相似原理与量纲分析
- 格式:doc
- 大小:422.50 KB
- 文档页数:9
相似原理与量纲分析相似原理和量纲分析是物理学中常用的分析方法。
这两个方法都可以帮助我们简化和理解复杂的物理问题,并从中得到有用的结论。
相似原理是指在某些情况下,两个或多个物理系统在某些方面具有相似性。
通过找到这些相似性,我们可以将一个物理问题转化为另一个更简单的问题,并从中得到有关原问题的信息。
量纲分析是一种通过对物理量的量纲进行分析来研究物理问题的方法。
在量纲分析中,我们将物理量表示为其单位的乘积,例如长度(L)、质量(M)和时间(T)。
通过对物理方程中各项的量纲进行分析,我们可以得到物理问题的量纲关系。
现在让我们更详细地讨论这两种方法。
首先,我们来看看相似原理。
相似原理的核心思想是,如果两个物理系统具有相似的形状、相似的流动条件和相似的物理特性,那么它们在某些方面具有相似性。
这种相似性可以通过无量纲参数来描述。
无量纲参数是一个相对于单位的比率或比值,因此在不同的物理系统中具有相同的值。
通过选择适当的无量纲参数,我们可以把一个复杂的问题转化为一个简单的问题。
例如,假设我们想研究飞机的气动性能。
我们可以选择无量纲参数如升力系数(Cl)、阻力系数(Cd)和升阻比(Cl/Cd),来描述飞机的飞行特性。
通过比较不同飞机的这些无量纲参数,我们可以得出有关它们性能优劣的结论。
相似原理的应用非常广泛。
它常用于流体力学、热传导和振动等领域的问题研究。
通过利用相似原理,我们可以设计模型实验来研究某一问题,从而避免对真实系统进行复杂和昂贵的实验。
接下来,我们来谈谈量纲分析。
量纲分析是一种通过对物理量的量纲进行分析来研究物理问题的方法。
在物理方程中,各个物理量的量纲必须相等。
这就是说,物理方程中各项的量纲必须保持平衡。
通过量纲分析,我们可以得到物理问题的一些量纲关系。
这些量纲关系可以帮助我们推导出物理方程中的无量纲参数,并进一步简化问题。
例如,假设我们要研究物体自由落体的运动规律。
我们可以通过对物理量的量纲进行分析,得到物体自由落体的无量纲形式。
相似原理与量纲分析相似原理和量纲分析是科学研究和工程设计中常用的两种方法,它们在不同领域有着广泛的应用。
相似原理是指在某些条件下,两个或多个对象在某些方面具有相似性的原理,而量纲分析则是一种通过对物理量的量纲进行分析,来确定物理现象之间关系的方法。
本文将分别介绍相似原理和量纲分析的基本概念和应用,以期帮助读者更好地理解和应用这两种方法。
首先,我们来介绍相似原理。
相似原理是指在某些条件下,两个或多个对象在某些方面具有相似性的原理。
在流体力学中,相似原理是研究流体流动时的一种重要方法。
根据相似原理,如果两个流体流动问题在某些方面具有相似性,那么它们的流动规律也应该是相似的。
通过建立相似模型,可以通过对模型进行实验来研究真实流体流动问题,这为工程设计和科学研究提供了重要的手段。
在工程设计中,相似原理也有着广泛的应用。
例如,在飞机设计中,通过建立风洞模型来研究飞机在空气中的飞行性能;在建筑设计中,通过建立模型来研究建筑物在风力作用下的受力情况。
相似原理的应用不仅可以帮助工程师更好地理解和预测真实系统的行为,还可以降低实验成本和风险。
接下来,我们来介绍量纲分析。
量纲分析是一种通过对物理量的量纲进行分析,来确定物理现象之间关系的方法。
在物理学和工程学中,很多物理现象可以通过物理量之间的关系来描述。
通过对这些物理量的量纲进行分析,可以得到物理现象之间的关系,从而简化问题的分析和求解。
在工程设计中,量纲分析也有着重要的应用。
例如,在流体力学中,通过对流体流动中的速度、密度、长度等物理量的量纲进行分析,可以得到无量纲参数,从而简化流体流动问题的分析和求解。
