2013年上海市黄浦区初中数学一模卷试题及答案
- 格式:doc
- 大小:295.22 KB
- 文档页数:7
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前上海市2013年初中毕业统一学业考试数学试卷数学 .......................................................... 1 上海市2013年初中毕业统一学业考试数学试卷数学答案解析. (3)上海市2013年初中毕业统一学业考试数学试卷数学本试卷满分150分,考试时间100分钟.一、选择题(本大题共6题,每小题4分,满分24分) 1.下列式子中,属于最简二次根式的是( ) ABCD2.下列关于x 的一元二次方程有实数根的是( ) A .210x +=B .210x x ++=C .210x x -+=D .210x x --=3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是 ( )A .2(1)2y x =-+B .2(1)2y x +=+C .21y x =+D .33y x =+4.数据0,1,1,3,3,4的中位线和平均数分别是( ) A .2和2.4B .2和2C .1和2D .3和25.如图1,已知在ABC △中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE BC ∥,EF AB ∥,且:3:5AD DB =,那么:CF CB 等于( )A .5:8B .3:8C .3:5D .2:5 6.在梯形ABCD 中,AD BC ∥,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( )A .BDC BCD ∠=∠B .ABC DAB ∠=∠C .ADB DAC ∠=∠D .AOB BOC ∠=∠二、填空题(本大题共12题,每小题4分,满分48分) 7.因式分解:21a -= .8.不等式组1023x x x -⎧⎨+⎩>>的解集是 .9.计算:23b aa b= .10.计算:2()3a b b -+= .11.已知函数23()1f x x =-,那么f = .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为 .13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .14.在O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为 . 15.如图3,在ABC △和DEF △中,点B 、F 、C 、E 在同一直线上,BF CE =,AC DF ∥,请添加一个条件,使ABC DEF △≌△,这个添加的条件可以是 .(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y (升)与行驶里程x(千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时油箱剩余油量是 升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100︒,那么这个“特征三角形”的最小内角的度数为 . 18.如图5,在ABC △中,AB AC =,8BC =,3tan 2C =,如果将ABC △沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为 .三、解答题(本大题共7题,19~22题10分,23、24题12分,25题14分,满分48分) 19.0111|π()2--+毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)20.解方程组:22220x y x xy y -=-⎧⎨--=⎩21.已知平面直角坐标系xOy (如图6),直线12y x b =-经过第一、二、三象限,与y 轴交于点B ,点)(2,1A 在这条直线上,联结AO ,AOB △的面积等于1.(1)求b 的值;(2)如果反比例函数ky x=(k 是常量,0k ≠)的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图2所示,其示意图如图3所示,其中AB BC ⊥,EF BC ∥,143EAB ∠=︒, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计)参考数据:sin370.60︒≈,cos370.80︒≈,tan37︒0.75≈.23.如图8,在ABC △中,90ACB ∠=︒,B A ∠∠>,点D 为边AB 的中点,DE BC ∥交AC 于点E ,CF AB ∥交DE 的延长线于点F .(1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xOy 中,顶点为M 的抛物线2(0)y ax bx a =->经过点A 和x 轴正半轴上的点B ,2AO BO ==,120AOB ∠=︒. (1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且ABC △与AOM △相似,求点C 的坐标.25.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP (如图10).已知13AD =,5AB =,设AP x =,BQ y =.(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的P 和以QC 长为半径的Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x 的值.解析数学试卷第5页(共16页)数学试卷第6页(共16页)。
上海市黄埔区2013年中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,满分36分;在每个小题给出的四个选项中,有且只有一个是正确的,每小题选对得3分,选错或不选得0分)1.(3分)(2013•黄埔区模拟)﹣的绝对值是()A.﹣B.C.﹣6 D.6考点:绝对值分析:根据负数的绝对值是它的相反数解答.解答:解:|﹣|=.故选B.点评:本题考查了绝对值:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•黄埔区模拟)“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000是()A.568×103B.56.8×104C.5.68×105D.0.568×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000亿有6位,所以可以确定n=6﹣1=5.解答:解:568 000=5.68×105.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.(3分)(2013•黄埔区模拟)下列图形既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形..分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.解答:解:①平行四边形,不是轴对称图形,是中心对称图形,故本小题错误;②正方形,既是轴对称图形又是中心对称图形,故本小题正确;③等腰梯形,是轴对称图形,不是中心对称图形,故本小题错误;④菱形,既是轴对称图形又是中心对称图形,故本小题正确;⑤正六边形,既是轴对称图形又是中心对称图形,故本小题正确.综上所述,既是轴对称图形又是中心对称图形的有②④⑤共3个.故选C.点评:此题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.4.(3分)(2013•黄埔区模拟)一个几何体的三视图完全相同,该几何体可以是()A.圆锥B.圆柱C.长方体D.球考点:由三视图判断几何体..分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.点评:本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.5.(3分)(2013•黄埔区模拟)下列运算正确的是()A.x3•x5=x15B.(2x2)3=8x6C.x9÷x3=x3D.(x﹣1)2=x2﹣12考点:完全平方公式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法..分析:根据同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减;完全平方公式对各选项分析判断后利用排除法求解.解答:解:A、x3•x5=x3+5=x8,故本选项错误;B、(2x2)3=23•x2×3=8x6,故本选项正确;C、x9÷x3=x9﹣3=x6,故本选项错误;D、(x﹣1)2=x2﹣2x+1,故本选项错误.故选B.点评:本题考查了同底数幂的乘法,积的乘方,同底数幂的除法,以及完全平方公式,熟记性质与公式,理清指数的变化是解题的关键.6.(3分)(2013•黄埔区模拟)如图,梯形ABCD中AD∥BC,对角线AC、BD相交于点O,若AO:CO=2:3,AD=4,则BC等于()A.12 B.8C.7D.6考点:相似三角形的判定与性质;梯形..专题:探究型.分析:先根据相似三角形的判定定理得出△AOD∽△COB,再由相似三角形的对应边成比例即可得出BC的长.解答:解:∵梯形ABCD中AD∥BC,∴∠ADO=∠OBC,∠AOD=∠BOC,∴△AOD∽△COB,∵AO:CO=2:3,AD=4,∴==,=,解得BC=6.故选D.点评:本题考查的是相似三角形的判定与性质,先根据相似三角形的判定定理得出△AOD∽△COB是解答此题的关键.7.(3分)(2013•黄埔区模拟)已知二次函数y=x2﹣4x+5的顶点坐标为()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(﹣2,1)考点:二次函数的性质..分析:把二次函数解析式配方转化为顶点式解析式,即可得到顶点坐标.解答:解:y=x2﹣4x+5,=x2﹣4x+4+1,=(x﹣2)2+1,所以,顶点坐标为(2,1).故选B.点评:本题考查了二次函数的性质,把解析式配方写成顶点式解析式是解题的关键,本题也可以利用顶点公式求解.8.(3分)(2013•黄埔区模拟)分式方程=1的解是()A.﹣1 B.1C.8D.15考点:解分式方程..分析:观察可得最简公分母是(x﹣8),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣8),得7=x﹣8,解得x=15.检验:把x=15代入(x﹣8)=7≠0,即x=15是原分式方程的解.则原方程的解为:x=15.故选D.点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.9.(3分)(2013•黄埔区模拟)在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球.从口袋中任意摸出一个球是红球的概率是()A.B.C.D.考点:概率公式..