专题 量子论初步与原子物理
- 格式:doc
- 大小:2.62 MB
- 文档页数:4
第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----••⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm hc m eV eVm h -⨯-=-=λ 由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
量子理论初步、原子的核式结构(一) 玻尔的原子模型理论:1、定态理论:原子只能处于一系列不连续的能量状态之中,在这些状态之中原子是稳定的,电子虽然绕 核运动,但不向外辐射能量,这些状态叫做定态。
2、跃迁理论:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两 种定态之间的能量差决定,即:h v = E 初-E 末。
3、 轨道量子化理论:原子的不同能量状态跟电子沿不同的轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
(二) 氢原子的能级的概念和跃迁 1、 氢原子的能级:氢原子的能级公式为:E n =E 1,对应的轨道半径公式为 r n = n 2 r i ,其中n 称为量子数,只能取正整数,nE i = — 13.6eV ,是基态能量的值;r i =0.53X 10-10m ,是基态轨道半径的值。
2、 氢原子各定态的能量的值,为电子绕核运动的动能E K 和势能E P 的代数和,因为在选无穷远处的电势 能为零的情况下,各定态的电势能均为负值,其大小总是大于同一定态的动能值,所以各定态的能量值E 1均为负值,因此不能根据能级公式E n = 1,得出氢原子各定态能量与 n 2成反比的结论。
n3、原子跃迁的条件:h v = E 初-E 末只适用于光子和原子作用而使原子在各定态之间跃迁的情况,但光子和 原子作用而使原子电离时则不受此条件的限制。
这是因为原子一旦电离,原子结构即遭破坏,因而不再 遵守玻尔原子模型的理论。
此外实物粒子与原子相互作用而使原子激发时,也不受上述条件的限制。
【例题1】氢原子辐射出一个光子后,则: A 、 电子绕核旋转半径增大; B 、 电子的动能增大; C 、 氢原子的电势能增大; D 、 原子的能级值增大。
【分析与解答】选 B由玻尔原子模型理论可知,氢原子辐射光子后,应从离核较远的轨道跃迁到离核较近的轨道。
在此跃迁 过程中,电场力对电子做了正功,因而电势能减小。
物理量子论初步知识点归纳物理量子论初步知识点归纳一. 教学内容:量子论初步二. 要点扫描(一)光电效应1. 现象:在光(包括不可见光)照射下物体发射出电子的现象叫光电效应现象;所发射的电子叫光电子;光电子定向移动所形成的电流叫光电流。
s,几乎是瞬时产生的.说明:(1)光电效应规律“光电流的强度与入射光的强度成正比”中“光电流的强度指的是光电流的最大值(亦称饱和值),因为光电流未达到最大值之前,其值大小不仅与入射光的强度有关,还与光电管两极间的电压有关. 只有在光电流达到最大以后才和入射光的强度成正比.(2)这里所说“入射光的强度”,指的是单位时间内照射到金属表面单位面积上的光子的总能量,在入射光频率不变的情况下,光强正比于单位时间内照射到金属表面上单位面积的光子数. 但若换用不同频率的光照射,即使光强相同,单位时间内照射到金属表面单位面积的光子数也不相同,因而从金属表面逸出的光电子数也不相同,形成的光电流也不同.(二)光子说1. 光电效应规律中(1)、(2)、(4)条是经典的光的波动理论不能解释的,(1)极限频率光的强度由光波的振幅A决定,跟频率无关,只要入射光足够强或照射时间足够长,就应该能发生光电效应.(2)光电子的最大初动能与光强无关,(3)波动理论还解释不了光电效应发生的时间之短10-9s能量积累是需要时间的2. 光子说却能很好地解释光电效应. 