在热力学中,通过对热量、温度、热容等物理量的量纲进行分析,可以得到无量纲参数,从而简化热力学问题的分析和求解。
总之,相似原理和量纲分析是科学研究和工程设计中常用的两种方法,它们在不同领域有着广泛的应用。
通过对相似原理和量纲分析的理解和应用,可以帮助工程师和科研人员更好地理解和解决实际问题,从而推动科学技术的发展和进步。
相似原理与量纲分析在物理学和工程学领域中,相似原理和量纲分析是两个非常重要的概念。
它们可以帮助我们理解和解决各种复杂的问题,从流体力学到结构力学,从热传导到电磁场,都可以用相似原理和量纲分析来进行分析和研究。
首先,让我们来看看相似原理。
相似原理是指在某些条件下,两个物体或系统在某些方面具有相似性质。
这种相似性质可以是几何形状、运动状态、流动特性等。
通过相似原理,我们可以将一个复杂的问题简化为一个相似的简单问题,从而更容易地进行分析和解决。
例如,在流体力学中,我们可以利用相似原理将实际的飞机机翼模型缩小到实验室中进行风洞测试,从而得到与实际飞机飞行状态相似的流场特性。
接下来,让我们来了解一下量纲分析。
量纲分析是一种通过对物理量的量纲进行分析来研究物理现象的方法。
在自然界中,存在着很多不同的物理量,它们之间可能存在着某种关系。
通过量纲分析,我们可以找到这些物理量之间的关系,并且可以得到一些重要的结论。
例如,在热传导问题中,通过量纲分析可以得到热传导方程中的无量纲参数,从而可以简化和统一热传导问题的分析和解决方法。
相似原理和量纲分析在工程实践中有着广泛的应用。
例如,在设计新型飞机时,我们可以利用相似原理来进行风洞测试,从而验证飞机的飞行性能;在设计新型建筑结构时,我们可以利用量纲分析来研究结构的受力特性,从而优化结构设计。
这些方法不仅可以帮助我们更好地理解和解决实际工程中的问题,还可以节约时间和成本,提高工程设计的效率和质量。
总之,相似原理和量纲分析是物理学和工程学中非常重要的概念,它们可以帮助我们简化复杂问题,找到物理量之间的关系,从而更好地理解和解决各种实际问题。
在工程实践中,我们可以充分利用这些方法来提高工程设计的效率和质量,推动科学技术的发展。
希望大家能够深入学习和理解这些方法,将它们运用到实际工程中,为社会发展做出更大的贡献。
量纲分析与相似原理量纲分析与相似原理是一种在工程领域常用的分析方法,用于研究物理量之间的关系和相似性。
通过量纲分析,可以确定物理量之间的依赖关系,从而简化问题的求解过程,提高工程设计的效率。
相似原理则是利用量纲分析的结果,通过建立相似模型来研究实际问题,从而获得与实际情况相似的结果。
在进行量纲分析时,首先需要明确问题中涉及的物理量,包括基本物理量和派生物理量。
基本物理量是不可再分的物理量,例如长度、质量、时间等。
派生物理量是由基本物理量组合而成的物理量,例如速度、加速度、力等。
在量纲分析中,我们通常使用方程式来表示物理量之间的关系,例如 F = ma,其中 F 表示力,m 表示质量,a 表示加速度。
接下来,我们需要确定问题中的基本物理量及其单位。
单位是表示物理量大小的标准,例如长度的单位可以是米,质量的单位可以是千克。
在量纲分析中,我们通常使用方括号 [] 表示物理量的量纲,例如 [F] 表示力的量纲。
根据国际单位制的规定,基本物理量的量纲可以表示为 [L] 表示长度的量纲,[M] 表示质量的量纲,[T] 表示时间的量纲。
在进行量纲分析时,我们需要根据物理量之间的关系,确定它们的量纲式。
量纲式是表示物理量之间关系的方程式,其中物理量的量纲用方括号表示。
例如在力学中,根据牛顿第二定律 F = ma,我们可以得到 [F] = [M][L][T]^-2,表示力的量纲是质量乘以长度再除以时间的平方。
通过量纲分析,我们可以确定物理量之间的依赖关系。
在确定依赖关系时,我们需要注意量纲式中的常数,例如在牛顿定律中的常数就是 1。