分析:由题意可得,共有6种等可能的结果,其中从口袋中任意摸出一个球是红球的有2种情况,利用概率公式即可求得答案.解答:解:∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球,∴从口袋中任意摸出一个球是红球的概率是:=.故选B.点评:此题考查了概率公式的应用.此题比较简单,注意概率=所求情况数与总情况数之比.10.(3分)(2013•黄埔区模拟)已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为()A.外离B.相交C.内切D.外切考点:圆与圆的位置关系..分析:由两圆的半径分别是3和4,圆心距的长为1,利用两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两圆的半径分别是3和4,圆心距的长为1,∵4﹣3=1,∴两圆的位置关系为内切.故选C.点评:此题考查了圆与圆的位置关系.注意解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.11.(3分)(2013•黄埔区模拟)如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10πB.C.πD.π考点:弧长的计算;勾股定理..专题:压轴题;网格型.分析:由题意可知点A所经过的路径为以C为圆心,CA长为半径,圆心角为60°的弧长,故在直角三角形ACD中,由AD及DC的长,利用勾股定理求出AC的长,然后利用弧长公式即可求出.解答:解:如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC==,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l==π.故选C点评:此题考查了弧长公式,以及勾股定理,解本题的关键是根据题意得到点A所经过的路径为以C为圆心,CA长为半径,圆心角为60°的弧长.12.(3分)(2013•黄埔区模拟)如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A.2周B.3周C.4周D.5周考点:直线与圆的位置关系;等边三角形的性质..专题:压轴题.分析:该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数.解答:解:圆在三边运动自转周数:=3,圆绕过三角形外角时,共自转了三角形外角和的度数:360°,即一周;可见,⊙O自转了3+1=4周.故选C.点评:本题考查了圆的旋转与三角形的关系,要充分利用等边三角形的性质及圆的周长公式解答.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2013•黄埔区模拟)因式分解:﹣m2+n2= (n+m)(n﹣m).考点:因式分解-运用公式法..分析:直接利用平方差公式分解因式即可.解答:解:﹣m2+n2,=n2﹣m2,=(n+m)(n﹣m).故答案为:(n+m)(n﹣m).点评:本题考查了利用平方差公式分解因式,熟记平方差公式的结构,两个平方项且符号相反是解题的关键.14.(3分)(2013•黄埔区模拟)= 2 .考点:分母有理化..分析:观察式子的特点,分子可化为×,可以直接约分.解答:解:===2,故答案为:2.点评:此题主要考查了分母有理化,注意观察式子的特点是解题的关键,通过约分的方法进行分母有理化.15.(3分)(2013•黄埔区模拟)在函数y=中,自变量x的取值范围是x≥.考点:函数自变量的取值范围;二次根式有意义的条件..分析:根据二次根式的性质,被开方数大于等于0可知:2x﹣1≥0,解得x的范围.解答:解:根据题意得:2x﹣1≥0,解得,x≥.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.16.(3分)(2013•黄埔区模拟)一个多边形的每一个外角都等于18°,它是二十边形.考点:多边形内角与外角..分析:多边形的外角和是固定的360°,依此可以求出多边形的边数.解答:解:∵一个多边形的每个外角都等于18°,∴多边形的边数为360°÷18°=20.则这个多边形是二十边形.故答案为:二十.点评:本题主要考查了多边形的外角和定理:多边形的外角和是360°.17.(3分)(2013•黄埔区模拟)一组数据:1、﹣1、0、4的方差是.考点:方差..专题:计算题;压轴题.分析:先求出该组数据的平均数,再根据方差公式求出其方差.解答:解:∵=(1﹣1+0+4)=1,∴S2==(4+1+9)=,故答案为.点评:本题考查方差的定义与意义:一般地设n个数据,x2=,它反1,x2,…x n的平均数为,则方差S映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.(3分)(2013•黄埔区模拟)如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB 最短时,点B的坐标是(,﹣).考点:一次函数的性质;垂线段最短..专题:计算题;压轴题.分析:作AB′⊥BB′,B′即为当线段AB最短时B点坐标,求出AB′的解析式,与BB′组成方程组,求出其交点坐标即可.解答:解:设AB′解析式为y=kx+b,∵AB′⊥BB′,BB′解析式为y=2x﹣4,∴2k=﹣1,k=﹣,于是函数解析式为y=﹣x+b,将A(﹣1,0)代入y=﹣x+b得,+b=0,b=﹣,则函数解析式为y=﹣x﹣,将两函数解析式组成方程组得,,解得,故B点坐标为(,﹣).故答案为(,﹣).点评:本题考查了一次函数的性质和垂线段最短,找到B′点是解题的关键,同时要熟悉待定系数法求函数解析式.三、解答题(本大题共8题,满分66分.解答时应写出必要的文字说明、演算步骤或推理过程)19.(6分)(2013•黄埔区模拟)计算:4cos45°+(π+3)0﹣+.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值..专题:计算题.分析:根据45°角的余弦等于,任何非0数的0次幂等于1,二次根式的化简,有理数的负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.解答:解:4cos45°+(π+3)0﹣+()﹣1,=4×+1﹣2+6,=2﹣2+1+6,=7.点评:本题考查了实数的运算,主要有特殊角的三角函数值,零指数幂,二次根式的化简,负整数指数幂,是基础运算题,特殊角的三角函数值容易混淆,需熟练掌握.20.(6分)(2013•黄埔区模拟)先化简,再求值:,其中a=5.考点:分式的化简求值..分析:先将括号内的部分通分,再将除式进行因式分解,然后把除法转化为乘法解答.解答:解:原式=•=•=当a=5时,==.点评:本题考查的是分式的化简求值,要知道,分式的通分、约分、因式分解以及分式的除法法则.21.(8分)(2013•黄埔区模拟)已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.考点:作图—复杂作图;全等三角形的判定..专题:压轴题.分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.解答:解:(1)作出∠B的平分线BD;(2分)作出AB的中点E.(4分)(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,(6分)∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).(8分)点评:此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.(8分)(2013•黄埔区模拟)去年4月,我市开展了“北海历史文化进课堂”的活动,北海某校政教处就同学们对北海历史文化的了解程度进行随机抽样调查,并绘制成了如下两幅不完整的统计图.根据统计图中的信息,解答下列问题:(1)本次调查的样本容量是50 ,调查中“了解很少”的学生占50 %;(2)补全条形统计图;(3)若全校共有学生900人,那么该校约有多少名学生“很了解”北海的历史文化?(4)通过以上数据的分析,请你从爱家乡、爱北海的角度提出自己的观点和建议.考点:条形统计图;用样本估计总体;扇形统计图..专题:计算题.分析:(1)根据扇形图可知“了解很少”占50%,用“了解很少”的频数除以“了解很少”的百分比即可得到样本容量;(2)样本容量乘以“基本了解”百分比即可得到“基本了解”的频数;(3)求出样本中“很了解”占样本容量的百分比,用此百分比乘以900,即可得到该校约有多少名学生“很了解”北海的历史文化;(4)根据统计图进行回答,言之有理即可.解答:解:(1)由扇形统计图可知,“了解很少”占50%,样本容量为25÷50%=50人,(2)正确作出图形.(见下图)(3)该校“很了解”北海历史文化的学生约有名×900=90人,(4)不了解和很少了解的约占60%,说明同学们对北海历史文化关注不够,建议加强有关北海历史文化的教育,多种形式的开展有关活动(只要说得有理就给分).点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(8分)(2013•黄埔区模拟)某班有学生55人,其中男生与女生的人数之比为6:5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?考点:一元一次不等式组的应用;一元一次方程的应用..分析:(1)设男生有6x人,则女生有5x人,根据男女生的人数的和是55人,即可列方程求解;(2)设选出男生y人,则选出的女生为(20﹣y)人,根据:①男生人数不少于7人;②女生人数超过男生人数2人以上,即可列出不等式组,从而求得y的范围,再根据y是整数,即可求得y的整数值,从而确定方案.解答:解:(1)设男生有6x人,则女生有5x人.(1分)依题意得:6x+5x=55(2分)∴x=5∴6x=30,5x=25(3分)答:该班男生有30人,女生有25人.(4分)(2)设选出男生y人,则选出的女生为(20﹣y)人.(5分)由题意得:(6分)解之得:7≤y<9∴y的整数解为:7、8.(7分)当y=7时,20﹣y=13当y=8时,20﹣y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人.(8分)点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.24.(8分)(2013•黄埔区模拟)大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?考点:二次函数的应用;一次函数的应用..专题:压轴题.分析:(1)根据图象可以得到函数经过点(10,20)和(14,160),利用待定系数法即可求得函数的解析式;(2)超市每星期的利润可以表示成x的函数关系式,然后根据函数的性质即可确定.解答:解:(1)设y=kx+b由题意得:,解之得:k=﹣10;b=300.∴y=﹣10x+300.(2)由上知超市每星期的利润:W=(x﹣8)•y=(x﹣8)(﹣10x+300)=﹣10(x﹣8)(x﹣30)=﹣10(x2﹣38x+240)=﹣10(x﹣19)2+1210答:当x=19即定价19元/个时超市可获得的利润最高.最高利润为1210元.点评:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.25.