4 1 2 n m
或显解一个 参数,如:
f , , . . . ,
或求得一个因变量的表达式。
例1:液体在水平等直径的管内流动,设两点压强差 p 与下 , ,v ,l, 列变量有关:管径 d ,管壁粗糙度 ,试求 p 的 表达式。
解 : fdv ,,, l ,,, p 0
z 3 a 1 1
为满足量纲的和谐,相应的量纲指数必须相同。因此
M : 1 z a L : 0 x y 3z a T : 2 y a
故 Fk D U D
1 a2 a1 aa
得 x 1 a , y 2 a , z 1 a
l 设 f4 R e ,
l v2 则 h d 2g
例2:已知文丘里流量计是用以测量有压管路的流量,已知压 强降落 p 随流量Q,流体密度 ,液体粘性系数 ,管 壁粗糙高度 ,流量计长度L以及大小直径 D 1 , D 2 变化。 试用 定律求出的压强降落 p 表示的流量公式。 解:函数式为:
f D ,, v , ,, 0 0
(动力量)为基 从各独立影响因素中选取D(几何量),v(运动量), 本量建立 项:
, , D v D v D v
1 0 a bc 1 1 1 2 a bc 2 2 2 3 a bc 3 3 3
f , Q , DD , ,2 , p 0 1
选取 , Q, D1 为基本变量, 则存在6-3=3个 数
1 Q D p 2 Q D 3 Q D D2
3 3 3 1 2 2 2 1
1
1
1 1