光子说认为:(1)空间传播的光不是连续的,而是一份一份的,每一份叫做一个光子.(2)光子的能量跟它的频率成正比,即E=hv=hc/λ 式中的h 叫做普朗克恒量,h=6. 610_34J?s.因斯坦利用光子说解释光电效应过程:入射光照到金属上,有些光子被电子吸收,有些没有被电子吸收;吸收了光子的电子(a、b、c、e、g)动能变大,可能向各个方向运动;有些电子射出金属表面成为光电子(b、c、g),有些没射出(a、e);射出金属表面的电子克服金属中正电荷引力做的功也不相同;只有从金属表面直接飞出的光电子克服正电荷引力做的功最少(g),飞出时动能最大。
原子物理与量子力学习题参考答案目录原子物理学(褚圣麟编) (1)第一章原子的基本状况 (1)7.α粒子散射问题(P21) (1)第二章原子的能级和辐射 (1)5.能量比较(P76) (1)7.电子偶素(P76) (1)8.对应原理(P77) (1)9.类氢体系能级公式应用(P77) (1)11.Stern-Gerlach实验(P77) (2)第三章量子力学初步 (2)3.de Broglie公式(P113) (2)第四章碱金属原子 (2)2.Na原子光谱公式(P143) (2)4.Li原子的能级跃迁(P143) (2)7.Na原子的精细结构(P144) (2)8.精细结构应用(P144) (3)第五章多电子原子 (3)2.角动量合成法则(P168) (3)3.LS耦合(P168) (3)7.Landé间隔定则(P169) (4)第六章磁场中的原子 (4)2.磁场中的跃迁(P197) (4)3.Zeeman效应(P197) (4)7.磁场中的原子能级(P197) (5)8.Stern-Gerlach实验与原子状态(P197) (5)10.顺磁共振(P198) (5)第七章原子的壳层结构 (6)3.原子结构(P218) (6)第八章X射线 (6)2.反射式光栅衍射(P249) (6)3.光栅衍射(P249) (6)量子力学教程(周世勋编) (7)第一章绪论 (7)1.1 黑体辐射(P15) (7)1.4 量子化通则(P16) (7)第二章波函数和Schrödinger方程 (8)2.3 一维无限深势阱(P52) (8)2.6 对称性(P52) (8)2.7 有限深势阱(P52) (9)第三章力学量 (10)3.5 转子的运动(P101) (10)3.7 一维粒子动量的取值分布(P101) (10)3.8 无限深势阱中粒子能量的取值分布(P101) (11)3.12 测不准关系(P102) (11)第四章态和力学量的表象 (12)4.2 力学量的矩阵表示(P130) (12)4.5 久期方程与本征值方程的应用(P130) (13)第五章微扰理论 (16)5.3 非简并定态微扰公式的运用(P172) (16)5.5 含时微扰理论的应用(P173) (16)第七章自旋与全同粒子 (17)7.1 Pauli算符的对易关系(P241) (17)7.2 自旋算符的性质(P241) (17)7.3 自旋算符x、y分量的本征态(P241) (17)7.4 任意方向自旋算符的特点(P241) (17)7.5 任意态中轨道角动量和自旋角动量的取值(P241) (18)7.6 Bose子系的态函数(P241) (19)原子物理与量子力学习题 (20)一、波函数几率解释的应用 (20)二、态叠加原理的应用 (20)三、态叠加原理与力学量的取值 (20)四、对易关系 (21)五、角动量特性 (22)1原子物理学(褚圣麟编)第一章 原子的基本状况7.α粒子散射问题(P21)J 106.1105.3221962-⨯⨯⨯⨯==E M υ232323030m )2/3(109.1071002.61060sin 1060sin 10----⊥-⨯⨯⨯⨯=⨯⨯=⋅⨯=A N t A N Nt s ρρ C 1060.119-⨯=e ,11120m AsV 1085.8---⨯=ε,61029-⨯=n dn32521017.412.0100.6--⨯=⨯==ΩL dS d , 20=θ 2.48)4(sin 202422=⋅Ω⋅⋅=Nt d n dn eM Z πευθ第二章 原子的能级和辐射5.能量比较(P76)Li Li Li Li v hcR hcR E E hv E )427()211(32212=-⋅=-==H e H e H e H e hcR hcR E E 4)1/2(0221=⋅=-=++∞ +∞>H e v E E ,可以使He +的电子电离。
