[学习]高速铁路专线防灾系统
- 格式:pptx
- 大小:5.79 MB
- 文档页数:5
铁路防灾安全监控系统结合各线地理气候特点,为防止或降低自然灾害、突发事件对铁路运输的影响,满足运营维护部门的使用需求,沿线设置防灾安全监控系统。
防灾安全监控系统由风监测子系统、雨量监测子系统及异物侵限监控子系统组成。
系统采用统一的处理平台,由风、雨及异物侵限等现场监测设备、现场监控单元、监控数据处理设备、调度所设备、工务/通信/调度台防灾终端设备及传输网络等组成。
1.现场监测设备(1)风监测子系统1)现场设备风监测子系统现场设备由风速风向计、现场控制箱、传输电缆等组成。
现场监测设备采集到的数据传送到现场监控单元,再通过传输网络上传至监控数据处理设备。
2)设置地点风速风向监测点主要布点原则如下:①设计速度250km∕h及以上铁路沿线近20年极大风速值超过20m∕s的区段应设置风速风向监测点。
②铁路沿线山区城口、峡谷、河谷、桥梁及高路堤等区段宜设置风速风向监测点。
③山区t亚口、峡谷、河谷等区段风速风向监测点设置间距宜为Ikm~5km 桥梁、高路堤等区段宜为5km-10km o其他地段按IOkm左右间距布设。
3)设备设置风速风向计按非机械式双套设置,并远离现场障碍物干扰。
风速风向计安装于接触网支柱上。
根据铁科技[2013]35号《铁道部关于印发(高速铁路自然灾害及异物侵限监测系统总体技术方案(暂行))的通知》,系统应据据报警级别、报警阈值、报警及解除时限、控制范围,对有效风速数据进行报警判定,生成大风监测报警及解除信息。
2、雨量监测子系统1)现场设备雨量监测子系统现场设备由雨量计、现场控制箱、传输电缆等组成。
2)设置地点雨量监测点主要布点原则如下:①雨量监测点应设置于路基地段及艰险山区铁路易发生滑坡、泥石流及危岩、落石或崩塌地段等处所。
②有昨轨道线路连续路基区段雨量监测点设置间距宜为15km~20km,无昨轨道线路连续路基区段雨量监测点设置间距宜为20km〜25km o3)设备设置雨量计采用非机械式,主要设置在大雨区间位于山坡山脚地带的填土路基以及可能发生滑坡、泥石流或路基下沉的路堑、路堤、隧道口等处,安装地点为无遮掩、宽敞的场所。
学习指南《高速铁路安全与防灾技术》课程是高速铁道技术专业的职业基础课程,用于全面监测各种可能对安全行车产生危害的自然灾害,通过建立实时监控网络、及时采取预防与防护措施,达到减少灾害损失、最终保证行车安全的目。
通过校企合作形式,达到完善知识体系,深化教学内容的目的,对学生职业能力培养和职业素养养成起着主要的支撑作用。
根据高速铁路、客运专线管理体制的需要,高速铁路防灾安全监控系统的用户主要有三类:一是铁道部、客运专线公司的设施(设备)管理部门和安全管理部门的领导和相关人员,二是运营调度中心及调度所的调度值班人员,三是车站(综合维修基地)的值班人员,本课程就是为培养高速铁路设备管理和安全管理人员、调度人员和电务、工务、车站的值班人员所开设一门专业技能课。
一、课程学习目标培养高速铁道技术相关专业技术人员掌握高速铁路安全与防灾技术的基础知识、工作内容、操作程序、设备调试和故障恢复等能力。
通过在院内高速铁路通信信号实训室、高速铁道调度实训室、高速铁路车站实训室和京沪、武广等高速铁路等线路的安全管理中心进行项目实习训练,使学生掌握高速铁路安全与防灾的工作任务、操作程序、数据采集、设备安装及工作总结等各个环节的知识。
能够组织实施高速铁路安全与防灾技术工作,为将来从事高速铁路安全与防灾工作打下基础。
同时培养诚实、守信、善于沟通和团队协作精神等社会能力,为发展职业能力奠定良好的基础。
1. 掌握高速铁路安全与防灾综合监控系统的总体架构;2. 掌握高速铁路安全与防灾综合监控系统各部分主要功能;3. 掌握大风监测的预警参数、设备构成及布置、风速报警及解除流程;4. 掌握雨量监测的预警参数、设备构成及布置、雨量报警及解除流程;5. 掌握异物监测的检测方法、设备构成及布置、异物报警及解除流程;知识 目标二、课程学习内容与教学安排高速铁路安全与防灾技术课程教学内容的安排采用基于项目的教学模式来开展,将高速铁路安全与防灾技术相关知识设计为一系列的知识学习型项目和基于工作型项目,对相关内容组织实施以学生为主导的教学方法。