(10分)(2013•黄埔区模拟)如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8:①求O的半径;②求tan∠BAE的值.考点:切线的性质;勾股定理;圆周角定理;相似三角形的判定与性质..专题:压轴题.分析:(1)首先连接OC,由CD是⊙O的切线,CD⊥OC,又由CD⊥AE,即可判定OC∥AE,根据平行线的性质与等腰三角形的性质,即可证得∠EAC=∠CAB;(2)①连接BC,易证得△ACD∽△ABC,根据相似三角形的对应边成比例,即可求得AB的长,继而可得⊙O的半径长;②连接CF与BF.由四边形ABCF是⊙O的内接四边形,易证得△DCF∽△DAC,然后根据相似三角形的对应边成比例,求得AF的长,又由AB是⊙O的直径,即可得∠BFA是直角,利用勾股定理求得BF的长,即可求得tan∠BAE的值.解答:(1)证明:连接OC.(1分)∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,(2分)∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB;(3分)(2)解:①连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°,∵∠1=∠2,∴△ACD∽△ABC,∴,(5分)∵AC2=AD2+CD2=42+82=80,∴AB==10,∴⊙O的半径为10÷2=5.(6分)②连接CF与BF.∵四边形ABCF是⊙O的内接四边形,∴∠ABC+∠AFC=180°,∵∠DFC+∠AFC=180°,∴∠DFC=∠ABC,∵∠2+∠ABC=90°,∠DFC+∠DCF=90°,∴∠2=∠DCF,∵∠1=∠2,∴∠1=∠DCF,∵∠CDF=∠CDF,∴△DCF∽△DAC,∴,(8分)∴DF==2,∴AF=AD﹣DF=8﹣2=6,∵AB是⊙O的直径,∴∠BFA=90°,∴BF==8,∴tan∠BAD=.(10分)点评:此题考查了切线的性质、相似三角形的判定与性质、等腰三角形的性质、圆周角定理以及勾股定理等知识.此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.26.(12分)(2013•黄埔区模拟)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.考点:反比例函数综合题..专题:计算题;压轴题.分析:(1)过C作CN垂直于x轴,交x轴于点N,由A、B及C的坐标得出OA,OB,CN的长,由∠CAB=90°,根据平角定义得到一对角互余,在直角三角形ACN中,根据两锐角互余,得到一对角互余,利用同角的余角相等得到一对角相等,再由一对直角相等,且AC=BC,利用AAS得到三角形ACN与三角形AOB全等,根据全等三角形的对应边相等可得出CN=0A,AN=0B,由AN+OA求出ON的长,再由C在第二象限,可得出d的值;(2)由第一问求出的C与B的横坐标之差为3,根据平移的性质得到纵坐标不变,故设出C′(m,2),则B′(m+3,1),再设出反比例函数解析式,将C′与B′的坐标代入得到关于k与m的两方程,消去k得到关于m的方程,求出方程的解得到m的值,即可确定出k的值,得到反比例函数解析式,设直线B′C′的解析式为y=ax+b,将C′与B′的坐标代入,得到关于a与b的二元一次方程组,求出方程组的解得到a与b的值,即可确定出直线B′C′的解析式;(3)存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形,理由为:设Q为GC′的中点,令第二问求出的直线B′C′的解析式中x=0求出y的值,确定出G的坐标,再由C′的坐标,利用线段中点坐标公式求出Q的坐标,过点Q作直线l与x轴交于M′点,与y=的图象交于P′点,若四边形P′G M′C′是平行四边形,则有P′Q=Q M′,易知点M′的横坐标大于,点P′的横坐标小于,作P′H⊥x轴于点H,QK⊥y轴于点K,P′H与QK交于点E,作QF⊥x 轴于点F,由两直线平行得到一对同位角相等,再由一对直角相等及P′Q=QM′,利用AAS可得出△P′EQ与△QFM′全等,根据全等三角形的对应边相等,设EQ=FM′=t,由Q的横坐标﹣t表示出P′的横坐标,代入反比例函数解析式确定出P′的纵坐标,进而确定出M′的坐标,根据P′H﹣EH=P′H﹣QF表示出P′E的长,又P′Q=QM′,分别放在直角三角形中,利用勾股定理列出关于t 的方程,求出方程的解得到t的值,进而确定出P′与M′的坐标,此时点P′为所求的点P,点M′为所求的点M.解答:解:(1)作CN⊥x轴于点N,∵A(﹣2,0)、B(0,1)、C(d,2),∴OA=2,OB=1,CN=2,∵∠CAB=90°,即∠CAN+∠BAO=90°,又∵∠CAN+∠ACN=90°,∴∠BAO=∠ACN,在Rt△CNA和Rt△AOB中,∵,∴Rt△CNA≌Rt△AOB(AAS),∴NC=OA=2,AN=BO=1,∴NO=NA+AO=3,又点C在第二象限,∴d=﹣3;(2)设反比例函数为y=(k≠0),点C′和B′在该比例函数图象上,设C′(m,2),则B′(m+3,1),把点C′和B′的坐标分别代入y=,得k=2m;k=m+3,∴2m=m+3,解得:m=3,则k=6,反比例函数解析式为y=,点C′(3,2),B′(6,1),设直线C′B′的解析式为y=ax+b(a≠0),把C′、B′两点坐标代入得:,∴解得:;∴直线C′B′的解析式为y=﹣x+3;(3)存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形,理由为:设Q是G C′的中点,令y=﹣x+3中x=0,得到y=3,∴G(0,3),又C′(3,2),∴Q(,),过点Q作直线l与x轴交于M′点,与y=的图象交于P′点,若四边形P′G M′C′是平行四边形,则有P′Q=Q M′,易知点M′的横坐标大于,点P′的横坐标小于,作P′H⊥x轴于点H,QK⊥y轴于点K,P′H与QK交于点E,作QF⊥x轴于点F,∵QF∥P′E,∴∠M′QF=∠QP′E,在△P′EQ和△QFM′中,∵,∴△P′EQ≌△QFM′(AAS),∴EQ=FM′,P′Q=QM′,设EQ=FM′=t,∴点P′的横坐标x=﹣t,点P′的纵坐标y=2•y Q=5,点M′的坐标是(+t,0),∴P′在反比例函数图象上,即5(﹣t)=6,解得:t=,∴P′(,5),M′(,0),知识像烛光,能照亮一个人,也能照亮无数的人。
2013.2.五校联考数学部分试题简析选择题部分:(比较基础) 第4题:本题考查圆与圆的位置关系,少数同学没有仔细看选项忽略了同心圆的情况而错选A . 第5题:本题作为选择题进行考查较为简单,如果改成填空题则需要分类讨论x 可能取到的值. 第6题:通过观察A 、B 两点的坐标可以知道直线的“k ”一定等于1-,同时直线又经过横坐标与纵坐标互为相反数的点C ,显然这条直线的表达式只可能是y x =-,当然本题也可用待定系数法进行求解.填空题部分:(整体难度适中,有陷阱,花样多,稍难于上海市历年中考填空题) 第12题:本题是一道“阅读信息题”,由“偶函数”的定义易知二次函数图像的对称轴是直线x = 0,于是b = 0,得到A 、B 、P 三点的坐标即可求得三角形的面积,较简单. 第13题:本题属于“陷阱题”,得分率较低,如果三角形刚好能不受损地通过圆圈,那么该圆的最小直径应该等于等边三角形的高(使三角形所在的平面与圆所在平面保持垂直),“20”和“2033”学生是最为集中的错解. 第14题:本题又是一道“阅读信息题”,“上升数”的概念不难理解,但是计算时比较容易出错,两位数的个数为90,而“上升数”共有8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36个,套用概率公式即可. 第15题:本题属于“信息迁移题”,从特殊到一般,给出了计算一般四边形面积的一种方法,如图1,可以过点C 作BD 的平行线,过点A 作该平行线的垂线,垂足为点H ,在Rt △ACH中,sin AH m θ=,于是四边形的面积1sin 2S mn θ=,较为简单.填空题部分最后三题难度相比前面有所提高 第16题:本题是一道常规的计算题,综合考查相似、三角比、勾股定理等知识,关键在于利用已知的角度关系证出△BED ∽△BDC ,难度一般.图1 AB C Dθ HA CB E D 图2简解如下:如图2,可设BE = x ,易证△BED ∽△BDC ,由比例关系得BD = 2x ,BC = 4x ,在Rt △ABC 中,222(4)9(29)x x +=+,解得x = 3,即BE = 3.第17题:本题是一道比较常见的折叠题,需要注意题目中的“直线AB ”与“折痕所在直线”,显然满足题意的情况有两种:点E 在线段AB 上(图3)、点E 在AB 的延长线上(图4),因此需要分类讨论,属于拉开差距的题目. 简解如下:(I )对于图3,作PH ⊥AB ,垂足为点H ,易得AH = BE = 1,则HE = 2. 设BC = PH = x ,易证△ABC ∽△PHE ,42xx =,解得22x =,此时cot ∠CAB =2. (II )对于图4,作PH ⊥BC ,垂足为点H ,则PH = AB = 4.易得14BQ BE QH PH ==,14BQ CH QH ==,设BC = x ,则23QH x =. 易证△ABC ∽△QHP ,2434xx =,解得26x =,此时cot ∠CAB =63.第18题:本题是一道综合题,以圆(扇形)为载体,主要考查了勾股定理、相似三角形等初中阶段的重要知识,同时又是一道动态问题,在运动中建立变量之间的函数关系式,难度比较适中,但可以拉开一定差距. 简解如下:如图5,联结EG ,过点M 、N 分别作OD 、OC 的平行线,两平行线相交于点I . ∵OC = x ,∴OD =21x -.易证△DMF ∽△GME ,△CNH ∽△ENG ,由“相似三角形对应边上的高之比等于相似比”,可得222133MI OD x ==-. 类似地,可得13NI x =.在Rt △MNI 中,222221(1)()33y x x =-+,整理得21433y x =-,定义域是01x <<.图3 A B C D E H P A BC D EP Q H 图4 图5AP C HOG NE D MF BI解答题部分:(难点比较分散,综合性较强,但多数题目十分容易上手,难题分值不高) 第21题:本题是一道几何和函数知识结合的应用题,运用图形的几何性质建立函数关系式求最值.需要注意的是由于第(2)问的函数解析式有两种不同的情况,那么第(3)问在求解时需要分别求出正比例函数和二次函数在各自定义域内的最大值并进行比较,从而得到最终结果,难度一般. 第22题:本题较为新颖,第(1)问只需注意分类讨论比较简单,第(2)问考查作图能力,难度也不大,容易出错的是“网格中与△ABC 相似且面积最大的格点三角形的个数”,考虑正方形的两条对角线都是其本身的对称轴,不难想到:以正方形的每条对角线为最长边可作出4个三角形与原三角形相似,那么符合题意的三角形一共有8个(如图6所示).第23题:本题是一道折叠题,但是并非最为常见的三角形、四边形的折叠,而是圆的折叠问题,且涉及的知识点较多:有轴对称、垂径定理、相切两圆的性质、平行四边形的判定、三角形的中位线等,第(2)问证明平行四边形的关键在于首先明确折叠前后得到的圆弧所在的圆都是等圆,然后找到折叠前两条外切的圆弧所在的圆的圆心,联结后得到两圆的连心线,将图形补全,从而利用三角形的中位线来证明四边形OMPN 的两组对边分别平行,得到结论,稍有难度. 