第二章 量子力学初步为什么要学?量子力学已经从理论物理的一个分支学科,发展成为技术专家手中的一门有力的工具:纳米(10-9M )科学与技术, STM 和AFM ,…对物理专业的学生,导论和准备;对应用物理专业的学生,掌握量子力学的基本知识。
为什么在这时候学?在波尔与索末菲的旧量子理论中:问题1:L (轨道角动量数值)=n ϕℏ,L z (轨道角动量的方向)= m ℏ;即:定态条件,作为“规定”的量子化条件引入。
这种强制性“规定”不符合数学逻辑。
问题2:氢原子基态的电子空间分布: 波尔理论:n =1的“轨道”,r n =n 2a 1=a 1=0.53A ; 中学物理中的“电子云”。
孰是孰非?“电子云”概念是正确的,“轨道”概念是错误的。
正确的原子概念的建立,必须学习量子力学。
§2.1 光的波动粒子二象性(duality)光从何来? 圣经:上帝创造;玻尔,爱因斯坦:能级跃迁,。
光是什么? 牛顿的微粒学说(光子流;依据:光的直线传播性质,反射折射定律);惠更斯-菲涅尔的波动学说(光波;证据:杨氏双缝实验-10大经典物理实验之一)2.1.1 光的波动性波动特性参量: 频率(ν),波长(λ),波矢(k),偏振(E 0),位相(ϕ) 参量关系: νλ=c ;2π /λ = k ;(k ·r - 2πνt )=ϕ 平面波的表示: E = E 0 cos[k ·r - 2πνt]⇒ E 0)2(t r k i eπν-∙(1)平面光波满足的波动方程:− Helmhetz 方程: ∇2E +k 2 E = 0 (2)∇2(Laplace 算符)=222222zy x ∂∂+∂∂+∂∂(3)光源2.1.2光的粒子性粒子特性参量:能量E ,动量p 。
粒子特性参量(E ,p )和波动特性参量(ν,λ)由Einstein 关系联系起来: E = h ν =hc / λ (4)p = h / λ = h ν / c = ℏk(5) p =ℏk = (h / λ) k 0 (k 0 :光传播的方向)(5')光子能量(4)式的实验证实:光电效应实验装置:结果:仅当入射光的频率 ν > νmin ,才有光电流(光电子)。
电子科技大学大学物理论文姓名:***学号:*************指导教师:***论文题目:浅谈量子力学摘要:量子理论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的。
爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。
玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出了不确定性原理和互补原理。
终于在1925年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大支柱。
关键词:黑体辐射、普朗克量子假说、光量子理论、玻尔的原子理论浅谈量子力学一、量子力学的初步19世纪末20世纪初,人们认为经典物理发展很完美的时候,一系列经典理论无法解释的现象一个接一个的发现了。
经典力学时期物理学所探讨的主要是用比较直接的实验研究就可以接触到的物理现象的定理和理论。
牛顿定理和麦克斯韦电磁理论在宏观和慢速的世界中是很好的自然规律。
而对于微观世界的物理现象,经典物理学就显得无能为力,很多现象没发解释。
这些困难被看做是“晴朗天空的几朵乌云”,正是这几朵乌云引发了物理界的变革。
下面简述这几个困难:⑴黑体辐射完全黑体在与热辐射达到平衡时,辐射能量密度随频率变化会有一个曲线。