通过分析量纲式中的常数,我们可以确定物理量之间的比例关系,从而简化问题的求解过程。
相似原理是在量纲分析的基础上建立的。
在研究实际问题时,我们通常无法直接进行实验或观测,而是通过建立相似模型来模拟实际情况。
相似模型是在尺寸、速度、时间等方面与实际情况相似的模型。
通过量纲分析,我们可以确定相似模型与实际情况之间的比例关系,从而将实际问题转化为相似模型的求解。
第五章 相似理论与量纲分析5.1基本要求本章简单阐述和实验有关的一些理论性的基本知识。
其中,包括作为模型实验理论根 据的相似性原理,阐述原型和模型相互关系的模型律,以及有助于选择实验参数的量纲分析法。
5.1.1识记几何相似、运动相似、动力相似的定义,Re 、Fr 、Eu 等相似准则数的含义,量纲的定义。
5.1.2领会流动的力学相似概念,各个相似准数的物理意义,量纲分析法的应用。
5.1.3应用量纲分析法推导物理公式,利用模型律安排模型实验。
重点:相似原理,相似准则,量纲分析法。
难点:量纲分析法,模型律。
5.2基本知识点5.2.1相似的基本概念为使模型流动能表现出原型流动的主要现象和特性,并从模型流动上预测出原型流动的结果,就必须使两者在流动上相似,即两个互为相似流动的对应部位上对应物理量都有一定的比例关系。
具体来说,两相似流动应满足几何相似、运动相似和动力相似。
原型流动用下标n 表示,模型流动用下标m 表示。
1. 几何相似两流动的对应边长成同一比例,对应角相等。
即n nl m m L d C L d == n m θθ=相应有 222n nA l m m A L C C A L === 333n n V l m mV L C C V L ===2. 运动相似两流动的对应点上流体速度矢量成同一比例,即对应点上速度大小成同一比例,方向相同。
n nu m mu C u υυ== 相应有 t l l u t u C C C C C C ==或者 , 2u u a t lC C C C C == 3. 动力相似两流动的对应部位上同名力矢成同一比例,即对应的受同名力同时作用在两流动上,且各同名力方向一致,大小成比例。
Im pn n In n Gn EnF m m Gm pm EmF F F F F F C F F F F F F υυ====== 4. 流动相似的含义几何相似是运动相似和动力相似的前提与依据;动力相似是决定二个流动相似的主导因素;运动相似是几何相似和动力相似的表现;凡相似的流动,必是几何相似、运动相似和动力相似的流动。
5.2.2相似准则描述流体运动和受力关系的是流体运动微分方程,两流动要满足相似条件就必须同时满足该方程,利用该方程可得到模型流动和原型流动在满足动力相似时各比例系数之间的约束关系即相似准则。
常用的相似准数为: 1. 雷诺数ReRe uL uLρμν==,Re 数表征了惯性力与粘滞力作用的对比关系。
2. 弗汝德数Fr2u Fr gL=,Fr 数表征惯性力与重力作用的对比关系。
3. 欧拉数Eu2pEu u ρ∆=,Eu 数表征压力与惯性力作用的对比关系。
4. 斯特劳哈勒数St2L u tSt tu u L==,St 数是时变加速度与位变加速度的比值,标志流动的非定常性。
5.2.3模型律 1. 模型律的选择动力相似可以用相似准数表示,若原型和模型流动动力相似,各同名相似准数均相等,如果满足则称为完全相似。
但同时满足所有相似准数都相等,在实际上是很困难的,有时也是不必要的。
实际上我们往往只需要考虑主要动力相似,即只要起主导作用的相似准数相等即可。
要达到主要动力相似就应该根据所研究或所需解决的原型流动的性质来选择恰当的相似准数。
2. 模型试验模型试验步骤:①选定l C ;②求模型的几何边界;③选模型律;④实现相似,计算相应物理量。
