高铁防灾系统汇总.
- 格式:ppt
- 大小:8.12 MB
- 文档页数:41
铁路防灾安全监控系统结合各线地理气候特点,为防止或降低自然灾害、突发事件对铁路运输的影响,满足运营维护部门的使用需求,沿线设置防灾安全监控系统。
防灾安全监控系统由风监测子系统、雨量监测子系统及异物侵限监控子系统组成。
系统采用统一的处理平台,由风、雨及异物侵限等现场监测设备、现场监控单元、监控数据处理设备、调度所设备、工务/通信/调度台防灾终端设备及传输网络等组成。
1.现场监测设备(1)风监测子系统1)现场设备风监测子系统现场设备由风速风向计、现场控制箱、传输电缆等组成。
现场监测设备采集到的数据传送到现场监控单元,再通过传输网络上传至监控数据处理设备。
2)设置地点风速风向监测点主要布点原则如下:①设计速度250km∕h及以上铁路沿线近20年极大风速值超过20m∕s的区段应设置风速风向监测点。
②铁路沿线山区城口、峡谷、河谷、桥梁及高路堤等区段宜设置风速风向监测点。
③山区t亚口、峡谷、河谷等区段风速风向监测点设置间距宜为Ikm~5km 桥梁、高路堤等区段宜为5km-10km o其他地段按IOkm左右间距布设。
3)设备设置风速风向计按非机械式双套设置,并远离现场障碍物干扰。
风速风向计安装于接触网支柱上。
根据铁科技[2013]35号《铁道部关于印发(高速铁路自然灾害及异物侵限监测系统总体技术方案(暂行))的通知》,系统应据据报警级别、报警阈值、报警及解除时限、控制范围,对有效风速数据进行报警判定,生成大风监测报警及解除信息。
2、雨量监测子系统1)现场设备雨量监测子系统现场设备由雨量计、现场控制箱、传输电缆等组成。
2)设置地点雨量监测点主要布点原则如下:①雨量监测点应设置于路基地段及艰险山区铁路易发生滑坡、泥石流及危岩、落石或崩塌地段等处所。
②有昨轨道线路连续路基区段雨量监测点设置间距宜为15km~20km,无昨轨道线路连续路基区段雨量监测点设置间距宜为20km〜25km o3)设备设置雨量计采用非机械式,主要设置在大雨区间位于山坡山脚地带的填土路基以及可能发生滑坡、泥石流或路基下沉的路堑、路堤、隧道口等处,安装地点为无遮掩、宽敞的场所。
防灾安全监测系统一、系统简介高铁防灾安全监测体系是实现对风速、降雨量、降雪量、地震、异物侵限等危及列车安全运行的自然灾害因素实时监测,对监测数据的分散式采集、综合分析,集中管理、及时掌握灾害发生动态,与调度指挥、牵引供电、列控系统、综合维修和应急救援等系统互相连通,构成对列车运输安全的保障体系。
高铁防灾安全监控报警系统主要由大风、雪深、降雨量、异物侵限、地震等监侧子系统构成。
系统主要由现场传感设备层、基站层、铁路局数据中心层设备和防灾终端层构成。
现场层为数据采集层,主要完成对风、雨、雪、异物侵限、地震信息数据的实时采集。
基站层为基站防灾监控单元,主要承担对采集、解析、处理、数据的汇集传输。
铁路局层接收传输数据,实现对数据的存储、处理、分析,将结果发送到调度中心防灾终端。
调度中心及其它业务防灾终端主要完成各监测信息的显示、报警以及行车建议的生成。
二、系统结构按照结构进行划分,高铁防灾安全监控系统主要由基站PLC监控单元层、现场传感器数据采集层、铁路局数据处理中心层和用户监控终端层四个层次部分构成,其结构图如图所示。
牵引供电系统牵引供电系统三、设计方案西宁到敦煌地理环境以黄土高原区和风沙干旱区为特色。
黄土高原灾害类型很多,如旱灾、水土流失、暴雨、滑坡、地裂缝及地震等等,但暴雨主要集中在东部,西部的降雨量很少,主要是风沙灾害与昼夜温差大。
因此,西宁到敦煌的防灾安全监控系统主要是针对大风天气、温度对轨道的影响、沙尘暴、地裂缝、落石、地面沉降以及水土冲击流失的监控。
管辖1.系统设计思路1)西宁到敦煌的行车路线主要经过武威、张掖、嘉峪关三座主要城市,同时距离兰州非常的近。
因此考虑在这六座城市设立防灾安全监控系统的调度所,放置防灾服务器和防灾终端。
2)在兰州设置总调度中心,负责统筹各站段的防灾安全监测数据,对全局内的列车进行总体调度,必要时可接管下属站段的调度权,保证行车安全。