韦恩从热力学普遍理论考虑以及分析实验数据的得出一个半经验公式。
但是韦恩公式并不是与所有实验数据吻合的很好。
在长波波段,韦恩公式与实验有严重偏离。
瑞利和金斯根据经典电动力学和统计物理学也得出黑体辐射能量分布公式。
他们得出的公式在长波部分与实验结果比较符合,而在短波部分则完全不符。
这促使普朗克在韦恩公式和瑞利-金斯的公式之间寻求协调统一,结果得出一个两参数的普朗克公式,此公式不仅与实验符合的最好,而且形式最简单(韦恩公式除外)。
普朗克提出这个公式后,许多实验物理学家立即用它去分析了当时最精确的实验数据,发现符合的非常好。
他们认为,这样简单的一个公式与实验如此符合,绝非偶然,在这公式中一定蕴藏着一个非常重要但尚为被人们揭示出的科学原理。
拾躲市安息阳光实验学校高中物理考题精选(124)——量子论初步1、氢原子在基态时轨道半径r1=0.53×10-10 m,能量E1=-13.6 eV.求氢原子处于基态时:(1)电子的动能.(2)原子的电势能.(3)用波长是多少的光照射可使其电离?答案解析:(1)设处于基态的氢原子核外电子速度为v1,则:k·=,故电子动能Ek1=mv ==eV=13.6 eV.(2)E1=Ek1+Ep1,故Ep1=E1-Ek1=-13.6 eV-13.6 eV=-27.2 eV.(3)设用波长λ的光照射可使氢原子电离:=0-E1,λ=-= m=0.914 1×10-7 m.答案:(1)13.6 eV (2)-27.2 eV(3)0.914 1×10-7 m2、氢原子辐射出一个光子后,下列说法正确的是(填正确答案标号)A.电子绕核旋转半径减小B.电子的动能减小C.氢原子的电势能减小D.原子的能级值减小E.电子绕核旋转的周期增大答案 ACD3、关于太阳光谱,下列说法正确的是( )A.太阳光谱是吸收光谱B.太阳光谱中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的C.根据太阳光谱中的暗线,可以分析太阳的物质组成D.根据太阳光谱中的暗线,可以分析地球大气层中含有哪些元素答案 AB解:太阳光谱是吸收光谱,其中的暗线,是太阳光经过太阳大气层时某些特定频率的光被吸收后而产生的,说明太阳大气中存在与这些暗线相对应的元素.故AB正确,CD错误;故选:AB4、仔细观察氢原子的光谱,发现它只有几条不连续的亮线,其原因是( )A.氢原子只有几个能级B.氢原子只能发出平行光C.氢原子有时发光,有时不发光D.氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的答案 D。
氢原子光谱只有几条不连续的亮线,原因是氢原子辐射的光子的能量是不连续的,所以对应的光的频率是不连续的,D正确。
第二章 量子力学初步光的波动粒子二象性(duality) 光的波动性波动特性参量: 频率(ν),波长(λ),波矢(k),偏振(E 0),位相(ϕ) 参量关系:νλ=c ;2π /λ = k ;(k ·r - 2πνt )=ϕ平面波的表示: E = E 0 cos[k ·r - 2πνt]= E 0)2(t r k i eπν-∙光的粒子性粒子特性参量:能量E ,动量p 。
粒子特性参量(E ,p )和波动特性参量(ν,λ)由Einstein 关系联系起来:E = h ν =hc / λ ,p = h / λ = h ν / c = ℏkp =ℏk = (h / λ) k 0 (k 0 :光传播的方向)光子能量的实验证实:光电效应实验光子动量的实验证实:康普顿-吴有训散射实验物质的波粒二象性德布罗意(法国人,1924,巴黎大学文理学院本科生)的类比假设;物质波的物理诠释:物质波是一种慨率波。
如果用波函数ψ ( r , t)表示物质波,∣ψ ( r , t)∣2d τ (d τ:体积元)表示粒子在t 时刻,在d τ中出现的慨率。
− 量子力学基本原理之一。