高铁防灾系统个人论文结合沪宁城际铁路浅谈高铁防灾系统的运用与发展-1-通信息技术公司,今创安达中标了甬台温线、温福线、郑西线、福厦线,世纪瑞尔中标了石太客运专线、武广客运专线等,辉煌科技中标了海南东环线,佳讯飞鸿产品已经在合武线客运专线得到了应用。
沪宁城际铁路防灾系统提供方为河南辉煌公司,该系统由风、雨以及异物侵限现场监测设备,现场监控单元,苏州站监控数据处理设备,各工务终端,上海调度所设备与传输网络等组成。
由风监测子系统、雨量监测子系统以及异物侵限监控子系统集成,以下将对三个子系统进行详细介绍。
风速风向监测子系统沪宁城际铁路设计时速300Km/h,根据气象资料显示长三角地区,7级(13.9~17.1m/s)大风时有发生,特大桥之上风速更高,风速风向监测子系统是本线不可或缺行车安全防护设备。
系统主要由现场采集设备、室内采集模块与上位机处理显示模块组成。
现场采集设备由风速风向计以及专用的接线盒、传输电缆构成。
风速风向计安装在特大桥接触网支柱上,为降低线杆和支架对检测的影响采用“T”型安装支架安装,高度距轨面4m,并且两个风速计安装在两个不同的水平高度,伸出接触网杆的架子长度为2.0m;接线盒采用抱箍式安装在接触网支柱底部;传输电缆可埋入桥上两侧的电缆沟再进入通信基站。
每个布设点设臵两个风速风向仪是为了避免因单个风速采集设备的误差或漏报。
目前国内外的风速风向计设备种类很多,主要分为三杯式、螺旋桨式、超声波式与热场式四种。
国外运营的高速铁路主要使用的是螺旋桨式与超声波式、我国京津城际使用的是热场式,乌鲁木齐局主要使用螺旋桨式,我国气象部门主要使用螺旋桨式与三杯式。
螺旋桨式与三杯式由于维护量大不适用于高铁天窗修的管理模式。
热场式测量精度较高、测量范围大,但是对外部温差精度要求较高,当温度偏低时,有一定的误差。
沪宁城际铁路最终采用了超声波式风速风向计,该风速风向传感器又名气象变送器,同时具有风速、风向及雨量多重监测功能,既节省成本更能减少维护工作量。
第九章客运专线防灾系统防灾系统由风、雨、雪以及异物侵限监测装置,监控单元,监控数据处理设备,工务终端,调度所设备,传输通道等几部分组成。
其功能组要是自然灾害条件下的灾害预警和防灾安全功能,确保动车组列车安全运行。
是保证高速铁路动车组列车运行安全的重要基础装备之一。
第一节降雨量报警系统一、降雨量报警系统设备组成降雨量报警系统由现场监测装置(雨量计)、数据传输单元、监控单元雨量采集模块等组成。
雨量计通过电缆连接至监控单元。
安装于线路的外侧,距离轨面4±0.1m高,安装方向与线路方向同侧。
二、降雨量报警系统运行原理通过在铁路沿线设置雨量监测点,实时监测雨量数据,并结合雨水对地表、路基等的破坏能力,工务部门提出相应的列车安全运行速度限值,用语音和屏显等方式直观报警、预警,并指导列车安全运行。
三、雷达式雨量计简介1.测量范围气温:-40℃~60℃气压:600hPa~1100hPa降水:0mm/h~200mm/h2.准确度气温:±1℃气压:±1.5hPa(20℃时)降水:5%3.采样速率气温:不少于6次/min气压:不少于6次/min降水:不少于1次/min 图9-1 雨量计(雷达式)4.工作环境温度-40℃~+60℃四、报警要求1.遇有降雨天气,重点防洪地段1h降雨量达到45mm及以上时,列车限速120km/h;1h 降雨量达到60mm及以上时,列车限速45km/h。
当1h降雨量降至20mm及以下、且持续30min 以上时,可逐步解除限速。
列车调度员在得到工务及其他相关专业调度台检查无异常的报告后,及时取消限速或解除线路封锁。
2.遇雨量监测子系统提示雨量监测报警信息时,列车调度员根据报警提示向相关列车发布限速运行的调度命令。
对来不及发布调度命令的列车,立即通知司机限速运行。
司机接到调度命令或通知后,应立即采取措施。
3.列车通过防洪重点地段时,司机要加强瞭望,并随时采取必要的安全措施。
