13.4 课题学习 最短路径问题
栏目索引
答案 D 如图,作点A关于BC的对称点A',关于CD的对称点A″,
连接A‘A″,与BC、CD的交点分别为M、N,此时△AMN的周长最小. ∵∠BAD=110°,∴∠A'+∠A″=180°-110°=70°, 由轴对称的性质得∠A'=∠A'AM,∠A″=∠A″AN, ∴∠AMN+∠ANM=2(∠A'+∠A″)=2×70°=140°. 故选D.
13.4 课题学习 最短路径问题
栏目索引
动到点A',则AA'=MN,AM+NB=A'的什么位置时,A'N+NB最小?
图13-4-4 如图13-4-5,在连接A',B两点的线中,线段A'B最短.因此,线段A'B与直线b 的交点N的位置即为所求,即在点N处造桥MN,所得路径A→M→N→B是 最短的.
图13-4-1 分析 将题意用数学语言叙述如下:如图13-4-1所示,已知直线a和a同侧 的两点A,B.求作:点C,使点C在直线a上,并且AC+CB最小.此题实际上是 求最短路径问题,需要比较路径的长短,与之有关的内容是:两点之间,线 段最短.
13.4 课题学习 最短路径问题
栏目索引
解析 如图13-4-2(1)所示,作点A关于直线a的对称点A',连接A'B交直线a 于点C,则点C即为水泵站的位置. 理由如下:如图13-4-2(2)所示,在直线a上任取一点C'(异于点C),连接BC', A'C',AC'. ∵A与A‘关于直线a对称,∴AC=A'C,AC'=A'C'. ∴AC+CB=A'C+CB=A'B<A'C'+BC'=AC'+BC'.