不确定关系(测不准关系 − 量子力学基本原理之二) 坐标和动量的不确定性:∆q ∆p ≥ ℏ/2;能量和动时间的不确定性:∆E ∆t =∆p ∆q ≥ ℏ/2 波函数和量子态1, 波函数的规一化2, 波函数的完备性 3, 量子态的表象4,本征态,本征函数,本征值 态叠加原理(量子力学基本原理之三)薛定谔方程1, 含时薛定谔方程(量子力学基本原理之四:量子力学中的牛顿定律)i ℏt∂∂ψ ( r , t) = [m222∇-+V(r , t)] ψ ( r , t)2, 定态薛定谔方程[m222∇-+V(r )] ψ (r )=E ψ (r )1D 无限深势阱中的粒子:E =mk 222 =22222mLn π =E nψ (x)=A sin(Ln πx) = ψ n (x) =21)2(Lsin (Ln πx)量子力学中的一些理论和方法1,平均值和算符的引入2,力学量用算符表示(在位置表象中)3,力学量Q 的平均值:<Q (p, r )> =τψψd r r i Q r )(),()(*∇-⎰∞∞-本征函数,本征值,本征值方程的定义和性质轨道角动量1, L在直角坐标系中的算符表示 2, L在球坐标系中的表示3, z l ˆ和2ˆl 的本征函数和本征值2ˆl Y l, m (θ, ϕ)=l (l +1) ℏ2Y l, m (θ, ϕ);z l ˆ Y l, m (θ, ϕ)=z l ˆΦm (ϕ)Θl, m (θ)= m ℏ Y l, m (θ, ϕ)。
专题量子论初步与原子物理体系构建考向分析近代物理包括光电效应、原子和原子核,这一部分的复习要点:①光电效应及其规律;②原子的能级跃迁;③原子核的衰变规律;④核反应方程的配平与书写;⑤质量亏损和核能的计算;⑥原子物理部分的物理学史和α、β、γ三种射线的特点及应用等。
本专题在广东高考中占8%,以识记性的选择题形式考查,如2012广东理综18题。
热点例析题型一、光电效应的规律与应用1.光电效应的规律:(1)每种金属都有一个极限频率。
(2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大。
(3)光照射到金属表面时,光电子的发射几乎是瞬时的。
(4)光电流的强度与入射光的强度成正比。
2.光子说:空间传播的光是一份一份的,每一份叫一个光子,一个光子的能量与频率成正比,E=hν。
光电效应说明光具有粒子性。
光既具有波动性,又具有粒子性,称为光的波粒二象性。
【例1】(2011·福建理综,29(1))爱因斯坦提出了光量子概念并成功地解释光电效应的规律而获得1921年的诺贝尔物理学奖。
某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图所示,其中ν0为极限频率。
从图中可以确定的是()A.逸出功与ν有关B.E km与入射光强度成正比C.ν<ν0时,会逸出光电子D.图中直线的斜率与普朗克常量有关规律总结通过光电效应方程hν=W0+E km来记忆和理解光电效应,是复习光电效应的窍门。
拓展练习1在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器指针张开一个角度,如图所示,这时()A .锌板带正电,指针带负电B .锌板带正电,指针带正电C .锌板带负电,指针带正电D .锌板带负电,指针带负电题型二、玻尔模型 能级概念1.定态假设:原子只能处于一系列的不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫定态。
2.跃迁假设:原子从一定态跃迁到另一种定态,它要辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差值决定,即hν=E m -E n 。
3.量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子所处的可能轨道的分布也是不连续的。
