《高等代数》线性方程组
- 格式:ppt
- 大小:5.46 MB
- 文档页数:91
高等代数第五章知识点总结高等代数是数学中的一个重要分支,主要研究代数结构、线性代数、群论等数学领域。
第五章主要涉及线性方程组、矩阵、向量空间、线性变换等知识点。
以下是对这些知识点的总结:1. 线性方程组:线性方程组是一组线性方程的集合,其中每个方程都是一次多项式。
线性方程组的解称为线性方程组的解,可以用矩阵和向量来表示。
2. 矩阵:矩阵是一种特殊的数组,可以表示线性方程组、线性变换和向量空间等数学对象。
矩阵的加法、数乘等运算符合矩阵的定义,并且矩阵具有一些特殊的性质,如行列式、秩等。
3. 向量空间:向量空间是一个线性空间,其中添加了一个标量值域。
向量空间的元素称为向量,向量空间的基和维数是重要概念。
向量空间的加法、数乘等运算符合向量空间的定义。
4. 线性变换:线性变换是一个将一个线性空间映射到另一个线性空间的函数。
线性变换的特征是保持向量空间的加法和数乘运算。
线性变换的矩阵表示是一个方阵,其中每行每列都是一个向量。
5. 特征值和特征向量:特征值和特征向量是两个重要的概念,用于描述矩阵的性质。
矩阵的特征值是指矩阵在乘以某个向量后得到的值,而特征向量是指与特征值相关的向量。
6. 相似矩阵:相似矩阵是指具有相同特征值的矩阵。
相似矩阵之间具有一些相似性质,如行列式、秩等。
相似矩阵可以用来表示线性变换的缩放比例和旋转角度。
7. 克莱默法则:克莱默法则是一个用于求解线性方程组的公式,可以将线性方程组的系数矩阵转换为阶梯形矩阵或行最简矩阵,从而求解线性方程组的解。
8. 特征值分解:特征值分解是将矩阵分解成一组特征向量的乘积,从而求解矩阵的特征值和特征向量。
特征值分解在矩阵的分解和求解中发挥着重要作用。
9. 二次型:二次型是一种特殊的矩阵,其元素是二次多项式。
二次型可以用来表示线性变换的对称矩阵和非对称矩阵,并且具有一些重要的性质,如行列式、秩等。
以上是第五章的主要知识点总结,这些知识点是高等代数中的重要基础,对于理解代数结构、线性代数和群论等数学领域具有重要意义。
单元练习:线性方程组部分一、填空题 每空 1分,共 10分1.非齐次线性方程组 AZ = b (A 为 m ×n 矩阵)有唯一解的的充分必要条件是____________。
2.n +1 个 n 维向量,组成的向量组为线性 ____________ 向量组。
3.设向量组 3 2 1 , ,a a a 线性无关,则常数 l , m 满足____________时,向量组 3 1 2 3 1 2 , , a a a a a a -- - m l 线性无关。
4.设 n 阶矩阵 A 的各行元素之和均为零, 且 r (A ) = n -1则 Ax = 0 的通解为________。
5.若向量组 3 2 1 , , a a a 线性无关,则向量组 3 1 2 3 1 2 , , a a a a a a + + + ____________。
6.已知四元非齐次线性方程组 Ax = b ,r (A ) = 3, 3 2 1 , , h h h 是它的三个解向量,其中T T ) 3 , 1 , 0 , 1 ( , ) 2 , 0 , 2 , 1 ( 3 2 2 1 = + = +h h h h , 则齐次线性方程组的通解为 ____________________________________。
7.设向量组 3 2 1 , , b b b 由向量组 3 2 1 , , a a a 的线性表示式为 ï îï í ì + + - = - + = + - = 3 2 1 3 3 2 1 2 3 2 1 1 a a a b a a a b a a a b ,则 向量组 3 2 1 , ,a a a 由向量组 3 2 1 , ,b b b 的线性表示式为____________。
8.设秩(A ) = r, 秩(B ) = s ,则秩 ÷ ÷ ø ö ç ç è æ B A 0 0 ____________,秩 ÷ ÷ øö ç ç è æ B A ____________ 9.设 A 是 n 阶方阵,秩 (A ) = n -2,则秩 * A ____________。
《高等代数》考试大纲(一)多项式考试内容数域;一元多项式;整除的概念及性质;最大公因式及辗转相除法;互素的概念及性质;不可约多项式的概念及性质;因式分解及唯一性定理。
考试要求1。
掌握数域、一元多项式的概念,了解一元多项式的运算及性质。
2。
掌握多项式整除的概念,了解相关的性质。
3。
掌握最大公因式的概念,了解辗转相除法。
4。
理解互素的概念,掌握两个一元多项式互素的充分必要条件。
5。
了解不可约多项式的概念及其性质。
6。
了解一般系数的多项式的因式分解定理,掌握复系数与实系数多项式的因式分解定理。
(二)行列式考试内容行列式的概念和基本性质;行列式计算;行列式按行(列)展开;拉普拉斯(Laplace)定理及行列式的乘法法则。
考试要求1。
理解行列式的概念,掌握行列式的性质,了解拉普拉斯(Laplace)定理及行列式的乘法法则。
2。
会应用行列式概念计算行列式,会利用行列式的性质和行列式按行(列)展开定理计算行列式,会运用矩阵的初等行(列)变换计算行列式。
(三)向量和矩阵考试内容向量的线性组合和线性表示;向量组的等价;向量组的线性相关与线性无关;向量组的极大线性无关组;向量组的秩;向量组的秩与矩阵的秩之间的关系。
矩阵的概念;矩阵的基本运算;矩阵的转置、伴随矩阵、逆矩阵的概念和性质;矩阵可逆的充分必要条件;矩阵的初等变换和初等矩阵;矩阵的秩;矩阵的等价;分块矩阵及其运算考试要求1。
理解n维向量、向量的线性组合与线性表示等概念。
2。
理解向量组线性相关、线性无关的定义、熟练掌握判断向量组线性相关、线性无关的方法。
3。
理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。
4。
理解向量组等价的概念、清楚向量组的秩与矩阵秩的关系。
5。
理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,熟悉它们的基本性质。
6。
掌握矩阵的数乘、加法、乘法、转置等运算。
掌握方阵的多项式概念。
7。