3)铁路沿途设置监控单元,并针对各路段主要自然灾害的不同,监控单元的密度设置不同,以充分利用GSM-R的4MHz带宽。
第九章客运专线防灾系统防灾系统由风、雨、雪以及异物侵限监测装置,监控单元,监控数据处理设备,工务终端,调度所设备,传输通道等几部分组成。
其功能组要是自然灾害条件下的灾害预警和防灾安全功能,确保动车组列车安全运行。
是保证高速铁路动车组列车运行安全的重要基础装备之一。
第一节降雨量报警系统一、降雨量报警系统设备组成降雨量报警系统由现场监测装置(雨量计)、数据传输单元、监控单元雨量采集模块等组成。
雨量计通过电缆连接至监控单元。
安装于线路的外侧,距离轨面4±0.1m高,安装方向与线路方向同侧。
二、降雨量报警系统运行原理通过在铁路沿线设置雨量监测点,实时监测雨量数据,并结合雨水对地表、路基等的破坏能力,工务部门提出相应的列车安全运行速度限值,用语音和屏显等方式直观报警、预警,并指导列车安全运行。
三、雷达式雨量计简介1.测量范围气温:-40℃~60℃气压:600hPa~1100hPa降水:0mm/h~200mm/h2.准确度气温:±1℃气压:±1.5hPa(20℃时)降水:5%3.采样速率气温:不少于6次/min气压:不少于6次/min降水:不少于1次/min 图9-1 雨量计(雷达式)4.工作环境温度-40℃~+60℃四、报警要求1.遇有降雨天气,重点防洪地段1h降雨量达到45mm及以上时,列车限速120km/h;1h 降雨量达到60mm及以上时,列车限速45km/h。
当1h降雨量降至20mm及以下、且持续30min 以上时,可逐步解除限速。
列车调度员在得到工务及其他相关专业调度台检查无异常的报告后,及时取消限速或解除线路封锁。
2.遇雨量监测子系统提示雨量监测报警信息时,列车调度员根据报警提示向相关列车发布限速运行的调度命令。
对来不及发布调度命令的列车,立即通知司机限速运行。
司机接到调度命令或通知后,应立即采取措施。
3.列车通过防洪重点地段时,司机要加强瞭望,并随时采取必要的安全措施。
高速铁路防灾系统高速铁路防灾安全监控系统作为高速铁路运营调度系统的子系统,在预防灾害对高铁运营的危害方面起着重要的保障作用。
铁路防灾安全监控系统,应能够提供各种自然灾害情报数据,为列车运行控制提供依据;应能够提供各种设备运行状态,以保证列车正常运行;应能够提供有关防灾数据(预警、限速、停运决策信息),为运行计划调整提供依据。
第一章安装防灾系统的必要性第一节安装防灾系统的必要性安全是交通运输方式的先决条件,是高效运输和持续发展之本,是铁路运输的生命线。
高速铁路由于列车高速度、高密度运行,一旦发生事故,后果相当严重。
随着高速铁路的发展,强风、雨雪、泥石流、地震等自然灾害以及异物侵限,时刻威胁着铁路的运输安全。
高速铁路与普速铁路有很大的不同,为了确保动车组列车高速运行,高速铁路安装了很多先进的设备。
高速铁路防灾安全监控系统是保证铁路安全运行的重要基础设施之一,是集工程气象学、空气动力学、统计学及计算机网络等技术于一体的集成系统。
高速铁路由于运行列车(动车组)速度高,风、雨、雪、异物侵限、地震等自然与人为灾害给列车安全带来的影响更加显著,动车组的运行速度较高,当发生自然灾害或异物侵限时,如果动车组司机不能及时的减速或停车,那么发生的事故将是灾难性的、毁灭性的。
为确保行车安全和旅客人身安全,高速铁路设置防灾安全监控系统显得更加必要。
自然灾害事故如图1-1至图1-6所示。
图1-1 风灾事故图1-2 雨灾事故图1-3雪灾事故图1-4地震事故图1-5泥石流事故图图1-6异物侵限事故第二章防灾系统的构成及作用原理第一节防灾系统的构成高速铁路对行车安全保障体系提出了更高的要求。
除了要求保证线路、机车车辆、牵引供电以及通信信号等设备高安全性外,对各种可能发生的灾害,如自然灾害强风、暴雨、大雪、地震,异物侵限,突发性灾害坍方落石、异物侵入限界、非法侵入等,都要实施全面监测,即建立防灾安全监控系统,实施全面、准确、实时的安全监控,预防灾害的突然袭击。
