与处理:采集到的数据需要通过传输设备及时传送到监控中心。
传输过程中需要保证数据的可靠性和实时性,以便在发生紧急情况时能够快速做出应对。
传输完成后,数据将被送至系统的后台,进行进一步的处理和分析。
(3) 数据分析与决策:通过对采集到的数据进行分析,确定当前高速铁路的运行状态,并通过算法进行预测,识别潜在的危险事故。
在分析的过程中,系统将会根据事先制定的安全标准,对数据进行评估和判定。
一旦系统检测到异常情况,将会立即向管理人员发出警报,并及时采取措施,确保人员和财产的安全。
3. 功能实现为了确保高速铁路防灾安全监控系统的效果和功能,我们提出以下几点实现建议:(1) 设备标准化:统一采用国际先进的设备标准,确保不同设备的兼容性和互操作性。
标准化设备的使用和维护更加简单方便,也便于后期的系统扩展。
(2) 网络建设:建立高速铁路专用的网络通信系统,确保数据传输的稳定和安全。
网络系统应包括主干网和支线网,覆盖整个高速铁路的范围。
此外,还应配置备用网络,以提供系统可靠性。
(3) 数据处理:建立高效的数据处理中心,配备强大的计算和存储设施。
高速铁路防灾系统高速铁路防灾安全监控系统作为高速铁路运营调度系统的子系统,在预防灾害对高铁运营的危害方面起着重要的保障作用。
铁路防灾安全监控系统,应能够提供各种自然灾害情报数据,为列车运行控制提供依据;应能够提供各种设备运行状态,以保证列车正常运行;应能够提供有关防灾数据(预警、限速、停运决策信息),为运行计划调整提供依据。
第一章安装防灾系统的必要性第一节安装防灾系统的必要性安全是交通运输方式的先决条件,是高效运输和持续发展之本,是铁路运输的生命线。
高速铁路由于列车高速度、高密度运行,一旦发生事故,后果相当严重。
随着高速铁路的发展,强风、雨雪、泥石流、地震等自然灾害以及异物侵限,时刻威胁着铁路的运输安全。
高速铁路与普速铁路有很大的不同,为了确保动车组列车高速运行,高速铁路安装了很多先进的设备。
高速铁路防灾安全监控系统是保证铁路安全运行的重要基础设施之一,是集工程气象学、空气动力学、统计学及计算机网络等技术于一体的集成系统。
高速铁路由于运行列车(动车组)速度高,风、雨、雪、异物侵限、地震等自然与人为灾害给列车安全带来的影响更加显著,动车组的运行速度较高,当发生自然灾害或异物侵限时,如果动车组司机不能及时的减速或停车,那么发生的事故将是灾难性的、毁灭性的。
为确保行车安全和旅客人身安全,高速铁路设置防灾安全监控系统显得更加必要。
自然灾害事故如图1-1至图1-6所示。
图1-1 风灾事故图1-2 雨灾事故图1-3雪灾事故图1-4地震事故图1-5泥石流事故图图1-6异物侵限事故第二章防灾系统的构成及作用原理第一节防灾系统的构成高速铁路对行车安全保障体系提出了更高的要求。
除了要求保证线路、机车车辆、牵引供电以及通信信号等设备高安全性外,对各种可能发生的灾害,如自然灾害强风、暴雨、大雪、地震,异物侵限,突发性灾害坍方落石、异物侵入限界、非法侵入等,都要实施全面监测,即建立防灾安全监控系统,实施全面、准确、实时的安全监控,预防灾害的突然袭击。
学习指南《高速铁路安全与防灾技术》课程是高速铁道技术专业的职业基础课程,用于全面监测各种可能对安全行车产生危害的自然灾害,通过建立实时监控网络、及时采取预防与防护措施,达到减少灾害损失、最终保证行车安全的目。
通过校企合作形式,达到完善知识体系,深化教学内容的目的,对学生职业能力培养和职业素养养成起着主要的支撑作用。
根据高速铁路、客运专线管理体制的需要,高速铁路防灾安全监控系统的用户主要有三类:一是铁道部、客运专线公司的设施(设备)管理部门和安全管理部门的领导和相关人员,二是运营调度中心及调度所的调度值班人员,三是车站(综合维修基地)的值班人员,本课程就是为培养高速铁路设备管理和安全管理人员、调度人员和电务、工务、车站的值班人员所开设一门专业技能课。
一、课程学习目标培养高速铁道技术相关专业技术人员掌握高速铁路安全与防灾技术的基础知识、工作内容、操作程序、设备调试和故障恢复等能力。