5.2.4量纲分析法 1. 量纲分析 1) 量纲量纲是物理量的单位种类。
注意量纲与单位的区别!基本量纲是具有独立性的量纲,在流体力学领域中有三个基本量纲:长度量纲L 、时间量纲T 和质量量纲M 。
导出量纲由基本量纲组合表示。
任一物理量均可由基本量纲的指数乘积的形式来描述:[]q M L T αβγ⎡⎤=⋅⋅⎣⎦2) 无量纲量无量纲量指物理量的量纲为1,用00M L T 表示,实际是一个数,但与单纯的数不一样,它是几个物理量组合而成的综合物理量。
无量纲量可由几个有量纲量通过乘除组合而成或由同类量的比值组成。
无量纲量的优点:①客观;②不受运动规模的影响;③可进行超越函数的运算。
3) 量纲和谐原理量纲和谐性原理又被称为量纲一致性原理,也叫量纲齐次性原理,指一个物理现象或一个物理过程用一个物理方程表示时,方程中各项的量纲应该是一致的。
推论:(1)凡正确反映客观规律的物理方程,都可表示成由无量纲项组成的无量纲方程。
(2)量纲和谐原理规定了一个物理过程与有关物理量之间的关系。
2.定理:对于某个物理现象,如果存在n 个变量互为函数,即12(,,,)0n F A A A = 。
而这些变量中含有m 个基本量,则可把这n 个变量成(n-m )个无量纲数的函数关系12(,,,)0n f πππ= ,即可合并n 个物理量为(n-m )个无量纲π数。
定理解题步骤如下:1) 确定关系式:确定所研究流动问题所包含的各个物理量及其关系式:121211(,,,)0,(,,,,,,)n i i i n F A A A A F A A A A A -+== 或 2) 确定基本量:从n 个物理量中选取m 个基本物理量作为基本量纲,一般3m =,如A 1,A 2,A 3;3) 确定无量纲变量π数的数目(n-m ),并写出其余物理量与基本物理量组成的π表达式:1231,2,...,,iiii i i i i A A A A i n m αβγπαβγ==-;为待定指数4) 确定无量纲π数:由量纲和谐原理解联立指数方程,求出各π项的指数,,αβγ,从而定出各无量纲π参数。
5) 写出描述物理现象的关系式:12(,,,)0n f πππ= 或者1211(,,,,,,)i i i n m f ππππππ-+-= 5.3典型例题例5-1 某水库以长度比尺100l C =做底孔放空模型实验,今在模型上测得放空时间为12小时,求原型上放空水库所需的时间。
【解】 取 n m Fr Fr =,即 22n mgl gl υυ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭所以n m mυ==10C υ===又 1001010l t C C C υ=== 所以 1012120h n t m t C t ==⨯=讨论:弗汝德数的适用范围:凡有自由水面并且允许水面上下自由变动的各种流动(重力起主要作用的流动),如堰坝溢流、孔口出流、明渠流动与隧洞流动等。
本题中水库内水的出流是重力出流,因此选择重力相似准则,即弗汝德数相等。
例5-2 已知某船体长122 m , 航行速度15 m/s ,现用船模在水池中实验船模长3.05 m 。
求船模应以多大速度运动才能保证与原型相似。
若测得船模运动阻力为20 N ,实物船所受阻力等于多少。
【解】 取 n m Fr Fr =,即 22n mgl gl υυ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭所以15 2.37m/s m υυ=== 又 2222()()nmFFllρυρυ=所以 233612()122()20() 1.2810N () 3.05n n n m m m m l l F F F l l υυ===⨯=⨯ 例5-3 有一直径20cm d =的输油管道,输送运动粘滞系数为624010m /s ν-=⨯油的油,其流量10l/s Q =。