第24题:本题是试卷的函数压轴题,较为全面地考查了初中阶段最重要的三种函数,同时又是一道“阅读信息题”,给出了“伴侣正方形”的新定义,初看感觉非常容易理解,实则不然,“伴侣正方形”的四个顶点所在的位置情况可能会比较复杂,讨论起来有一定的难度.题目的前两问比较简单,作为铺垫使学生对新概念有一定的理解,第(3)问中,由于知道C 、D 中的一个点的坐标,欲求二次函数2y ax c =+的解析式,必须先求出“伴侣正方形”在二次函数上的另一个顶点的坐标,显然本题满足题意的二次函数解析式不止一个.在解答第(3)小题时可以先设点D 的坐标为(3,4),如图7(图中红色正方形)所示,当点A 在x 轴正半轴上,点B 在y 轴负半轴上时:过点D 、C 分别作DE ⊥x 轴、CF ⊥y 轴,垂足分别为点E 、F ,易证△DEA ≌△AOB ≌△BFC ,即可得到点C 的坐标为(1,3)-,求出二次函数的解析式.其他几种情况与之类似,由于“伴侣正方形”四个顶点的不确定性,本题的分类讨论包含了两个层次,难度较大,某些不符合题意情况可以直接依据图形进行排除,图6最后一共有四条抛物线符合题意(图7供参考).第25题:本题是试卷的几何压轴题,综合考查了图形的平移、旋转、全等三角形、相似三角形等知识,但是前两问还是相当容易上手的,第(3)问则需要通过辅助线同时构造出一个新的等腰直角三角形、一对全等三角形、一对相似三角形作为“桥梁”,实现比例的转化从而得到答案.本题的结果说明:在题设条件下,将△ABC 绕点C 逆时针旋转m 度,其中090m ≤,AMDM的值始终与C 、E 两点之间的距离x 成正比(图8).此题思维上的难度较大,是一道能达到选拔优秀学生目的的试题.本题所用到的两个基本模型都是比较常见的, 相似三角形漏斗模型、全等三角形旋转模型:图8DEAFMlCBG DC ABEFO 图7。
2013学年第一学期九年级数学月考试卷(满分150分,考试时间100分钟) 2013.11一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请把正确答案填在括号内.】 1.如果两个相似三角形对应中线之比是1∶4,那么它们的周长之比是( ). A .1∶2; B .1∶4; C .1∶8; D .1∶16.2.已知线段MN =6cm ,点P 是线段MN 的一个黄金分割点,则其中较长线段MP 的长是( )cm . A . 9-35; B . 35-3; C . 35-1; D . 3-5. 3.如图,点P 为△ABC 的AB 边上一点(AB>AC ),下列条件中不.一定能保证 △ACP ∽△ABC 的是( ). A .∠ACP =∠B ; B .∠APC =∠ACB ; C .PC BC = AC AB ; D .AC AB = AP AC.4.若向量a →与b →均为单位向量,则下列结论中正确的是( ).A .a b →→= ; B .a b →→=-; C .a b →→=; D .1a →=. 5. 在Rt △ABC 中,∠C =90°,那么下列关系中,正确的是( ).A .c =A a sin ⋅;B .c =A a tan ⋅;C .Aac cos =; D .A a c sin =.6.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,四边形DEGF 为内接正方形,那么AD :DE :EB 为( ).A .16︰12︰9;B .16︰9︰25;C .9︰12︰16;D . 3︰4︰5. 二、填空题:(本大题共12题,每题4分,满分48分) 7.如果23=y x ,那么=-+yx yx 22_________ . 8.已知线段a =15cm ,c =4cm ,则a 和c 的比例中项b = cm .9.在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,如果AD =3,DB =2,那么GFEDC BA第6题DEBC= . 10.两个相似三角形,相似比是1:2,且两三角形面积之差是30,则较大三角形面积是______.11中,∠1=∠A ,若BD =2, AD =3,则BC =.12.如图,已知1l ∥2l ∥3l ,若23AB BC =,6DE =,则EF =__________. 13. 如图,AB ∥EF ∥CD ,AB =3,CD =7,AE ∶ED =1∶3,则EF 的长度为________________.14.如图,已知点G 是△ABC 的重心,过点G 作DE // BC ,分别交边AB 、AC 于点D 、E ,那么用向量BC 表示向量ED 为________________. 15.在ABC ∆中,4==AC AB ,︒=∠30A ,那么=∆ABC S .16.如图,在平面直角坐标系内,若一次函数b kx y +=B(4,4),O 为坐标原点,则cos ∠BAO 的值是 .17. 如图,梯形ABCD 中,AB ∥CD ,AB =2,CD=3,若1=∆AOB S ,则ABCD S 梯形= . 18.如图,在等腰梯形ABCD 中,AD ∥BC ,∠ADB =45°,翻折梯形ABCD ,使点B 与点D 重合,折痕分别交边AB 、BC 于点F 、E ,若AD =6,BC=14,那么cot ∠C = . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)求值:30cot )45cot 21(60cos 30tan 360sin -⋅+ 20.(本题满分10分,第(1)小题4分,第(2)小题6分)DABCO第17题A B C D E F 第12题1l 2l3l 第14题(1)计算:1(23)(6)2a b b a +--=(2)如图,已知平面内两个不平行的向量b a,,求作:b a221+.(不要求写作法,但要保留作图痕迹,并写结论);21.(本题满分10分)已知:如图,在梯形ABCD 中,AB // CD ,BC ⊥AB , 且AD ⊥BD ,CD = 2,32sin =A . 求:梯形ABCD 的面积.22.(本题满分10分,第(1)、(2)小题各5分)已知:如图,在△ABC 中,AB = AC ,DE // BC ,点F 在线段EC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE .求证:(1)△DEF ∽△BDE ;(2)△DEF ∽△DGE .23.(本题满分12分,第(1)、 (2)小题各6分)如图,在平面直角坐标系内,直线AB 与x 轴交于点B ,与y 轴交于点A ,点C 为x 轴负半轴上的C 第21题DABCab一点,过点C 作CD ⊥AB ,垂足为D . (1)求证:△BOD ∽△BAC(2)若直线AB 的解析式为m x y +-=3, OD =2,求AC 的长度。
浦东新区2012学年度第一学期期末质量测试 初三数学试卷 2013.1.17(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题,答题时,考生务必按答题要求在答题纸规定的位置作答,在草稿纸、本试卷上 答题一律无效;2. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤;3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分) 1.如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A .2:1; B .2:3; C .3:1; D .3:2.2.已知Rt ABC ∆中,90C ∠=,A α∠=,2AB =,那么BC 长( )A .2sin α;B .2cos α;C .2sin α; D .2cos α.3.如果将抛物线2y x =向左平移2个单位,那么所得到的抛物线表达式为( )A .22y x =+;B . 22y x =-;C .2(2)y x =+;D .2(2)y x =-.4.如果抛物线2y ax bx c =++经过点(1,0)-和(3,0),那么对称轴是直线( )A .=0x ;B .=1x ;C .=2x ;D .=3x .5.如果乙船在甲船的北偏东40方向上,丙船在甲船的南偏西40方向上,那么丙船在乙船的方向是( )A .北偏东40;B .北偏西40;C .南偏东40;D .南偏西40.6.如图,已知在ABC ∆中,边6BC =,高3AD =,正方形EFGH 的顶点F G、在边BC 上,顶点E H 、分别在边AB 和AC 上,那么这个正方形的边长等于( )A .3;B .2.5;C .2;D .2.5.二、填空题:(本大题共12题,,每题4分,满分48分)7. 已知线段b 是线段a 、c 的比例中项,且a =1、=2b 那么=c .8.计算:11()(2)22a b a b --+= .9.如果抛物线2(2)y a x =-的开口方向向下,那么a 的取值范围是 .10.二次函数23y x =-的图像的最低点坐标是 .11.在边长为6的正方形中间挖去一个边长为(06)x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为 .12.已知α是锐角,230tan cos α=,那么α= 度.13.已知从地面进入地下车库的斜坡的坡度为1:2.4,地下车库的地坪与地面的垂直距离等于5米,那么此 斜坡的长度等于 米.14.小明用自制的直角三角形纸板DEF 测量树AB 的高度.测量时,使直角边DF 保持水平状态,其延长 线交AB 于点G ;使斜边DE 与点A 在同一条直线上.测得边DF 离地面的高度为1.4m ,点D 到AB 的距 离等于6m (如图所示)。
