高等渗流力学(2015)-第五章
- 格式:pdf
- 大小:6.99 MB
- 文档页数:78
《渗流力学》课程教学大纲课程编号:02041002课程名称:渗流力学英文名称:Fluid Flow Through Porous Media课程类型:必修课课程性质:专业基础课总学时:56 讲课学时:48 实验学时:8学分: 4适用对象:石油工程专业、海洋油气工程、资源勘查工程先修课程:油层物理一、编写说明(一)制定大纲的依据根据《渗流力学》专业本科生培养计划要求制定本教学大纲。
(二)课程简介“渗流力学”是流体力学的一个分支,是研究流体在多孔介质中流动规律的一门学科。
本课程讲述的内容是“渗流力学”中的一个分支——地下渗流部分。
专门研究地下油气水及其混合物在地层中的流动规律。
(三)课程的地位和作用本课程是油气田开发与开采的理论基础,是石油工程专业和海洋油气工程专业的主干课程,同时也是资源勘查工程专业的选修课。
明确渗流理论是油气田开发,提高油田采收率等理论的基础,为学好专业课和解决有关地下油、气、水的渗流问题打好基础。
(四)课程性质、目的和任务本课程是石油工程专业和海洋油气工程专业本科学生的一门专业基础课,目的是通过各个教学环节使学生掌握油、气、水在地下流动规律,以及研究流体渗流规律的基本方法。
本课程的任务是使学生能掌握渗流力学基础概念、基本理论及解决渗流问题的基本技能。
(1)使学生掌握油、气、水渗流的基本规律及建立方程的基本方法;(2)培养学生用所学的渗流力学理论分析和解决渗流问题能力;(3)通过实验课培养学生严谨作风及动手能力。
(五)与其他课程的联系由于渗流力学是一门专业基础课,所以是其他专业课的基础,为学好其他专业课打下牢固的基础。
(六)对先修课的要求要求在学习本门课程之前,学好油层物理这门专业基础课,同时对高等数学中的求导,积分等知识能够熟练的应用。
一、大纲内容绪论渗流力学发展史,本课程研究方向。
第一章渗流的基础知识和基本定律(一)教学目的和任务使学生全面掌握渗流力学的基本概念和基本定律,使学生了解本课程的学习目的,为今后的学习打下基础。
浅谈非牛顿流体的渗流理论一.基本概念服从牛顿粘性定律的流体称为牛顿流体,所有气体和大多数液体都属于这一类。
水,酒精等大多数纯液体,轻质油,低分子化合物溶液以及低速流动的气体均是牛顿流体。
高分子聚合物的浓溶液和悬浮液一般是非牛顿流体。
从流体力学的角度,凡是服从牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。
所谓服从牛顿内摩擦定律是指在温度不变的情况下,随着流体梯度的变化, 值始终保持是常数。
度量液体粘滞性大小的物理量,简称为粘度。
物理意义是产生单位剪切速率所需要的剪切应力。
早在人类出现之前,非牛顿流体就已存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体,而且非牛顿流体在化工方面宜属常见。
牛顿粘性定律的表达式为:(1-1)其中为牛顿粘度 为在剪切平面平行于流动平面的剪切应力,垂直于剪切平面的剪切速率。
二.非牛顿流体的分类下面是牛顿流体与非牛顿流体的流变图。
图牛顿流体与非牛顿流体的流变图根据流体的流变方程式,将非牛顿流体分类为:1.与时间无关的流体在流变图上来看对的曲线或是通过原点的曲线,或是不通过原点的直线,如图中b,c,d图线所示。
对于b,c这样的曲线来讲,斜率是变化的。
因此,对与时间无关的粘性流体来讲,粘度一词便失去了意义。
但是这些特定的曲线在任一特定点上都有一定的斜率,故与时间无关的粘性流体来讲,指在特定的剪切速率下,有一个表观粘度值。