石家庄铁路职业技术学院教案首页【新课内容】任务6 高速铁路安全与防灾系统案例为了预防灾害发生,京沪高铁建立了全方位的防灾安全监控系统。
京沪高铁防灾安全监控系统由风监测子系统、雨量监测子系统、地震监控子系统和异物侵限监控子系统等构成,能在运营过程中及时监控地质灾害信息并采取相应措施。
其中,地震监控子系统能在发生地震时及时准确监控地震波,并控制地震区域的列车减速或停止运行。
一、京沪高铁防灾安全监控系统概述京沪高铁防灾安全监控系统是大风监测子系统、雨量监测子系统、异物侵限监控子系统以及地震监控子系统的集成系统,并预留与道岔融雪子系统等其它子系统的接口。
京沪高铁防灾安全监控系统由风、雨现场监测设备、异物侵限现场监控设备、地震现场监测设备、GSM-R 基站(含车站、线路所)监控单元、综合维修段监控数据处理设备、调度所设备以及传输网络等组成。
整体防灾安全监控系统的构成。
二、现场监测设备现场监测设备由风、雨现场监测设备、异物现场监控设备及地震现场监测设备组成。
2.1 风、雨现场监测设备大风现场监测设备由双套风速计(芬兰Vaisala 超声波式风速计、德国Lambrecht 热场式风速计)、数据采集单元、专用安装装臵和传输线缆组成。
雨量现场监测设备由单套雨量计(具有雨量监测功能的芬兰Vaisala 超声波式风速计)、数据采集单元、专用安装装臵和传输线缆组成。
2.1.1 数据采集单元数据采集单元主要为风速计、雨量计提供电源和数据防雷,以及风速计、雨量计专用线缆和数字信号屏蔽电缆之间的转接功能。
根据现场监测点的类型,数据采集单元可分为两种:风数据采集单元和雨量数据采集单元。
因雨量计采用的超声波式风速计,故雨量数据采集单元比风数据采集单元缺少一套热场式风速计的元件。
2.1.2传输线缆风速计与数据采集单元之间采用带有航空插头的专用电缆连接,数据采集单元与基站的监控单元之间采用铁路专用数字信号内屏蔽电缆连接。
雨量计与数据采集单元之间采用带有航空插头的专用电缆连接,数据采集单元与基站的监控单元之间采用铁路专用数字信号内屏蔽电缆连接。
教案首页【新课内容】任务4 高速铁路防灾安全监控系统的功能总体功能从整体上讲,高速铁路综合防灾监控系统主要包括安全监测信息的实时采集、监控及处理,设备运行状态的监测及维修管理,相关基础数据的维护与管理,监测信息的综合查询及统计报表,应用系统运行参数、权限和数据传输等管理,以及一系列后台支撑软件的管理等功能。
针对不同级别的用户和应用,其功能组成和侧重点有所不同。
从铁道部调度中心级、路局调度所级、基层站段级和现场设备级四个层面来考虑,系统总体功能层次结构如图4-1所示。
图4-1 综合防灾安全监控系统系统总体功能层次结构一、铁道部调度中心防灾监控系统功能l. 动态实时显示全线防灾安全监控信息铁道部调度中心防灾监控系统可在集成化的用户界面上动态、集中地展现高速铁路所有防灾监测点的各类监测信息,包括各类灾害监测项的实时变化值和监测设备/系统当前的运行状态。
2. 灾害预警/报警分析及处理建议生成铁道部调度中心防灾监控系统按规定对灾害监测信息进行分析处理,给出影响行车安全的预警/报警信息和处理预案。
处理建议包括灾害种类、灾害强度、灾害发生时间、地点、线路状态、行车规定和巡检要求等具体规定。
根据各种灾害的强度,按照灾害处理规程,至少给出警戒(巡检)、缓行和停车三级报警。
3. 灾害预警及自动报警铁道部调度中心防灾监控系统可根据预先设定的闭值和报警信息传送规则,将报警信息及处理预案自动发送给相关业务部门,同时在用户界面上以不同报警手段(声音或显示等)对灾害分类进行提示,提醒各相关部门处理。
4. 灾害报警解除报警处理全程跟踪铁道部调度中心防灾监控系统接收报警事件的处理情况反馈信息,并可在报警消除或事故恢复后获得通知,以跟踪安全报警事件处理的全过程,实施全面、实时的安全监控。
5. 安全基础数据的共享与查询集中存储的各类灾害信息可供相关业务部门按需要访问。
灾害基础数据的查询和使用设有操作人员身份鉴别,防止非法操作和越权查询,数据库存储的各类原始监测数据不可修改。