4.对氢原子:轨道量子化r n =n 2r 1 r 1=0.53×10-10 m能量量子化 E n =E 1n 2(E 1=-13.6 eV ,n =1,2,3,…)(定义无穷远处电势能为零) 【例2】(2011·四川理综,18)氢原子从能级m 跃迁到能级n 时辐射红光的频率为ν1,从能级n 跃迁到能级k 时吸收紫光的频率为ν2,已知普朗克常量为h ,若氢原子从能级k 跃迁到能级m ,则( )A .吸收光子的能量为hν1+hν2B .辐射光子的能量为hν1+hν2C .吸收光子的能量为hν2-hν1D .辐射光子的能量为hν2-hν1规律总结对于氢原子①原子由定态n (n ≥2)向低能级跃迁时可能辐射的光子频率的种类为(n -1)n 2。
②原子跃迁时,所吸收或释放的光子能量只能等于两能级之间的能量差。
③原子电离时,所吸收的能量必须大于或等于某一能级能量的绝对值。
④计算时应注意:因一般取∞远处为零电势参考面,故各能级的能量值均为负值;能量单位 1 eV =1.6×10-19 J 。
拓展练习2(2012·北京理综,13)一个氢原子从n =3能级跃迁到n =2能级,该氢原子( )A .放出光子,能量增加B .放出光子,能量减少C .吸收光子,能量增加D .吸收光子,能量减少题型三、衰变、裂变、聚变以及人工转变(1)衰变:α衰变:238 92U →234 90Th +42He (核内211H +210n →42He )β衰变:234 90Th →234 91Pa + 0-1e (核内10n →11H + 0-1e )γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。
(2)人工转变:14 7N +42He →17 8O +11H (卢瑟福发现质子的核反应)94Be +42He →12 6C +10n (查德威克发现中子的核反应)2713Al +42He →3015P +10n 3015P →3014Si + 0+1e (居里夫妇发现人工制造放射性同位素)(3)重核的裂变:235 92U +10n →141 56Ba +9236Kr +310n 在一定条件下(超过临界体积),裂变反应会连续不断地进行下去,这就是链式反应。
(4)轻核的聚变:21H +31H →42He +10n (需要几百万度高温,所以又叫热核反应)。
【例3】(2012·广东理综,18)能源是社会发展的基础,发展核能是解决能源问题的途径之一。
下列释放核能的反应方程,表述正确的有( )A .31H +21H →42He +10n 是核聚变反应B .31H +21H →42He +10n 是β衰变C .235 92U +10n →144 56Ba +8936Kr +310n 是核裂变反应D .235 92U +10n →140 54Xe +9438Sr +210n 是α衰变规律总结①原子核自发地放出某种粒子成为新的原子核,叫做衰变;原子序数较大的重核分裂成原子序数较小的原子核,叫做重核裂变;原子序数很小的原子核聚合成原子序数较大的原子核,叫做轻核聚变。
②所有核反应都遵循质量数和电荷数守恒的规律,情况复杂时可列方程组求解。
拓展练习3(2012·重庆理综,19)以下是物理学史上3个著名的核反应方程:x +73Li →2y ,y +14 7N →x+17 8O ,y +94Be →z +12 6C 。
x 、y 和z 是3种不同的粒子,其中z 是( )A .α粒子B .质子C .中子D .电子题型四、核能和质量亏损1.E =mc 2与ΔE =Δmc 2(各个物理量都必须采用国际单位。
)2.释放能量的两种方式:轻核聚变与重核裂变。
【例4】某科学家提出年轻热星体中核聚变的一种理论,其中的两个核反应方程为1H+126C→137N+Q111H+157N→126C+X+Q21A.X是32He,Q2>Q1B.X是42He,Q2>Q1C.X是32He,Q2<Q1D.X是42He,Q2<Q1规律总结要注意u为质量单位,并不是能量单位,其中1 u=1.660 6×10-27 kg,1 u c2=931.5 MeV。