若在模型中采用直径为5cm 的圆管,求模型中用运动粘滞系数为621710m /s ν-=⨯水的水做试验时的流量。
【解】 选用雷诺数相似准则,即n n m mn md d υυνν=又Qd υπ=24,∴ n n m m n n m m Q d Q d d d πνπν2244=.l/s m m m n n n d Q Q d νν⨯⨯=⨯=⨯⨯10106-6-651710=204010讨论:雷诺数的适用范围:主要是受水流阻力即粘滞力作用的流体流动,凡是有压流动,重力不影响流速分布,主要受粘滞力的作用,这类流动相似要求雷诺数相等。
另外,处于水下较深的运动潜体,在不至于使水面产生波浪的情况下,也是以雷诺数相等保证动力相似的。
如层流状态下的管道、隧洞中的有压流动和潜体绕流问题等。
例5-4 一建筑物模型在风速为5 m/s 时,迎风面压强为50 N/m 2,,背风面压强为-30 N/m 2,若气温不变,风速增至15 m/s 时,建筑物迎风面和背风面的压强各为多少【解】采用Eu 相似准则,nmn nm m p p ρυρυ=22因为 n m ρρ=所以,迎风面压强2N/m m n n p p υυ++==⨯=222215504505背风面压强2()N/m m n n p p υυ--==⨯-=-222215302705讨论:一般,两流动的雷诺数相等,欧拉数也相等;两液流的弗劳德数相等,欧拉数也相等。
只有出现负压或存在气蚀情况的液体,才需考虑欧拉数相等来保证流动相似。
例5-5 假设流量Q 与管径D 、喉管直径d 、流体密度ρ、压强差P ∆及流体的动力粘滞系数μ有关,试用π定理分析文丘里管的流量表达式。
【解】 据题意拟定函数关系式:(),,,,,0F Q D d p ρμ∆=选择 D ,,ρμ为独立变量,则可建立3个无量纲π数:111222333123D d D P D Qαβγαβγαβγπρμπρμπρμ==∆=对1π: 1=()()1113111L MLML T L βγα--=111111:31:0:0L M T αβγβγγ--=⎧⎪+=⎨⎪=⎩求解上述方程组可得:1111,0,0αβγ=-== 所以 1d Dπ= 同理可得 222PDρπμ∆=3DQ ρπμ=将各π数代入312(,)f πππ= 得22(.)DQ d Pf D D ρρμμ∆= 22(.)d P Q f D D D μρρμ∆=讨论:从本例题可以看出,利用π定理,可以在仅知与物理过程有关物理量的情况下,求出表达该物理过程关系式的基本结构形式。
但是用量纲分析法所确定的物理方程中包含待定系数,这个系数要通过实验来确定。
而量纲分析法求解中已指定如何用实验来确定这个系数。
因此,量纲分析法也是流体力学实验的理论基础。
例5-6 试用量纲分析法证明风洞运行时所需功率为()23N L f L ρυρυμ=,式中N 为功率,ρ为流体密度,μ为动力粘性系数,L 为风洞的特征长度。
【解】 本题共5个变量,选3个基本量纲,则无量纲π数为2。
选定ρ、L 、υ 为基本量,则1111L αβγπμρυ=,显见 1Lρυπμ=2222N L αβγπρυ=[]2220002332M L T ML T ML L LT αγβ---⎡⎤⎡⎤⎡⎤⎡⎤=⋅⋅⋅⎣⎦⎣⎦⎣⎦⎣⎦⎪⎩⎪⎨⎧-=-=-=⇒⎪⎩⎪⎨⎧--=++-=+=321303201022222222γβαγγβαα所以 22323,()NN Lf L L ρυπμρυρυ==即23()LN L f ρυρυμ=5.4习题1. 当水温为20℃,平均速度为4.5 m/s ,直径为0.3 m 水平管线某段的压降为 kN/m 2。