A B C D B CA 黄浦区2012学年度第一学期九年级期终考试数 学 试 卷 2013年1月17日(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1. 如果△ABC ∽△DEF (其中顶点A 、B 、C 依次与顶点D 、E 、F 对应),那么下列等式中不一定成立的是(A )A D ∠=∠(B )A DB E ∠∠=∠∠ (C )AB =DE (D )AB DEAC DF=2. 如图,地图上A 地位于B 地的正北方,C 地位于B 地的北偏东︒50方向,且C 地到A 地、B 地的距离相等,那么C 地位于A 地的(A )南偏东︒50方向 (B )北偏西︒50方向(C )南偏东︒40方向(D )北偏西︒40方向3. 将抛物线2y x =向左平移2个单位,则所得抛物线的表达式是(A )()22+=x y (B )()22-=x y (C )22+=x y (D )22-=x y4. 如图,△PQR 在边长为1个单位的方格纸中,它的顶点在小正方形顶点位置,其中点A 、B 、C 、D 也是小正方形的顶点,那么与△PQR 相似的是(A )以点P 、Q 、A 为顶点的三角形 (B )以点P 、Q 、B 为顶点的三角形 (C )以点P 、Q 、C 为顶点的三角形 (D )以点P 、Q 、D 为顶点的三角形(第2题) (第4题) (第6题) 5. 抛物线232y x x =+-与坐标轴(含x 轴、y 轴)的公共点的个数是(A )0 (B )1 (C )2 (D )36. 如图,在△ABC 中,∠ACB =90︒,CD 为边AB 上的高,已知BD =1,则线段AD 的长是 (A )sin 2A (B )cos 2A (C )tan 2A (D )cot 2A 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】B C P D A · R Q · · ·D EO B A 7. 已知74x y =,则x y x y +-的值为 ▲ .8. 计算:()()23a b a b -++= ▲ .9. 已知两个相似三角形的周长比为2∶3,且其中较大三角形的面积是36,那么其中较小三角形的面积是▲ .(第10题) (第11题) (第17题)10. 如图,第一象限内一点A ,已知OA =5,OA 与x 轴正半轴所成的夹角为α,且2tan =α,那么点A 的坐标是 ▲ . 11. 如图,某人沿一个坡比为1∶3的斜坡(AB )向前行走了10米,那么他实际上升的垂直高度是 ▲ 米. 12. 抛物线322++=x x y 的顶点坐标是 ▲ .13. 如果抛物线()a x x a y ++-=322的开口向下,那么a 的取值范围是 ▲ .14. 若1x 、2x 是方程04322=--x x 的两个根,则2121x x x x ++⋅的值为 ▲ . 15. 已知二次函数()y f x =图像的对称轴是直线2x =,如果()()34f f >,那么 ()3f - ▲ ()4f -. (填“>”或“<”) 16. 已知点P 是二次函数224y x x =-+图像上的点,且它到y 轴的距离为2,则点P 的坐标是 ▲ .17. 如图,E 是正方形ABCD 边CD 的中点,AE 与BD 交于点O ,则tan AOB ∠= ▲ .18. 在Word 的绘图中,可以对画布中的图形作缩放,如下图1中正方形ABCD (边AB 水平放置)的边长为3,将它在“设置绘图画布格式→大小→缩放”中,高度设定为75%,宽度设定为50%,就可以得到下图2中的矩形1111A B C D ,其中11350% 1.5A B =⨯=,11375% 2.25A D =⨯=.实际上Word 的内部是在画布上建立了一个以水平线与竖直线为坐标轴的平面直角坐标系,然后赋予图形的每个点一个坐标(),x y ,在执行缩放时,是将每个点的坐标作变化处理,即由(),x y 变为()%,%x n y m ⨯⨯,其中%n 与%m 即为设定宽度与高度的百分比,最后再由所得点的新坐标生成新图形. O x yA αA 1 D C 1AD⇒ MON ⇒A BC D现在画布上有一个△OMN ,其中90O ∠=︒,MO NO =,且斜边MN 水平放置(如图3),对它进行缩放,设置高度为150%,宽度为75%,得到新图形为△O 1M 1N 1(如图4),那么111cos O M N ∠的值为 ▲ .(图1) (图2) (图3) (图4)三、解答题:(本大题共7题,满分78分) 19. (本题满分10分)计算:222sin 60cos 60cot 304cos 45︒-︒︒-︒.20. (本题满分10分,第(1)、(2)小题满分各5分)如图,点E 是平行四边形ABCD 边BC 上一点,且BE ∶EC =2∶1,点F 是边CD 的中点,AE 与BF交于点O .(1)设a AB =,b AD =,试用a 、b 表示AE ; (2)求BO ∶OF 的值.21. (本题满分10分)已知二次函数的图像经过点()8,0-与()5,3-,且其对称轴是直线1x =.求此二次函数的解析式,并求出此二次函数图像与x 轴公共点的坐标.22. (本题满分10分,第(1)、(2)小题满分各5分)如图,在△ABC 中,90C ∠=︒,4AC =,6BC =,点D 是边BC 上一点, 且CAD B ∠=∠.(1)求线段CD 的长;(2)求sin BAD ∠的值. M 1O 1N 1 B OE DFA23. (本题满分12分,第(1)、(2)小题满分各6分)如图,点D 是Rt △ABC 斜边AB 上一点,点E 是直线AC 左侧一点,且EC ⊥CD , ∠EAC =∠B .(1)求证:△CDE ∽△CBA ;(2)如果点D 是斜边AB 的中点,且23tan =∠BAC ,试求CBA CDE S S ∆∆的值.(CDE S ∆表示△CDE 的面积, CBA S ∆表示△CBA 的面积)24. (本题满分12分,第(1)、(2)、(3)小题满分各4分)已知二次函数32++=bx ax y 的图像与x 轴交于点A ()0,1与B ()0,3,交y 轴于点C ,其图像顶点为D .(1)求此二次函数的解析式;(2)试问△ABD 与△BCO 是否相似?并证明你的结论;(3)若点P 是此二次函数图像上的点,且PAB ACB ∠=∠, 试求点P 的坐标.25. (本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分) 如图,在等腰梯形ABCD 中,AD ‖BC ,AD =2,AB =5,53sin =∠B ,点E 是边BC 上的一个动点(不与点B 、C 重合),作∠AEF =∠AEB ,使边EF 交边CD 于点F (不与点C 、D 重合),设BE=x ,CF=y .(1)求边BC 的长;(2)当△ABE 与△CEF 相似时,求BE 的长; E D C A O xy(3)求y 关于x 的函数关系式,并写出定义域.(备用图)黄浦区2012学年度第一学期九年级期终考试数学参考答案与评分标准一、选择题1.C 2.A 3.A 4.B 5.D 6.D 二、填空题 7.1138.5a b + 9.16 10.5,251110 12.()1,2- 13.2a < 14.12- 15.> 16.()()2,4,2,12- 17.3 185三、解答题19.解:原式()2231222342⨯-⎝⎭-⨯(4分)31242322⨯--(3分) D B CA DB CA FE322-(1分)=322+--------------------------------------------------------------------------(2分) 20.解:(1)∵BE ∶EC =2∶1,∴2233BE BC b ==,-----------------------------------------------------------(2分) ∴AE AB BE =+=23a b +.--------------------------------------------------(3分)(2)作FG ‖BC 交AE 于点G ,------------------------------------------------------(1分)∵点F 是边CD 的中点,∴FG 是梯形ECDA 的中位线,设EC =k ,BE =2 k ,则AD =3 k ,∴FG =2 k ,--------------------------------------------------------------------------(2分)∴BO ∶OF = BE ∶FG =1∶1, --------------------------------------------------(1分) ∴BO ∶OF 的值为1. -------------------------------------------------------------(1分) 21.解:设二次函数解析式为2y ax bx c =++,----------------------------------------------(1分)则859312c a b c b a ⎧⎪-=⎪-=++⎨⎪⎪-=⎩,------------------------------------------------------------------(3分) 解得128a b c =⎧⎪=-⎨⎪=-⎩,----------------------------------------------------------------------------(3分)∴二次函数解析式为228y x x =--.-------------------------------------------------(1分) 令2280x x --=,------------------------------------------------------------------------(1分) 解得122,4x x =-=,∴图像与x 轴公共点为()2,0-与()4,0.----------------------------------------------(1分)22.解:(1)∵,C C CAD B ∠=∠∠=∠,∴△CDA ∽△CAB ,----------------------------------------------------------------(2分) ∴CD CACA CB=,----------------------------------------------------------------------(1分)∴2246CA CD CB ===83.----------------------------------------------------------(2分) (2)作BH ⊥AD ,垂足为H ,-------------------------------------------------------------(1分) 在Rt △ACD 中,22413AD AC CD =+=-------------------------------(1分) 在Rt △ABC 中,22213AB AC BC =+=--------------------------------(1分)∵∠H =∠C ,∠ADC =∠BDH , ∴△ADC ∽△BDH , ∵BH AC BD AD =,即1010133134133BH ==---------------------------(1分) ∴在Rt △ABH 中,5sin 13BH BAH AB ∠==.----------------------------------(1分) 23.解:(1)∵EC ⊥CD ,ACB ∠为直角,∴ACE BCD ∠=∠,又∠EAC =∠B ,∴△CAE ∽△CBD ,-----------------------------------------------------------------(2分)∴CA CBCE CD=,又∠ACB =∠ECD ,----------------------------------------------(2分) ∴△CDE ∽△CBA . ------------------------------------------------------------------(2分) (2)∵23tan =∠BAC , ∴32CB CA =,----------------------------------------------------------------------------(2分) 令CB =3k ,CA =2k , 则2213AB AC BC k =+=.--------------------------------------------------(1分)又点D 是斜边AB 的中点, ∴1132CD AB ==.------------------------------------------------------------(1分) ∵△CDE ∽△CBA ,∴21336CDE CBA S CD S CB ∆∆⎛⎫== ⎪⎝⎭.