∴2na1+2n-1a2+…+22an-1=2(n-1)an(n≥2),②
①-②得2an=nan+1-2(n-1)an(n≥2),即an+1=2an(n≥2),
令2na1+2n-1a2+…+2an=nan+1中n=1,得a2=2a1也符合上式,
故数列{an}为首项a1=1,公比q=2的等比数列,则an=a1qn-1=2n-1.
2 +
n+1
Tn=(2 -2)×
=(2n-1)(n2+n).
2
n+1
1 2 3 4 5 6
=
2 +
,
2
3.(2023河北张家口高三期末)已知Sn为数列{an}的前n项和,Sn=2an-4n+2.
(1)证明:数列{an+4}为等比数列;
(2)求数列{nan}的前n项和Tn.
1 2 3 4 5 6
9
由题意得 6d+=21,从而 2d2-7d+3=0.
1
整理得(2d-1)(d-3)=0,解得 d=3 或 d=2(舍去).
故 an=3n,n∈N*.
1 2 3 4 5 6
(2)由题意,n∈N*,d>1,
2 +
在等差数列{bn}中,bn= ,前 n 项和为 Tn,
2
6
12
a2=a1+d,a3=a1+2d,b1= ,b2= ,b3= ,
2024
高考总复习优化设计
GAO KAO ZONG FU XI YOU HUA SHE JI
考点突破练5
数列求和及其综合应用
1.(2023安徽芜湖高三统考)已知Sn是数列{an}的前n项和,2Sn=(n+1)an,且