综合研究ZONGHEYA NJIU428一、前言安全是一切交通运输方式的先决条件,是高效运输和持续发展之本,是铁路运输的生命线。
高速铁路由于列车高速度、高密度运行,一旦发生事故,后果严重。
因此,对行车安全保障体系提出了更高的要求。
除了要求保证机车车辆、供电、线路以及通信信号等设备高安全性外,对各种可能发生的灾害,如自然灾害——强风、暴雨、大雪、地震,突发性灾害——坍方落石、异物侵入限界、列车事故及设备故障等,都要实施全面监测,即建立防灾安全监控系统,实施全面、准确、实时的安全监控。
二、国外高速铁路防灾安全监控系统世界各国在建设高速铁路之初,均把“安全”作为高速铁路的先导核心技术加以系统研究,并在实际运用中不断完善。
以日本、法国和德国为代表的高速铁路,由于其所处的自然环境、地理条件及运营方式不同,各自采用了不同特点的防灾安全保障措施。
日本新干线运行40余年,以高安全性著称,保持着极低的安全事故率首先应归功于其日益完善的安全保障体系。
目前,新干线防灾安全监控系统是COSM OS 综合运营管理系统的子系统,沿线设置了地震、风、雨、洪水、雪、轨温及异物侵限等多种监测装置,当出现灾害或突发事件时自动向防灾安全监控系统发出报警信息,采取紧急处置措施控制列车停车或减速。
法国高速铁路以机车信号为主的列车自动控制系统由TVM -300逐步发展为TVM -400、TVM-430。
在TVM -430系统中,增加了设备监测和报警子系统,进一步强化了列车运行安全的保障功能,其主要内容为接触网电压监测、热轴监测、降雨监测、降雪监测、大风监测、立交桥下落物监测等。
但与日本不同的是,法国防灾安全监控由诸多独立运行的监测系统构成,各监测系统并未进行综合。
德国高速铁路采用防灾报警系统(MAS90),其主要特点是利用功能强大的车载故障监测和诊断系统,通过无线通信与地面维修中心构成集行车控制、故障监测、维护等功能于一体的行车安全保障体系,除可监督线路装备的运用状态外,还可识别并及时报告环境对行车安全的影响,以及移动设备发生破损的情况。
石家庄铁路职业技术学院教案首页【新课内容】任务1 高速铁路安全与防灾系统概述高速铁路是一个纷繁复杂的巨系统,其运行安全涉及到各个环节,从合理安排列车运行图和司乘人员,到运营设备、线路的状态检测与维修保养和环境安全监控预警,以及调度指挥和运行控制等。
高速铁路安全与防灾安全技术是用于全面监测各种可能对安全行车产生危害的自然灾害,通过建立实时监控网络、及时采取预防与防护措施,达到减少灾害损失、最终保证行车安全的目。
以日本、法国、德国为代表的国外高速铁路,把安全技术作为高速铁路的先导型核心技术加以系统研究。
针对其所处的自然环境、地理条件以及运营条件的不同,分别采取了各自不同的安全保障措施,并通过实际运用对安全对策予以不断完善和提高。
一、国内外高速铁路防灾安全监控系统概述1.日本日本是一个台风、暴雨、地震、滑坡及大雪等自然灾害频繁发生的国家,铁路经常遭受自然灾害的侵袭。
据统计,日本铁路大约有1/3的行车事故是由各类自然灾害引发的。
自然灾害严重威胁着日本铁路的行车安全,其引发的次生灾害(也称二次灾害)往往导致重大行车事故,造成的损失难以估计。
因此,日本铁路部门非常重视对自然灾害的研究、防治工作,自新干线建成运营以来,经过40余年的不断研究和开发,已经从简单的观测、报警、防护逐步构建形成一整套完善的安全防灾监控系统,加强了对地震、强风、暴雨和大雪等自然灾害的检测,确保日本铁路的安全运营。
按照灾害信息的种类和系统功能划分,日本铁路的安全防灾监控系统分为灾害预测系统和灾害检测系统。
前者是根据监测数据对灾害发生的可能性进行预测,通过采取灾害前的预警措施和行车规定,保障行车安全;后者是针对已经发生的灾害,通过检测判断,阻止列车进入灾害区段,避免次生灾害的发生。
日本铁路制定了灾害情况下相应的行车安全规则,以及降低灾害对行车影响的措施,并已经研究及开发了很多针对不同自然灾害的自动监控系统,如地震紧急检测报警系统(UREDAS)、防灾管理控制系统、气象信息系统(MICOS)、河流信息系统。