通过在院内高速铁路通信信号实训室、高速铁道调度实训室、高速铁路车站实训室和京沪、武广等高速铁路等线路的安全管理中心进行项目实习训练,使学生掌握高速铁路安全与防灾的工作任务、操作程序、数据采集、设备安装及工作总结等各个环节的知识。
能够组织实施高速铁路安全与防灾技术工作,为将来从事高速铁路安全与防灾工作打下基础。
同时培养诚实、守信、善于沟通和团队协作精神等社会能力,为发展职业能力奠定良好的基础。
1. 掌握高速铁路安全与防灾综合监控系统的总体架构;2. 掌握高速铁路安全与防灾综合监控系统各部分主要功能;3. 掌握大风监测的预警参数、设备构成及布置、风速报警及解除流程;4. 掌握雨量监测的预警参数、设备构成及布置、雨量报警及解除流程;5. 掌握异物监测的检测方法、设备构成及布置、异物报警及解除流程;知识 目标二、课程学习内容与教学安排高速铁路安全与防灾技术课程教学内容的安排采用基于项目的教学模式来开展,将高速铁路安全与防灾技术相关知识设计为一系列的知识学习型项目和基于工作型项目,对相关内容组织实施以学生为主导的教学方法。
石家庄铁路职业技术学院教案首页【新课内容】任务1 高速铁路安全与防灾系统概述高速铁路是一个纷繁复杂的巨系统,其运行安全涉及到各个环节,从合理安排列车运行图和司乘人员,到运营设备、线路的状态检测与维修保养和环境安全监控预警,以及调度指挥和运行控制等。
高速铁路安全与防灾安全技术是用于全面监测各种可能对安全行车产生危害的自然灾害,通过建立实时监控网络、及时采取预防与防护措施,达到减少灾害损失、最终保证行车安全的目。
以日本、法国、德国为代表的国外高速铁路,把安全技术作为高速铁路的先导型核心技术加以系统研究。
针对其所处的自然环境、地理条件以及运营条件的不同,分别采取了各自不同的安全保障措施,并通过实际运用对安全对策予以不断完善和提高。
一、国内外高速铁路防灾安全监控系统概述1.日本日本是一个台风、暴雨、地震、滑坡及大雪等自然灾害频繁发生的国家,铁路经常遭受自然灾害的侵袭。
据统计,日本铁路大约有1/3的行车事故是由各类自然灾害引发的。
自然灾害严重威胁着日本铁路的行车安全,其引发的次生灾害(也称二次灾害)往往导致重大行车事故,造成的损失难以估计。
因此,日本铁路部门非常重视对自然灾害的研究、防治工作,自新干线建成运营以来,经过40余年的不断研究和开发,已经从简单的观测、报警、防护逐步构建形成一整套完善的安全防灾监控系统,加强了对地震、强风、暴雨和大雪等自然灾害的检测,确保日本铁路的安全运营。
按照灾害信息的种类和系统功能划分,日本铁路的安全防灾监控系统分为灾害预测系统和灾害检测系统。
前者是根据监测数据对灾害发生的可能性进行预测,通过采取灾害前的预警措施和行车规定,保障行车安全;后者是针对已经发生的灾害,通过检测判断,阻止列车进入灾害区段,避免次生灾害的发生。
日本铁路制定了灾害情况下相应的行车安全规则,以及降低灾害对行车影响的措施,并已经研究及开发了很多针对不同自然灾害的自动监控系统,如地震紧急检测报警系统(UREDAS)、防灾管理控制系统、气象信息系统(MICOS)、河流信息系统。
1996年东海道新干线还开发使用了轨温监测系统。
目前,日本新干线采用的是综合防灾安全监控系统,它是COSMOS综合运营管理系统的子系统。
它通过设置在沿线的雨量计、风向风速仪、水位计和相应地点的地震仪等观测装置和落石、滑坡、泥石流等沿线灾害检测装置,以及轨温及异物入侵检测设备,基础设施、大型建筑物和车站灾害监测设备,沿线防护开关和防护电话等,将沿线的各类灾害信息全部送到中央调度控制室并严密监视线路的状态,一旦发生灾害,系统自动发出警报,阻止列车运行,确保新干线行车安全。
系统采用自动控制、自动监测、自动检测、自动报警及卫星通信、数据通信、微机处理等先进技术,使得新干线的防灾能力有了很大提高。
新干线运行40余年来,事故率极低,这首先应该归功于其日益完善的安全保障体系。