即表观粘度是剪切速率的函数,不依赖时间的非牛顿液的流变特性只依赖于剪切应力的大小而不依赖于剪切应力的持续时间。
这样的流体可分为:(1)假塑性流体这种流体的表观粘度随剪切速率的增大而减小,其中的曲线关系为一下降的曲线,该曲线可用指数方程式表示:(1-2)大多数与时间无关的粘性流体都属于此类型,其中包括聚合物溶液,油脂,淀粉悬浮液,油漆等。
(2)涨塑性流体这种流体与假塑性流体相反,这种流体的表观粘度随剪切速率的增加而增大,其关系曲线为一上升的曲线。
如曲线c所示。
渗流力学课后习题答案渗流力学课后习题答案渗流力学是研究地下水流动规律的一门学科,它在地质工程、水利工程等领域有着广泛的应用。
在学习渗流力学的过程中,习题是检验理论掌握程度和提高解题能力的重要方式。
下面将为大家提供一些渗流力学课后习题的答案,希望能对大家的学习有所帮助。
一、渗透率和渗透系数计算1. 计算渗透率时,需要知道渗透系数和介质的孔隙度。
渗透系数的单位是什么?如何计算渗透率?答:渗透系数的单位是米/秒。
渗透率的计算公式为:渗透率 = 渗透系数× 孔隙度。
2. 若一个土层的渗透率为1×10^-4 cm/s,孔隙度为0.4,求该土层的渗透系数。
答:渗透率的单位为cm/s,而渗透系数的单位为m/s。
所以需要将渗透率的单位转换为m/s。
1 cm = 0.01 m,所以渗透率为1×10^-6 m/s。
渗透系数 = 渗透率 / 孔隙度= (1×10^-6 m/s) / 0.4 = 2.5×10^-6 m/s。
二、多孔介质中的渗流1. 一个矩形土层,长为10 m,宽为5 m,渗透系数为1×10^-4 cm/s,上表面水头为10 m,下表面水头为5 m,求该土层的渗流速度。
答:渗流速度的计算公式为:渗流速度 = (上表面水头 - 下表面水头) × 渗透系数 / (土层厚度× 孔隙度)。
土层厚度为10 m,孔隙度未知,无法计算准确的渗流速度。
2. 一块长方形土层,长度为20 m,宽度为10 m,渗透系数为1×10^-3 cm/s,上表面水头为10 m,下表面水头为5 m,求该土层的渗流速度。
答:渗透系数的单位为cm/s,需要将其转换为m/s。
1 cm = 0.01 m,所以渗透系数为1×10^-5 m/s。
渗流速度 = (上表面水头 - 下表面水头) × 渗透系数 / (土层厚度× 孔隙度) = (10 m - 5 m) × (1×10^-5 m/s) / (20 m × 孔隙度) = 5×10^-6 / (20 × 孔隙度) m/s。
浅谈非牛顿流体的渗流理论一.基本概念服从牛顿粘性定律的流体称为牛顿流体,所有气体和大多数液体都属于这一类。
水,酒精等大多数纯液体,轻质油,低分子化合物溶液以及低速流动的气体均是牛顿流体。
高分子聚合物的浓溶液和悬浮液一般是非牛顿流体。
从流体力学的角度,凡是服从牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。
所谓服从牛顿内摩擦定律是指在温度不变的情况下,随着流体梯度的变化, 值始终保持是常数。
度量液体粘滞性大小的物理量,简称为粘度。
物理意义是产生单位剪切速率所需要的剪切应力。
早在人类出现之前,非牛顿流体就已存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体,而且非牛顿流体在化工方面宜属常见。
牛顿粘性定律的表达式为:(1-1)其中为牛顿粘度 为在剪切平面平行于流动平面的剪切应力,垂直于剪切平面的剪切速率。
二.非牛顿流体的分类下面是牛顿流体与非牛顿流体的流变图。
图牛顿流体与非牛顿流体的流变图根据流体的流变方程式,将非牛顿流体分类为:1.与时间无关的流体在流变图上来看对的曲线或是通过原点的曲线,或是不通过原点的直线,如图中b,c,d图线所示。