----------------------------------------------------------(2分) 24.解:(1)由题意知309330a b a b ++=⎧⎨++=⎩,-------------------------------------------------------(2分)解得14a b =⎧⎨=-⎩,------------------------------------------------------------------------(1分)所以二次函数解析式是243y x x =-+.----------------------------------------(1分)(2)△ABD 与△BCO 相似.由(1)知:()0,3C ,()2,1D -.-----------------------------------------------(1分) 于是2,2AB AD BD ===32,3BC OB OC ===,即DA DB ABOB OC BC==,--------------------------------------------------------------(2分) 所以△ABD 与△BCO 相似. -------------------------------------------------------(1分)(3)设()2,43P x x x -+,作PQ ⊥x 轴,垂足为Q ,作AH ⊥BC ,垂足为H . 易知△ABH 为等腰直角三角形,则2AH BH ==由PAB ACB ∠=∠,90AQP CHA ∠=∠=︒,所以△APQ 与△CAH 相似,-------------------------------------------------------(2分) 于是PQ AHAQ CH=, 即243112x x x -+=-, 解得1257,22x x ==, 所以点P 的坐标为53,24⎛⎫-⎪⎝⎭或75,24⎛⎫⎪⎝⎭.-----------------------------------------(2分) 25.解:(1)作AH ⊥BC ,垂足为H ,------------------------------------------------------------(1分)在Rt △ABH 中,AB =5,53sin =∠B , 则sin 3AH AB B =⋅∠=,224BH AB AH =-=,--------------------(2分)由等腰梯形ABCD 知,BC=AD +2BH=10. --------------------------------------(1分) (2)由题意知,∠B=∠C ,当△ABE 与△CEF 相似时,∠BEA=∠CEF 或∠BEA=∠CFE ,----------(1分) ①当∠BEA=∠CEF 时,又∠BEA=∠AEF ,∠BEA +∠AEF +∠CEF =180︒, 即∠BEA=60︒.于是在Rt △AEH 中,cot 3cot 603EH AH AEH =⋅∠=︒=,所以BE=BH +HE =43+--------------------------------------------------------(2分) ②当∠BEA=∠CFE 时,又∠BEA=∠AEF , 即∠CFE=∠AEF ,则AE ‖DC ,又AD ‖BC , 所以四边形ADCE 为平行四边形,则CE=AD=2,于是BE=BC -CE =8. ---------------------------------------------------------------(2分) (3)延长EF 交AD 的延长线于点P ,作PQ ⊥AE ,垂足为Q , ∵AD ‖BC ,∴∠BEA=∠EAP ,又 ∠BEA=∠AEF ,∴∠EAP=∠AEP ,∴12AQ AE =. 又∵∠EHA=∠AQP =90︒, ∴△AHE ∽△PQA ,∴AP EA AQ EH =,即()282524AQ EA x x AP EH x ⋅-+==-.-------------------------(2分) 又∵AD ‖BC ,∴CF CEDF PD=, 即()2108255224y xx x y x -=-+---, 解得22101404001639x x y x x -+=-+,定义域为410x <<.-----------------------(3分)。
2013学年第一学期九年级期中考试数学试卷(时间100分钟,满分150分) 2013.11(本试卷所有答案请书写在答题卷规定位置上)一、选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.下列四组数中,能组成比例的是A .1,3,4,6;B .0.2,0.8,12,30;C .12,16,45,60;D .0.1,0.2,0.3,0.4.2.在比例尺为1:2000的地图上测得A 、B 两地间的图上距离为5cm ,则AB 两地间的实际距离为A .10m ;B .25m ;C .100m ;D .250m .3.已知在ABC Rt ∆中,︒=∠90C ,α=∠A ,3=AC ,那么AB 的长为A .αsin 3;B .αcos 3; C.αsin 3; D .αcos 3. 4.如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是78⨯方格纸(每个小方格均为正方形)中的格点,为使△DEM ∽△ABC ,则点 M 应是F 、G 、H 、K 四点中的A .H ;B .G ;C .F ;D .K .5.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,下列比例式不能判定DE ∥BC 的是A .EC AE DB AD =; B .AE AC AD AB =;C .BC DE AB AD =;D .ACCEAB BD =. 6.已知△ABC ,D ,E ,F 分别是AB ,BC ,CA 的中点,设AB a =u u u r r ,AC b =u u u r r ,则DE DF +u u u r u u u r是A .1()2a b +r r ;B .12a b -+r r ;C .12a b -r r ;D .1()2a b -r r .二、填空题(本大题共12题,每题4分,满分48分)7.若0234x y z ==≠,则23x yz+= ▲ . 8.若两个相似三角形的面积之比为4:9,则在这两个三角形中,面积较小的三角形与面积较大的三角形的周长之比为 ▲ .第4题BACE D 第5题l 3l 2l 1F E B D A 9.如图,DE ∥BC ,:4:5DEBC =,则:EA AC = ▲ .10.在△ABC 中,90A ∠=︒,如果10AC =,1tan 2B =,那么AB = ▲ . 11.已知线段AB ,延长AB 到点C ,使3AB BC=,则CB =u u u r▲ AB uuu r .12.已知点P 是线段AB 的黄金分割点,PA >PB ,且1PA =,则AB = ▲ .13.如图,在△ABC 中,AD 是中线,G 是重心,过点G 作EF ∥BC ,分别交AB 、AC 于点E 、F ,若18AC =,则AF = ▲ .14.如图,已知直线1l ∥2l ∥3l ,4AB =,6DF =,4BC =,则EF = ▲ . 15.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,CD 平分ACB ∠,BC DE //,如果10AC =,4AE =,那么BC = ▲ . 16.如图,正方形DEAF 内接于△ABC ,已知8AC =,16AB =,那么正方形的边长是 ▲ .17.已知Rt ABC ∆的两条直角边之比为3:4,△ABC ∽△111A B C ,若△111A B C 的最短边长12cm ,则△111A B C 最长边的中线长为 ▲ cm .18.在△ABC 中,6AB =,8BC =,7CA =,延长CA 至点P ,使PBA C ∠=∠,则AP = ▲ . 三、简答题(本大题共4题,每题10分,满分40分) 19.计算:cos30tan 45cot 45sin 60︒+︒︒-︒.20.如图,在Rt △ABC 中,90C ∠=︒,3sin 4A =,6BC =(1)求AC 的长;(2)求cotB 的值.21.如图,已知向量a ρ、b ρ,求作向量x ρ,使x ρ满足b a a x b ρρρρρ-=--3)(2(不要求写作法,但要保留作图痕迹,并写结论)22.已知:如图,△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,60ADE ∠=︒. (1)求证:△ABD ∽△DCE ;(2)如果3AB =,2=3EC ,求DC 的长.四、解答题(本大题共2题,每题12分,满分24分)23.如图,在△BAC 中,90A ∠=︒,60B ∠=︒,作AD BC ⊥,垂足为D ,E 为边AB上一点,联结CE 交AD 于点P ,点F 为线段CE 上一点,且:CF EF =(1)求证:FD ∥AB ;(2)当2AB =,且49DFP AEP S S ∆∆=时,求BE 的长.24.如图:已知一次函数334y x =+的图像分别交x 轴、y 轴于A 、B 两点,且点4C m (,)在一次函数334y x =+的图像上,CD ⊥x 轴于点D . (1)求m 的值及A 、B 两点的坐标;rbra(2)如果点E 在线段AC 上,且23AE EC =,求E 点的坐标; (3)如果点P 在x 轴上,那么当△APC 与△ABD 相似时,求点P 的坐标.五、(本题满分14分)25.如图1,在正方形ABCD 中,AB =1,点E 在AB 延长线上,联结CE 、DE ,DE 交边BC 于点F ,设BE x =,CF y =.(1)求y 关于x 的函数解析式,并写出x 的取值范围; (2)如图2,对角线AC 、BD 的交点记作O ,直线OF 交线段CE 于点G ,求证: CEB COG ∠=∠;(3)在(2)的条件下,当OG =时,求x 的值.AEAEx2013学年第一学期九年级期中考试参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.C;2.C;3.D;4.A;5.C;6.B.二、填空题(本大题共12题,每题4分,满分48分)7.134;8.2:3;9.4:5;10.20;11.13-;12.2;13.12;14.3;15.15;16.163;17.10;18.9.三、简答题(本大题共4题,每题10分,满分40分)19.解:0000cos30tan45cot45sin60+-…………(8分)1分)1分)20.解:(1)在Rt△ABC中,∵sinBCAAB =,………………………(2分)又∵3sin4A=,6BC=∴364AB=.……………………………………………(2分) ∴8AB =.……………………………………………(1分)∴在Rt △ABC中,AC ==2分)(2)在Rt △ABC 中,cot =BCB AC.………(1分) 又∵6BC =,AC =∴cot =BC B AC .………………………………………(2分) 21.解:b a a x b -=+-322……………………………………………(1分)22-=-.……………………………………………(2分)+-=21………………………………………………(2分)图(略).…………………………………………………………(4分) 结论.