它不仅从技术上对设备本身状态和自然灾害进行实时监测,设置保证安全的防护工程,建立严格的管理体制,制定严密的异常状况下的列车运行管理规则,还制定和颁布了保证高速铁路安全运营的国家法律。
事实证明,日本铁路采用的防灾安全监控系统效果十分明显,铁路行车事故大大降低,基本上能够控制次生灾害的发生。
2.法国法国地中海高速铁路为有碴轨道结构,运营速度达到300km/h一320km/h,其防灾安全监控系统中心设在马赛,沿线设置大风、地震、异物侵限和防护开关等安全防灾监测设备,通过法国国家铁路(SNCF)的通讯网络将监测点和监控中心相连。
在列车自动控制系统TVM一430中,除完成速度自动控制外,增加了设备状态和自然环境检测报警子系统,对降雨、雪、大风、桥隧落物进行监测,为列车速度自动控制提供参数。
法国地中海线位于欧亚板块交汇点上,法国铁路和国家地震局在地中海沿线联合设置了24个无人值守地震监测站。
监测站间拥有光缆和卫星两套通讯系统,保证信息可靠传输,同时监测系统还连接到法国国家地震验证中心。
地震监测系统由铁路出资、使用,国家地震局设计、建造。
地震发生后的强度级别确认及灾后救援由国家地震局验证中心和法国铁路共同进行.地中海沿线设置的风监测装置由两套平行的系统组成:一个桅杆安装2台风向风速计,两个桅杆构成一个测量站,每套系统都包括各自的测量、处理系统。
目的是保证系统的可靠性,即在任何一个风监测桅杆受到破坏时不影响整个系统正常工作,此外,地中海全线所有的上跨公路桥和车站内人行天桥均安装有金属防护网。
英法海底隧道横贯多佛尔海峡,把英伦三岛与欧洲大陆连接起来。
隧道总长50.5km,其中海下部分长38kin,海底隧道由两股铁路隧道和一股工作隧道构成。
海底隧道的安全工程,是作为一个特殊问题考虑的。
从设计到建成投入运营的各个阶段中,突出考虑了隧道火警及紧急安全救援系统。
工程首先确定了可能出现的主要灾害危险:地震、洪水(涌水)、停电、运送危险物品、火车相撞、列车脱轨、火灾、恐怖活动袭击及综合危险等。
为防止以上灾害的发生,从设计、防灾装备、材料选择、供电、通风系统、通讯、调度指挥诸方面作了仔细的安排。
如在50公里的隧道内,安装了31个火情检测设备对隧道内的空气质量连续进行分析,一旦发生火情可起动自动灭火系统,并与列车互通信息,确保发生紧急情况下的旅客安全。
此外还备有火灾发生后旅客可在2一3分钟内安全撤离措施、起火车厢采取灭火、与火源隔离、将车辆撤离火场等措施。
3.德国德国高速铁路不同于日、法两国,属客、货混运型,且隧道约占线路总长的1/3,因此,隧道内的行车安全成为其安全保障的重点。
德国高速铁路制定了严格有效的防范措施。
例如:禁止无加固和防护措施的货物列车或装有危险货物的列车驶入隧道;尽可能减少客、货列车在隧道内交会,并要求限速运行;专门制造了两列隧道救援列车,随车带有医疗卫生救助设备,并同地方政府共同组织消防、救援队,当出现意外事故时,能及时进行抢救。
此外,德国高速铁路也采用了新型防灾报警系统MAS90,除可监督线路装备的运用状况外,还可识别和及时报告环境对行车安全的影响,以及移动设备发生破损的情况。
该警报系统在全线南、北、中段设有中央控制单元(SZE),相互连通;每个SZE又连接若干设在沿线总站信号楼内的各种报警和记录单元(MRE),并与之进行信息和命令交换。
MRE接受安装在沿线的探测报警仪器采集的信息。
这些探测报警仪器主要有:HOA903热轴探测器、LSMA隧道气流报警设备(在长度大于 1.5kill的隧道内安装)、WMA风测量仪(在所有桥梁上安装)、BMA火灾报警仪、道岔加热设备(wHZ)、沿线设置防护开关、隧道口坍方报警仪(EMA);隧道两端及隧道内每1000米设置应急电话(NR),仅需扳动手柄就可打开电话箱,紧急呼叫的信息具有绝对优先权。
4. 我国高速铁路防灾监控系统发展现状我国高速铁路同样应考虑对灾害的防护, 铁道部相关单位前期研究初步认定应对自然灾害 (风、雨洪水、地震 )、轨温及火灾、突发事故、异物侵限灾害进行防护和监测报警, 使高速行驶的列车, 在任何灾害发生时都能使列车损失降到最低。