对于b,c这样的曲线来讲,斜率是变化的。
因此,对与时间无关的粘性流体来讲,粘度一词便失去了意义。
但是这些特定的曲线在任一特定点上都有一定的斜率,故与时间无关的粘性流体来讲,指在特定的剪切速率下,有一个表观粘度值。
即表观粘度是剪切速率的函数,不依赖时间的非牛顿液的流变特性只依赖于剪切应力的大小而不依赖于剪切应力的持续时间。
这样的流体可分为:(1)假塑性流体这种流体的表观粘度随剪切速率的增大而减小,其中的曲线关系为一下降的曲线,该曲线可用指数方程式表示:(1-2)大多数与时间无关的粘性流体都属于此类型,其中包括聚合物溶液,油脂,淀粉悬浮液,油漆等。
(2)涨塑性流体这种流体与假塑性流体相反,这种流体的表观粘度随剪切速率的增加而增大,其关系曲线为一上升的曲线。
如曲线c所示。
第一章 渗流力学基本概念和定律1、多孔介质(porous medium ):含有大量任意分布的彼此连通的且形状各异、大小不一的孔隙的固体介质。
2、渗流(permeability ):流体通过多孔介质的流动,也叫渗滤。
3、油藏:具有统一压力系统的油气聚集体4、渗流力学:研究流体在多孔介质中的运动形态和规律的科学。
5、油气层是油气储集的场所和流动空间6、定压边界油藏:层体延伸到地表,有边水供给区,在边界上保持一个恒定的压头。
7、封闭边界油藏:边界为断层或尖灭 没有边水供给 渗流中的力学分析及驱动类型:力学分析:重力、惯性力、粘滞力(大小用牛顿内摩擦定律表示1mPa·s =lcP )、弹性力、毛管力。
驱动类型:依靠何种能量把原油驱入井底。
弹性驱动、水压驱动、溶解气驱、气压驱动(主要靠气顶气或注入气的膨胀能或压能驱油的驱动方式。
刚性气压驱动、弹性气压驱动)、重力驱动 不同驱动方式及开采特征总结:1、能量补充充足(边、底水,气顶、注水/气):刚性驱动:刚性气/水驱;开采特征:Pe 、 Ql 、 Qo 有稳产段。
2、能量补充不充足(无边底水气顶注水注气或有而不足): 弹性驱动:弹性驱动、溶解气驱、弹性气/水驱;开采特征:Pe 、 Ql 、 Qo 均不断下降。
3、 凡是气驱的Rp 都有上升的过程,其它驱动方式Rp 不变。
溶解气驱、刚/弹性气驱4、 Qo 或Rp 的突然变化反映水或气的突破。
供给压力Pe :油藏中存在液源供给区时,在供给边缘上的压力。
井底压力Pw :油井正常生产时,在生产井井底所测得的压力称为井底压力,也称为流动压力,简称流压。
折算压力Pr :油藏中某点折算到某一基准面时的压力,它表示油层中各点流体所具有的总能量。
达西定律:在一定范围内△P 与Q 成直线关系,当流量不断增大,直线关系就会被破坏。
真实流速与渗流速度的关系达西定律适用条件: 液流处于低速、层流,粘滞力占主导地位,惯性主力很小,可忽略。
绪论:1.渗流力学:就是研究渗滤的运动状态和运动规律的学科。
渗流力学研究涉及三个主要方面:工程渗流、生物渗流、地下渗流2.渗流:流体通过多孔介质的流动称为渗流或渗滤3.多孔介质:由骨架和相互连通的孔隙、裂缝、溶洞或各类毛细管体系组成的材料 第一章:1.油气藏:油气的储集的场所和流动空间油气藏作用:限制流体的流动范围、影响流体的渗流心态、决定流体的边界形状 按圈闭条件分为:①构造油气藏(背斜油气藏、断层油气藏、刺穿接触油气藏); ②地层油气藏(潜山油气藏、生物礁油气藏、不整合覆盖油气藏、地层超覆油气藏);③岩性油气藏(透镜状岩性油气藏、尖灭性岩性油气藏)根据流体在其中流动的空间特点分为:①层状油藏;②块状油藏2.多孔介质的特点:具有孔隙性、渗透性、比表面积大、孔隙结构复杂等基本特点 绝对渗透率:岩石允许流体通过的能力 有效渗透率:(相渗透率):岩石对于某一相流体的通过能力 相对渗透率:有效渗透率与绝对渗透率的比值按结构分类(结构复杂性):1.