………………………………………………………………(1分)22.证明:(1)∵△ABC 是等边三角形 ∴060B C ∠=∠=………………………………(1分)∵ADE CDE BAD B ∠+∠=∠+∠…………(1分) 又∵060ADE ∠=,∴CDE BAD ∠=∠……………………………(1分)在△ABD 与△DCE 中CDE BAD B C ∠=∠⎧⎨∠=∠⎩∴△ABD ∽△DCE ……………………………(2分)(2)∵△ABD ∽△DCE∴ABBDCEDC=.…………………………………(2分) 设DC x =,∵3AB =且△ABC 是等边三角形,∴3BD x =-∴2333x x-=,∴11x =,22x =,……………(2分)∴1DC =或2DC =.…………………………(1分)四、解答题(本大题共2题,每题12分,满分24分) 23. (1)在Rt ADB ∆中,∵060B ∠=,∴设BD k =,则2AB k = …………………………(1分) 在Rt BAC ∆中,4BC k =∴34CD BC = ……………………………………………(2分) 又∵:3:1CF EF =,∴34CF CE =………………………(1分)∴CF CD CE BC=………………………………………………(1分) ∴FD ∥AB ………………………………………………(1分)(也可利用相似三角形来求出34CD BC =)(2)∵FD ∥AB , ∴△DFP ∽△AEP ……………(1分) ∴2()DFP AEP S DF S AE ∆∆=, ∴23DF AE =……………………………(1分) 由(1)得34DF CD BE CB ==,即34DF BE =…………………(1分) 设BE x =,2AB =,则2AE x =-,∴32423xx =-…………………………………………(1分) ∴1617x =,即1617BE =……………………………(2分) 24.(1)6m =,(4,0)A -,(0,3)B ………………………(3分) (2)过E 作EF x ⊥轴,垂足F 点,…………………(1分)∵23AE EC =,∴25AE AC =…………………………(1分)又∵根据题意得 EF ∥CD 且8AD =,6CD =∴AE EF AC CD =∴125EF =……………………(2分)∴E 点的坐标为:412(,)55E -……………………(1分)(3)当点P 在OA 延长线上时, BAD APC ∠>∠,BAD ACP ∠>∠,且,BAD PAC ∠<∠∴点P 在射线AO 上…………(1分)① 当AP ADAC AB=时,1(12,0)P ……………………(1分)② 当AP ABAC AD=时,29(,0)4P ……………………(1分) 综上所述:符合条件的P 点坐标为1(12,0)P 或29(,0)4P …………(1分)五、(本题满分14分)(1)正方形ABCD 中,DC ∥AB , ∴DC CFBE BF=, 即11y x y =-.…………………………………(2分) ∴11y x =+ x 的取值范围是0x >;………………………(2分) (2)∵1(1)11CF AE x x •=•+=+,12AC CO •==∴CF COAC AE =…………………………………(2分) 又∵45,OCF EAC ∠=∠=︒∴△OCF ∽△EAC …………………………………(2分) ∴CEB COG ∠=…………………………………(1分)(3)在Rt △CBE中,CE =…………(1分) ∵CEB COG ∠=∠,ECA ∠是公共角,∴△OCG ∽ △ECA ………………………………(2分)∴OG COAE CE =∴51x =+, 解得113x =,23x =…(2分) 经检验113x =,23x =都是满足方程的解 答(略)感谢您的阅读,祝您生活愉快。
2013年上海市初中毕业统一学业考试数学试题(含答案全解全析)(满分120分,考试时间120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本大题共6题,每题4分,满分24分)1.下列式子中,属于最简二次根式的是()A.√9B.√7C.√20D.√132.下列关于x的一元二次方程有实数根的是()A.x2+1=0B.x2+x+1=0C.x2-x+1=0D.x2-x-1=03.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+34.数据0,1,1,3,3,4的中位数和平均数分别是()A.2和2.4B.2和2C.1和2D.3和25.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8B.3∶8C.3∶5D.2∶56.在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()A.∠BDC=∠BCDB.∠ABC=∠DABC.∠ADB=∠DACD.∠AOB=∠BOC第Ⅱ卷(非选择题,共126分)二、填空题(本大题共12题,每题4分,满分48分)7.因式分解:a2-1=.8.不等式组{x-1>0,2x+3>x的解集是.9.计算:3b2a ·ab=.10.计算:2(a-b)+3b=.11.已知函数f(x)=3x2+1,那么f(√2)=.12.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为.14.在☉O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.15.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .18.如图,在△ABC 中,AB=AC,BC=8,tan C=32,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D,那么BD 的长为 .三、解答题(本大题共7题,19~22题10分,23、24题12分,25题14分,满分78分)19.计算:√8+|√2-1|-π0+(12)-1.20.解方程组{x -y =-2,x 2-xy -2y 2=0.21.已知平面直角坐标系xOy(如图),直线y=12x+b 经过第一、二、三象限,与y 轴交于点B,点A(2,t)在这条直线上,连结AO,△AOB 的面积等于1.(2)如果反比例函数y=k(k是常量,k≠0)的图象经过点A,求这个反比例函数的解析式.x22.某地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到直线BC的距离).(结果精确到0.1米,栏杆宽度忽略不计)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.23.如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF ∥AB交DE的延长线于点F.(2)连结CD,过点E作DC的垂线交DC于点H,交CF的延长线于点G,求证:∠B=∠A+∠HGC.24.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.在矩形ABCD中,点P是边AD上的动点,连结BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的☉P和以QC长为半径的☉Q外切时,求x的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F,如果EF=EC=4,求x 的值.答案全解全析:1.B ∵√9=√3,√20=2√5,√13=√33.故A 、C 、D 排除,选B.2.D 在x 2-x-1=0中,Δ=b 2-4ac=(-1)2-4×(-1)=5>0.故选D.3.C 原抛物线向下平移1个单位,则所得新抛物线的表示式为y=x 2+1.故选C.评析 本题比较容易,根据二次函数图象的平移规律“上加下减,左加右减”进行解题.考查二次函数图象的平移.4.B ∵数据已经从小到大排列,∴中位数为(1+3)÷2=2,平均数为(0+1+1+3+3+4)÷6=2. 故选B.5.A ∵DE∥BC,∴AE∶EC=AD∶DB=3∶5, ∵EF∥AB,∴BF∶FC=AE∶EC=3∶5, 故CF∶CB=5∶8.故选A.6.C 若满足∠BDA=∠CAD,则∠ACB=∠DBC,∴BO=OC,OD=OA.故AC=DB.对角线相等的梯形是等腰梯形,故选C.7.答案 (a+1)(a-1)解析 利用平方差公式分解得a 2-1=(a+1)(a-1). 8.答案 x>1解析 两个不等式的解集分别为x>1,x>-3,根据“同大取大”知,不等式组的解集为x>1. 9.答案 3b 解析3b 2b·b b =bb ·3b 2b=3b.10.答案 2a+b解析 原式=2a-2b+3b=2a+b. 11.答案 1 解析 f(√2)=2+1=33=1.12.答案 27解析 ∵字母e 在单词中共出现两次,单词一共7个字母,∴概率为27.13.答案 40%解析 百分比为(50+30)÷(50+80+30+40)=40%. 14.答案 √5解析 如图,连结OA,过点O 作OC⊥AB 于点C.根据垂径定理得:AC=12AB=2. ∴OC=√bb 2-A b 2=√32-22=√5.15.答案 答案不唯一,如∠ABC=∠DEF解析 ∵BF=CE,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE.添加∠ABC=∠FED,可由“ASA”公理推断出△ABC≌△DEF.16.答案 20解析 设直线解析式为y=kx+b.将(0,35),(160,25)代入可得y=-b16+35.当x=240时,y=20,即到达乙地时油箱剩余油量是20升.评析 本题考查利用待定系数法求解一次函数解析式. 17.答案 30°解析 当特征角是100°时,角β=50°,另一个角为180°-100°-50°=30°,∴最小内角的度数为30°. 18.答案154解析 如图1,过点A 作AH⊥BC 交BC 于点H,∴BH=HC=4,∵tan C=32,∴AH=6,AC=2√13.如图2,R 为AC 中点,则RC=√13.过点R 作RM⊥BC 于点M,∴RM=3,CM=2.∴BM=6.设BD=x,∴DM=6-x ,∵直线l 垂直平分BR,∴BD=RD=x,在Rt△DRM 中,利用勾股定理建立方程:32+(6-x)2=x 2,解得x=154,即BD=154.图1图219.解析 √8+|√2-1|-π0+(12)-1=2√2+√2-1-1+2=3√2. 20.解析 {x -y =-2, ①x 2-xy -2y 2=0,② 由②可得:(x-2y)(x+y)=0, 所以x=2y 或x=-y, 则原方程组可以转化成为 {x -y =-2,x =2y或{x -y =-2,x =-y .解得{x =-4,y =-2或{x =-1,y =1.评析 本题考查可化为两个二元一次方程组的二元二次方程组的求解方法.对方程②因式分解是解决这道题的关键.21.解析 (1)因为直线y=12x+b 经过第一、二、三象限,所以点B 在y 轴正半轴上,所以b>0.因为S △AOB =12·b·2=1,所以b=1,点B 的坐标为(0,1).(2)由(1)知直线的解析式是y=12x+1.又因为点A(2,t)在直线上,所以可得到A(2,2).因为点A 在反比例函数的图象上,所以k=2×2=4,所以反比例函数的解析式为y=4b . 22.