铁道部明确表示要对上述灾害进行防护并监测报警, 实现对列车的控制, 此技术称为防灾安全监控, 其构成的系统称为防灾安全监控系统。
1)京津城际轨道交通2008年建成开通运营的京津城际轨道交通,是我国第一条高标准且具有完全自主知识产权的高速铁路,其防灾安全监控系统由防风预警监测子系统和异物侵限监控子系统组成,并预留与地震监测子系统和道岔融雪子系统等其他子系统的接口。
防风预警监测子系统在发生风速超限时发出报警,并向调度员提供大风条件下限速建议。
异物侵限监控子系统在发生落物侵限后报警,调度员可根据实际情况,执行临时通车、调度恢复及信号限制等操作。
无论是发生哪一种报警,监测系统会向运营调度中心发送报警信息,提醒调度员及时查看各监测点状态,采取应对措施。
作为异物侵限子系统的重要补充,京津城际铁路防灾安全监控系统还设计相对独立的防灾视频监控系统,作为防灾安全监控系统的一种辅助手段,为调度人员传输实时、直观的现场视频图像以供决策参考,为高速铁路运输安全提供保障。
2)福厦高速铁路福厦高速铁路于2010年开通运营,也安装设置有防灾安全监控系统,包括风速监测子系统、雨量监测子系统和异物侵限监控子系统。
福厦高速铁路全线共设18处大风监测点,9处雨量监测点,36处异物监控设备和20个基站,4个中继站。
铁路沿线的风速、雨量和异物侵限监测设备收集到的数据,将直接传输到设在各火车站内基站进行处理,后传送至南昌铁路局调度所。
3)武广高速铁路武广高速铁路武广高速铁路是我国目前一次建成里程最长、技术标准最高、运营速度最快的高速铁路。
武广高速铁路防灾安全监控系统是由风监测子系统、雨量监测子系统和异物侵限监控子系统组成的集成系统。
防灾系统由风、雨以及异物侵限现场监测设备,沿线GSM一R基站设置的现场监控单元,武汉、新长沙、新广州站监控数据处理设备,武汉、株洲、衡阳、广州综合工区工务值班室工务终端,武汉、广州调度所设备以及传输网络等组成。
风、雨监测设备由风速风向仪、雨量计及相应的采集传输单元组成,异物侵限监测设备由双电网传感器和轨旁控制器以及异物监测模块组成。
监控系统在沿线较长较高的铁路桥上设置了110个风监测点,全部采用双套冗余配置,每个监测点配置两台非机械式风速风向仪,带气温、气压监测功能。
在高路肩、高路堤及部分隧道口处设置了51个雨量监测点。
全线设置异物侵限监测点共计125处,其中公跨铁监测点111处,隧道口监测点14处。
结合武广高速铁路调度指挥权限的划分及维修机构设置情况,在武汉、广州调度所设防灾监控终端;在武汉、新长沙、新广州站设监控数据处理设备:根据风、雨、异物侵限监测设备的布设位置,在沿线GSM一R基站设置相应的监控单元;在武汉、株洲、衡阳、广州综合工区工务值班室设工务终端。
二、高速铁路安全与防灾技术概述防灾安全监控系统作为高速铁路安全保障的一部分,在高速铁路的行车保障体系中起着重要的作用。
系统主要是对危及客运专线运行安全的自然灾害(风、雨、雪、地震)、突发事故异物侵限及非法侵入等进行监测报警,提供经处理后的灾害预警、限速、停运等信息,为运营调度所进行列车运行计划调整,下达行车管制、抢险救援、维修管理等命令提供依据,通过信号联锁及列控系统或行车调度命令实现自动或人工控制行车速度,保证高速列车安全正点、高效舒适。
1.高速铁路安全与防灾系统概述1) 监控对象自然灾害:风、雨、雪、地震异物侵限2)系统输入风监测:瞬时风速、风向、温度、气压雨监测:雨强、累计雨量雪监测:雪深地震监测:地震动加速度异物侵限监控:双层电网状态3)系统输出灾害报警:向行车指挥调度、工务部门输出报警控制条件:信号系统接口条件、牵引供电系统接口条件2.铁路防灾安全监控子系统构成防灾安全监控系统由现场监测设备、现场监控单元、防灾安全数据处理设备、调度指挥中心防灾监控设备、工务处防灾监控终端、工务段防灾监控终端、传输设备等组成。