粒间孔隙结构;2.纯裂缝结构;3.裂缝-孔隙结构;4.溶洞-孔隙结构;5.溶洞-裂缝-孔隙结构 3.连续流体:把流体中的质点看成是在一个很小的体积中包含着很多分子的集合体,质点中流体的性质与周围质点中的流体性质成连续函数关系 连续介质:是在质点的典型体积上表现出来的平均性质连续介质场:连续流体在连续介质中的流动,在研究其流动规律时,其物性是连续变化的,即其数学方程是连续的,在这种连续系统中流动的场4.渗流过程中的力:重力、惯性力、粘滞力、弹性力、毛管力5.油藏中的压力:原始地层压力、供给压力、井底压力、折算压力(计算P19)6.油藏的驱动类型:重力水压驱动、弹性驱动、气压驱动、溶解气驱、重力驱动7.※达西定律8.渗流速度:渗流量与渗流截面积之比9.真实速度:渗流量与渗流截面的空隙面积之比10.渗流的基本方式:单相流、平面径向流、球面向心流11.非线性渗流指数形式:v=C (dp/dL)^n 式中C 为取决于岩层和流体性质的系数; n 为渗流指数 , n є(0.5~1), n=1时,渗流服从达西直线定律 12.启动压力梯度(吸附膜和水化膜的影响):在压力梯度较小时,流体不产生流动,渗流速度为零,当压力梯度大于某一值后,流体才发生流动,这一压力梯度值称为启动压力梯度 13.两相流体时,渗流阻力明显增加,且两相各自渗透率之和不等于单相渗流时的绝对渗透率。
渗流力学绪论多孔介质:由固体骨架和相互连通的孔隙,裂缝,溶洞或各种类型的毛细管体系所组成的材料。
渗流力学与其他力学的区别:介质的不同。
第一章渗流的基本概念和基本规律油气藏:油气储集的场所和流动的空间。
油气藏按圈闭形成的类型:构造油气藏,地层油气藏,岩性油气藏。
构造油气藏的分类:背斜油气藏,断层油气藏,刺穿接触油气藏。
油气藏根据流体流动空间的特点:层状隐藏,块状油藏。
层状油藏的特点:1:油层平缓,分布面积大。
2:多油层,多旋回。
3:只考虑在水平方向上流动的流体。
块状油气藏得特点:有限的圈闭面积内相当厚的油藏,考虑纵向上流体的流动和交换;考虑毛管力和重力的作用。
纵向上分为三个区:纯油区,过渡区,纯水区。
过渡区:含束缚水过渡带,油水同生过渡带,残余油过渡带。
多孔介质的特点:孔隙性,渗透性,比表面积大及孔隙结构复杂。
渗透性:多孔介质允许流体通过的能力。
K= ;渗流:流体在多孔介质中的流动。
绝对渗透率:当岩石中的孔隙流体为一项时,岩石允许流体通过的能力。
有效渗透率:当岩石中有两种以上流体存在时,岩石桂其中一相的通过的能力。
相对渗透率:岩石的有效渗透率与绝对渗透率的比值。
比表面积:单位体积岩石所有岩石颗粒的总表面积或孔隙内表面积。
孔隙类型:粒间孔隙,裂缝,溶洞。
多孔介质巨大的比面和复杂的孔隙结构,使得渗流具有阻力大,流动速度慢的特点。
油气层孔隙结构分为:单纯介质(粒间孔隙结构和纯裂缝结构),双重介质(裂缝-孔隙结构和溶洞-孔隙结构),三重介质(大洞或大裂缝和微裂缝、微孔隙共生)。
理想结构模型:将岩石的孔隙空间看成是由一束等直径的微毛细管组成。
修正理想结构模型:变截面弯曲毛细管模型。
重力(动力或阻力),惯性力(阻力),粘滞力(阻力),弹性力(动力),毛管力(动阻力)原始地层压力:油藏开发前流体所受的压力。
供给压力:油藏中存在液源供给区时,在供给边缘上的压力。
井底压力:油井正常工作时,在生产井井底所测得的压力。
188 第五章 渗流力学基础第一节 油气层渗流的达西定律油气层渗流的基本规律是达西定律。
1856年法国水利工程师达西在研究城市供水问题时,欲测得获得一定的流量需要消耗的能量,于是达西运用填满砂的管子做实验,得到了水流速与管截面积、入口与出口压头之间的关系式,后人为纪念他,将这一定律称达西定律。