拓展练习4现已建成的核电站发电的能量来自于()A.天然放射性元素放出的能量B.人工放射性同位素放出的能量C.重核裂变放出的能量D.轻核聚变放出的能量误区档案1.误认为光子能量与光的强度有关光电效应中能否发生、光电子的最大初动能取决于光的频率,与光的强度无关。
2.误认为β衰变中的电子来源于原子核外电子β衰变的实质是中子衰变成质子,放出电子。
来源于原子核内部,核反应方程为:10n→11H+0-1e。
3.混淆质量数和质量,误认为核反应方程的质量数守恒,方程两边的质量也相等核反应方程的质量数守恒是指核反应过程中总的核子数不变,但方程两边的质量并不相等,核反应一般要释放能量,反应后的核子的总质量小于反应前核子的总质量,称为质量亏损。
4.放射性元素的半衰期是大量原子核的统计规律,对有限个数的原子核衰变的精确时间无法预测。
【易错题例】如某放射性元素的半衰期是5天,那么100个该元素的原子核经过10天还剩下()A.25个B.50个C.75个D.以上都不对答案:D易错分析:易错选A,对有限个数的原子核衰变无法预测,100个放射性原子核太少,不能用半衰期公式分析判断,应选D。
5.误认为核电站利用的是聚变释放的能量现在的核电站利用的是裂变释放的能量,不是聚变释放的能量,利用聚变释放的能量是现在努力的方向,虽有突破,但还不能大规模应用。
1.下列说法正确的是()A.当氢原子从n=2的状态跃迁到n=6的状态时,发射出光子B.放射性元素的半衰期是指大量该元素的原子核中有半数发生衰变需要的时间C.同一元素的两种同位素具有相同的中子数D.中子与质子结合成氘核时吸收能量2.(2012·广州二模,14)如图,a、b、c、d分别表示氢原子在不同能级间的四种跃迁,辐射光子频率最大的是()A.a B.bC.c D.d3.(2012·福建理综,29(1))关于近代物理,下列说法正确的是()A.α射线是高速运动的氦原子B.核聚变反应方程21H+31H→42He+10n中,10n表示质子C.从金属表面逸出的光电子的最大初动能与照射光的频率成正比D.玻尔将量子观念引入原子领域,其理论能够解释氢原子光谱的特征4.(2012·天津理综,1)下列说法正确的是()A.采用物理或化学方法可以有效地改变放射性元素的半衰期B.由玻尔理论知道氢原子从激发态跃迁到基态时会放出光子C.从高空对地面进行遥感摄影是利用紫外线良好的穿透能力D.原子核所含核子单独存在时的总质量小于该原子核的质量5.(双选)(2011·广州一模)我国科学家研制“两弹”所涉及的基本核反应有:(1)23592U+10n→9038Sr+13654Xe+k10n;(2)21H +31H →42He +d 10n ;关于这两个方程,下列说法正确的是( )A .方程(1)属于α衰变B .方程(2)属于轻核聚变C .方程(1)中k =10,方程(2)中d =1D .方程(1)中k =6,方程(2)中d =16.(双选)如图是某金属在光的照射下产生的光电子的最大初动能E k 与入射光频率ν的关系图象。
由图象可知( )A .该金属的逸出功等于EB .该金属的逸出功等于hν0C .入射光的频率为2ν0时,产生的光电子的最大初动能为2ED .入射光的频率为ν02时,产生的光电子的最大初动能为E 2 参考答案精要例析·聚焦热点热点例析【例1】D 解析:入射光的频率必须大于金属产生光电效应的极限频率,才会逸出光电子,C 错误;而金属产生光电效应的逸出功是由金属自身的性质决定,与入射光频率ν无关,A 错误;由光电效应方程:hν=W 0+E km ,逸出光电子的最大初动能E km 决定于入射光的频率ν,与入射光的强度无关,B 错误;图中直线的斜率ΔE km Δν=h ,斜率与普朗克常量h 有关,D 正确。
【拓展练习1】B 【例2】D 解析:由题意可知,能级k 处于较高激发态,能级m 处于较低激发态,而能级n 处于低能量状态。
所以从能级k 跃迁到能级m 时辐射出光子,能量为hν2-hν1。
【拓展练习2】B 解析:原子从高能级跃迁到低能级时,会释放出光子,其能量为hν=E m -E n (m >n ),原子本身的能量减少;若原子从低能级跃迁到高能级,则吸收光子,能量增加。