高铁防灾系统李可为(346377177) 8:02:52京沪高铁防灾系统,是以防灾、减灾保证高速铁路运行而设置的一个系统李可为(346377177) 8:03:04目前有四个子系统李可为(346377177) 8:03:42风监测、雨监测、防异物侵限系统、和地震子系统李可为(346377177) 8:04:41目前我局管内有48处风速计、21处雨量计、10处上跨桥防异物侵限装置、3处地震监测器李可为(346377177) 8:05:31其中防异物和防地震是与高速铁路先进的列控系统相连的。
李可为(346377177) 8:06:05也就是说,真正起到防止灾害、保证旅客生命健康安全的作用。
李可为(346377177) 8:12:26这个。
李可为(346377177) 8:16:41风监测大家都知道吧,就是测量风速的,达到一定的风速阈值,列车调度员就要下相应的调度命令,限速或者停车雨监测的就是测雨量的,为指导汛期防洪工作,设置的李可为(346377177) 8:18:19防异物系统探测器安设在上跨桥的防撞墙外面的,为了监测桥上是否有抛落物,有无失控车辆坠落到线路上。
确保行车。
李可为(346377177) 8:18:21安全李可为(346377177) 8:19:53地震子系统就是埋设在沿线地震活跃地带监测地震的系统,目的是在地震发生时,停车,停电,降低灾害对旅客生命的威胁。
李可为(346377177) 8:22:41所有的风、雨、异物、系统都是通过通道传输到基站监控单元-中继站-最后全部汇至济南西站数据处理机房。
济南西机房,是整个防灾系统的中枢,如果出现问题,可能影响运输秩序,所以是所有设备的重点,目前,济南西机房24小时有人值守。
目的是应对突发事件,启动相应的应急响应。
李可为(346377177) 8:26:46昨天我把防灾系统检查作业指导书转发在济工通知上了,大家可以简单看一下。
铁路防灾系统第一篇:铁路防灾系统234在工务终端上生成文本、图形显示及音响报警;同时,将风、雨、雪、地震、异物侵限等灾害的报警、预警信息以及相应的行车管制预案传送至调度所防灾终端。
3.3.4存储风、雨、雪、地震等灾害监测数据以及报警、预警及设备故障信息,存储时间不少于3年。
各类报警、预警信息的内容包括灾害种类、发生时间、地段、灾害级别、行车管制预案等。
3.3.5具备对各类信息按指定时段的统计分析功能,并为维护管理人员提供监测报警、预警及设备故障等信息的查询显示和报表打印功能。
3.3.6提供包括基础数据维护、系统运行参数配置、用户权限管理及访问日志等在内的系统管理功能。
3.3.7具有自检和对监测设备、监控单元的故障监测、报警功能。
3.3.8向各监控单元授时,同步监控单元时钟。
3.3.9预留与上级管理部门信息系统的通信接口,传送灾害报警、预警信息及设备故障信息,并根据需要传送灾害监测数据报表。
3.3.10预留与国家气象、地震部门的通信接口,接收灾害预报、预警信息。
3.4调度所设备3.4.1调度所设备由防灾终端、通信接口设备等组成。
789cm≤轨面积雪深度<17cm时,限速245km/h以下;17cm≤轨面积雪深度<19cm时,限速210km/h以下;19cm≤轨面积雪深度<22cm时,限速160km/h以下;22≤轨面积雪深度<30cm时,限速110km/h以下;轨面积雪深度≥30cm时,停运。
4.3.3行车调度员借助CTC终端和临时限速操作终端,以设置和取消临时限速为手段,使列车自动限速运行。
4.4地震监控子系统4.4.1强震监控监测地震产生的地震动加速度a值,生成强震报警,实现强震应急处置:(1)0.04g≤a<0.08g时,防灾安全监控系统触发列控、联锁系统使列车紧急制动;(2)a≥0.08g时,触发列控、联锁系统使列车紧急制动、一度停车外,还在牵引变电所内触发牵引供电控制装置使接触网停电。
4.4.2 P波预警与强震监控预留本地P波监测以及接收国家、地方地震台网的P波信息功能,条件具备时,实现P波预警与强震监控。