高中数学课件-数列求和
- 格式:ppt
- 大小:905.50 KB
- 文档页数:21
第5讲 数列求和1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差考试要求数列、非等比数列求和的几种常见方法.01聚焦必备知识知识梳理1.公式法(1)等差数列{a n}的前n项和S n=_____________=________________.(2)等比数列{a n}的前n 项和S n =_____________________.2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或其他可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n}与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.常用结论夯基诊断√√×√B(2)已知a n=2n+n,则数列{a n}的前n项和S n=____________.(3)数列{(n+3)·2n-1}前20项的和为____________.答案:22·220-202突破核心命题考 点 一分组(并项)法求和反思感悟训练1 已知等差数列{a n}的前n项和为S n,且a1=1,S3+S4=S5.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1a n,求数列{b n}的前n项和T n.解:(1)设等差数列{a n}的公差为d,由S3+S4=S5可得a1+a2+a3=a5,即3a2=a5,∴3(1+d)=1+4d,解得d=2.∴a n=1+(n-1)×2=2n-1.(2)由(1)可得b n=(-1)n-1·(2n-1).当n为偶数时,T n=1-3+5-7+…+(2n-3)-(2n-1)=-n.当n为奇数时,T n=T n-1+b n=-(n-1)+(-1)n-1(2n-1)=-(n-1)+(2n-1)=n.综上,T n=(-1)n+1n.考 点 二 裂项相消法求和解:(1)当n≥2时,S n+1+2S n-1=3S n⇒S n+1-S n=2S n-2S n-1即a n+1=2a n,∵{a n}是等比数列,∴q=2,又a1=1,∴数列{a n}的通项公式为a n=2n-1,n∈N*.1.裂项相消法求和的基本步骤反思感悟2.裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项.考 点 三错位相减法求和1.如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.2.错位相减法求和时,应注意:(1)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.(2)应用等比数列求和公式时必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1.反思感悟训练3 已知等比数列{a n}的前n项和为S n,且a1=2,S3=a3+6.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求数列{a n b n}的前n项和T n.解:(1)设等比数列{a n}的公比为q.由a1=2,S3=a3+6,得a1(1+q+q2)=6+a1q2,解得q=2,所以a n=2n.03限时规范训练(四十四)1.(2023·全国乙卷)记S n为等差数列{a n}的前n项和,已知a2=11,S10=40.(1)求{a n}的通项公式;(2)求数列{|a n|}的前n项和T n.2.已知单调递增的等差数列{a n}的前n项和为S n,且S4=20,a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)若b n=2a n+1-3n+2,求数列{b n}的前n项和T n.入上式,解得a2=3,同理可求得a3=5.猜想a n=2n-1.(2)记数列{a n b n}的前n项和为C n,当n=1时,a1=2,b1=1,所以C1=a1b1=2.当n≥2时,C n=2×1+3×2+5×22+…+(2n-1)·2n-1,①①×2,得2C n=2×2+3×22+5×23+…+(2n-1)·2n,②①-②,得-C n=4+8(2n-2-1)-(2n-1)·2n,化简得C n=(2n-3)·2n+4.综上,数列{a n b n}的前n项和C n=(2n-3)·2n+4.限时规范训练(四十四)点击进入WORD文档。