解析 过点A 作AH∥BC,EH⊥AH. ∵∠EAB=143°,∴∠EAH=53°,∠AEH=37°, ∴cos∠AEH=cos 37°=bbbb≈0.8. ∵AE=1.2,∴EH=AE·0.8=0.96.∴栏杆EF 距离地面的高度是0.96+1.2=2.16≈2.2米. 23.证明 (1)∵DF∥BC,DB∥FC, ∴四边形DBCF 为平行四边形. 又∵D 为Rt△ACB 斜边中点,DE∥BC,∴bb bb =bb bb =12, ∴DE=12BC,又DF=BC,∴DE=12DF, ∴EF=DE.(2)∵D 为AB 中点,∴DC=DB=AD, ∴∠B=∠DCB.∵∠EHC=∠ACB=90°,∴∠HEC+∠ACD=90°, ∠DCB+∠ACD=90°,∴∠HEC=∠DCB. ∵∠HEC 为△EGC 的外角, ∴∠HEC=∠ECG+∠G, 又AD∥CF,∴∠ECG=∠A, ∴∠HEC=∠A+∠HGC, ∴∠B=∠A+∠HGC.24.解析 (1)∵OA=OB=2,∠AOB=120°,作AF⊥x 轴, ∴∠AOF=60°,可得到点A(-1,√3),B(2,0). 代入y=ax 2+bx(a>0)中,可得{b (-1)2+(-1)b =√3,22a +2b =0,解得{a =√33,b =-23√3,∴y=√33x 2-23√3x.(2)y=√33x 2-23√3x=√33(x 2-2x+1)-√33=√33(x-1)2-√33, ∴点M 的坐标为(1,-√33).过点M 作MQ⊥x 轴,则MQ=√33,OQ=1,tan∠QOM=bb bb =√33, ∴∠QOM=30°,∠AOM=120°+30°=150°.(3)连结AB,由(1)知∠AOF=60°.又∵OA=OB,∴∠OAB=∠ABO=30°,∴∠ABx=150°=∠AOM,∴点C 在B 点的右侧,设点C(c,0).△AOM 相似于△ABC 可分两种情况讨论:①∠CAB=∠MAO,即△ABC∽△AOM,AB BC =AO OM ,易知AB=2√3,BC=c-2,AO=2,OM=23√3, 则2√3b -2=23√3⇒c=4,∴C 1(4,0). ②∠CAB=∠AMO,即△ABC∽△MOA,bb bb =OM OA ,AB=2√3,BC=c-2,AO=2,OM=23√3, 则2√3c -2=23√32⇒c=8,∴C 2(8,0),综上两种情况,点C 坐标为(4,0)或(8,0).25.解析 (1)∵AD∥BC,∴∠APB=∠PBQ, ∵QM 是PB 的垂直平分线,∴∠QMB=∠PAB=90°,∴△APB∽△MBQ,∴AP PB =BMBQ .∵AP=x,AB=5,∠BAD=90°, ∴BP=√bb 2+A b 2=√b 2+25,又BM=BP 2=√x 2+252,BQ=y,AP=x,则√x 2+25=√x 2+252y, 化简得y=25+b 22b (1≤x≤13). (2)如图所示,∵☉P 与☉Q 外切,∴圆心距PQ=AP+CQ=x+(13-y). ∵QM 是PB 的垂直平分线,∴BQ=PQ=y,即y=x+(13-y),又由(1)知y=25+b 22b ,则{y =x +(13-y ),y =25+x 22x ,解得{x =2513,y =9713. ∴x=2513.(3)连结EQ,∵EC=EF=4,∠EFQ=∠ECQ=90°,EQ=EQ,∴△ECQ≌△EFQ,∴∠EQC=∠EQF,又DM 为BP 的垂直平分线,则可得∠PQM=∠BQM,∴2(∠EQF+∠PQM)=180°,∴∠EQM=90°,则可知∠EQC=∠APB,又∵∠ECQ=∠PAB=90°,∴△APB∽△CQE,∴EC CQ =AB AP ,413-y =5x ,代入(1)中的y=25+x 22x, 整理之后可得13x 2-130x+125=0,解得x=65±10√2613, 检验,当x=65±10√2613时,在定义域内,∴x=65±10√2613.。
黄浦区2012学年第一学期九年级期终考试数学试卷
(满分150分,考试时间100分钟)2013年1月17日
一、选择题(本大题共6题,每题4分,满分24分)
1、如果△ABC ∽△DEF (其中顶点A 、B 、C 依次与顶点D 、E 、F 对应),那么下列等式
中不一定成立的是( ) A 、∠A =∠D B 、
A D
B E ∠∠=∠∠
C 、AB =DE
D 、AB DE
AC DF
=
2、如图,地图上A 地位于B 地的正北方,C 地位于B 地的北偏东50°方向,且C 地到A 地、B 地距离相等,那么C 地位于A 地的( ) A 、南偏东50°方向 B 、北偏西50°方向 C 、南偏东40°方向 D 、北偏西40°方向
3、将抛物线2
y x =向左平移2个单位,则所得的抛物线的解析式为( ) A 、2
(2)y x =+ B 、2
(2)y x =- C 、2
2y x =+ D 、2
2y x =- 4、如图,△PQR 在边长为1个单位的方格纸中,它的顶点在小正方形顶点位置,其中点A 、B 、C 、D 也是小正方形的顶点,那么与△PQR 相似的是( )
A 、以点P 、Q 、A 为顶点的三角形
B 、以点P 、Q 、B 为顶点的三角形
C 、以点P 、Q 、C 为顶点的三角形
D 、以点P 、Q 、D 为顶点的三角形
5、抛物线232y x x =+-与坐标轴(含x 轴、y 轴)的公共点的个数是( ) A 、0 B 、1 C 、3 D 、3
6、如图,在△ABC 中,∠ACB =90°,CD 为边AB 上的高,已知BD =1,则线段AD 的长是( )
A 、2sin A
B 、2cos A
C 、2tan A
D 、2cot A C
B A
(第2题)
Q
R
P
D
C
B
A
(第4题)
A
B
D C
(第6题)
二、填空题(本大题共12小题,每题4分,满分48分) 7、已知
7
4
x y =,则
x y x y +-的值为__________。
8、计算:2()3()a b a b -++=
___________。
9、已知两个相似三角形的周长比为2:3,且其中较大三角形的面积是36,那么其中较小三角形的面积是__________。
10、如图,第一象限内一点A ,已知OA =5,OA 与x 轴正半轴说成的夹角为α,且t a n
2α=,
那么点A 的坐标是____________。
11、如图,某人沿着一个坡比为1:3的斜坡(AB )向前行走了10米,那么他实际上升的垂
直高度是____________米。
12、抛物线2
23y x x =++的顶点坐标是_____________。
13、如果抛物线2
(2)3y a x x a =-++的开口向下,那么a 的取值范围是____________。
14、若1x 、2x 是方程22340x x --=的两个根,则1212x x x x ⋅++的值为_________。
15、已知二次函数()y f x =图像的对称轴是直线2x =,如果(3)(4)f f >,那么
(3)f -___(4)f -。
(填“>”或“<”)
16、已知点P 是二次函数2
24y x x =-+图像上的点,且它到y 轴的距离为2,则点P 的坐
标是_______________。
17、如图,E 是正方形ABCD 边CD 的中点,AE 与BD 交于点O ,则tan AOB ∠=______。
18、在Word 的绘图中,可以对画布中的图形进行缩放,如下图1中正方形ABCD (边AB
α
y
x
O
(第10题) H
B
A
(第11题)
(第17题)
A
B
C
D
E
水平放置)的边长为3,将它在“设置绘图画布格式→大小→缩放”中,高度设定为75%,宽度设定为50%,就可以得到下图2中的矩形EFGH ,其中11350% 1.5A B =⨯=,
11375% 2.25A D =⨯=,实际上word 的内部是在画布上建立了一个以水平线与竖直线
为坐标轴的平面直角坐标系,然后赋予图形的每个点一个坐标(,)x y ,在执行缩放时,是将每个点的坐标做变化处理,即由(,)x y 变为(%,%)x n y m ⨯⨯,其中%n 与%m 即为设定宽度与高度的百分比,最后再由说得点的新坐标生成新图形。
现在画布上有一个△OMN ,其中∠O =90°,MO =NO ,且斜边NM 水平放置(如图3),对它进行缩放,设置高度为150%,宽度为75%,得到新图形为△111O M N (如图4),那么111cos O M N ∠的值为__________。
三、解答题(本大题共7小题,满分78分)
19、计算:222sin 60cos 60cot 304cos 45︒-︒︒-︒
=>
B
A
D
C
图1
图2
=>
N
M
O
图3
图4
20、如图,点E 是平行四边形ABCD 边BC 上一点,且:2:1BE ED =,点F 是边CD 的中
点,AE 与BF 交于点O ,
(1)设,AB a AD b == ,试用a 、b
表示AE ;
(2)求:BO OF 的值。
21、已知二次函数的图像经过点(0,8)-和(3,5)-,且其对称轴是直线1x =,求此二次函数
的解析式,并求出次二次函数图像与x 轴公共点的坐标。
22、如图,在△ABC 中,90C ∠=︒,AC =4,BC =6,点D 是边BC 上一点,且CAD B ∠=∠。
(1)求线段CD 的长; (2)求sin BAD ∠的值。
O
F
E
D
C
B
A
D
B
C
A
23、如图,点D 是Rt △ABC 斜边AB 上一点,点E 是直线AC 左侧一点,且EC ⊥CD ,∠
EAB =∠B 。
(1)求证:△CDE ∽△CBA ;
(2)如果点D 是斜边AB 中点,且3
tan 2
BAC ∠=
,试求CDE CBA S S 的值。
(CDE S 表示△CDE 的面积,CBA S 表示△CBA 的面积)
24、已知二次函数2
3y ax bx =++的图像与x 轴交于点(1,0)A 和点(3,0)B ,交y 轴于点C ,
其图像顶点为D 。
(1)求此二次函数的解析式;
(2)是问△ABD 与△BCO 是否相似,并证明你的结论;
(3)若点P 是此二次函数图像上的点,且PAB ACB ∠=∠,试求点P 的坐标。
O y
x
A
B
C
D
E
25、如图,在等腰梯形ABCD 中,AD ∥BC ,AD =2,AB =5,3
sin 5
B ∠=
,点E 是边BC 上的一个动点(不与点B 、C 重合)作AEF AEB ∠=∠,使边EF 交边CD 于点F (不与点C 、D 重合),设,BE x CF y ==。
(1)求边BC 的长;
(2)当△ABE 与△CEF 相似时,求BE 的长; (3)求y 关于x 的函数关系式,并写出定义域。
F
E C
B D
A C
B
D
A (备用图)
黄浦区一模参考答案
一、选择题 CAABDD 二、填空题
7、11
3
8、5a b + 9、16 10、(5,25) 11、10 12、(1,2)-
13、a <2 14、1
2
- 15、> 16、(2,4),(2,12)- 17、3 18、55
三、解答题 19、322+ 20、(1)23
AE a b =+
;(2):BO OF 的值为1 21、2
28y x x =--,公共点为(2,0)-与(4,0) 22、(1)83CD =;(2)5sin 13
BAD ∠= 23、(2)
1336
CDE CBA S S = 24、(1)2
43y x x =-+;(2)是相似,利用三边对应成比例来证明;(3)5
3(,)24-或75(,)24
25、(1)10BC =;(2)43BE =+或10;(3)22
10140400
1639x x y x x -+=-+(4<x <10)。