一、达西实验及结果达西实验装置如图1—ll 所示,液体经过进水管a 进入模型主体。
再透过砂层,经节流阀门流入量杯。
节流阀可以控制流速,量杯D 测取流量Q 。
测压管可以分别测出过水断面1-1,2-2上的压力p 1、p 2。
稳压管b 可以使模型内液面稳定在b 管的位置上。
显然,节流阀开度不同时,将得到不同的流量和不同的测压管高度。
实验结果发现:流量大小与管于截面积A ;入口及出口压力差p 2-p 1成正比,与填满砂粒的管子长度△L 成反比,将上述关系写成等式,需加上比例系数K 。
即:Lp p KAQ ∆-=12 (1—6) 式中 K ——渗透率,它表征多孔介质和液体的渗透能力。
二、达西定律的导出(一)由管路水力学导出达西定律由普通水力学可知,任意过水断面上的总能量表示成下列形式:gv pZ H 22++=γ (1-7)式中 H-——总水头;Z ——位置水头;γp---压力水头; gv 22---流速水头。
189由于渗流速度v 很小,可以忽略gv 22项,于是总水头可表示为:γpH =+Z (1-8)断面1—1,2—2上的水头差可表为:⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=-=∆H γγ221121p Z p Z H H (1-9)达西通过实验发现:通过砂层的流量Q 与水头损失△H 成正比,与渗流面积A 成正比,与渗流段长度△L 成反比。
即:LHAQ ∆∆∞= (1-10)欲将(1—10)写成等式需加一比例常数,于是我们得到:LHAK Q i ∆∆= (1-11) 式中 K i -——比例常数,称为渗流系数,它与流体及砂层的性质有关。
开课编号:323004Z渗流力学Mechanics of Fluid Flow in Porous Media课程编号:323004Z课程属性:专业基础课学时/学分:40/2预修课程:偏微分方程,数值计算方法,弹性力学有限单元法教学目的和要求:系统掌握渗流的基本知识,掌握渗流分析理论,了解渗流数值方法,学会利用渗流计算有限元软件,分析渗流问题。
内容提要:第一章:张量的基本知识(1)张量的指标符号表示法第二章:渗流的基本概念与定律(1)多孔介质、连续介质假设、连续流体、连续介质场等基本概念;(2)流体的实际平均速度与渗流速度(3)达西定律(定律及其适用范围、定律在多相多维渗流中的推广)与非线性运动方程(低速非线性、高速非线性、低渗介质非线性、非牛顿流体渗流)(4)岩土材料的基本物理特性(5)岩土材料的非饱和渗流特性第三章:渗透变形与渗流破坏(1)渗透变形的类型(2)渗透变形的判别方法(3)渗透变形的防护第四章:流体的偏微分方程与定解条件(1)单相渗流连续性方程(2)两相不溶混渗流连续性方程(3)流体与骨架的状态方程(4)单相流体的偏微分方程(5)定解条件(初始条件与边界条件)第五章:渗流的理论计算方法(1)Dupuit假定及其应用(2)井的渗流计算方法第六章:渗流的数值方法(1)有限差分法介绍(2)有限单元方法介绍(3)渗流的边界条件及其处理方法(4)非线性方程组的求解方法第七章:渗流与岩土体变形的相互作用(1)岩土体的应力变形及其有限元方法(2)渗流与岩土体变形的耦合相互作用(3)岩土体的水力劈裂第八章:渗流计算软件与工程分析(1)利科渗流分析软件介绍(2)利科软件的应用实例第九章:岩土介质中溶质的输运教材:无主要参考书:1 毛昶熙,渗流计算分析与控制,中国水利出版社;2 孔祥言,高等渗流力学,中国科学技术大学出版社;3 刘杰,土的渗透稳定与渗流控制,水利电力出版社撰写人:吴梦喜(中国科学院力学所)撰写日期:2010年7月。