连续系统分析
- 格式:doc
- 大小:425.50 KB
- 文档页数:7
连续时间系统的时域分析时域分析是对连续时间系统进行分析和研究的一种方法。
通过时域分析,可以了解系统的时间响应特性、稳定性以及系统的动态行为。
本文将从连续时间系统的时域分析方法、常用的时域参数以及时域分析在系统设计中的应用等方面进行详细介绍。
一、连续时间系统的时域分析方法连续时间系统的时域分析方法主要有两种:解析法和数值法。
1. 解析法:通过解析方法可以得到系统的解析表达式,从而分析系统的时间响应特性。
常用的解析方法包括微分方程法、拉普拉斯变换法和傅里叶变换法等。
- 微分方程法:对于线性时不变系统,可以通过设立系统输入和输出之间的微分方程,然后求解微分方程来得到系统的时间响应。
- 拉普拉斯变换法:通过对系统进行拉普拉斯变换,将微分方程转化为代数方程,从而得到系统的传递函数,进而分析系统的时间响应。
- 傅里叶变换法:通过对系统输入和输出进行傅里叶变换,将时域信号转化为频域信号,从而分析系统的频率响应。
2. 数值法:当系统的解析表达式难以获得或无法求解时,可以通过数值方法进行时域分析。
常用的数值方法包括欧拉法、中点法和四阶龙格-库塔法等。
- 欧拉法:通过差分近似,将微分方程转化为差分方程,然后通过计算差分方程的递推关系来得到系统的时间响应。
- 中点法:在欧拉法的基础上,在每个时间步长内,通过计算两个相邻时间点上的导数平均值来改进估计值,从而提高精度。
- 四阶龙格-库塔法:在中点法的基础上,通过对导数进行多次计算和加权平均,从而进一步提高精度。
二、常用的时域参数时域分析除了对系统的时间响应进行分析外,还可以提取一些常用的时域参数来描述系统的性能和特性。
1. 零点:系统的零点是指系统传递函数中使得输出为零的输入值。
2. 极点:系统的极点是指系统传递函数中使得输出无穷大的输入值。
3. 零极点图:零极点图是用来描述系统传递函数中的零点和极点分布情况的图形。
4. 频率响应:频率响应是指系统对不同频率的输入信号的响应。
实验一 连续系统时域响应分析(硬件实验)一、实验目的1. 熟悉系统的零输入响应与零状态响应的工作原理。
2. 掌握系统的零输入响应与零状态响应特性的观察方法。
3. 观察和测量RLC 串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响。
4. 掌握有关信号时域的测量方法。
二、实验内容与原理内容:1. 用示波器观察系统的零输入响应波形。
2. 用示波器观察系统的零状态响应波形。
3. 用示波器观察系统的全响应波形。
4. 用示波器观察欠阻尼、临界阻尼和过阻尼状态的阶跃响应波形。
5. 用示波器观察欠阻尼、临界阻尼和过阻尼状态的冲激响应波形 原理:1. 系统的零输入响应和零状态响应系统的响应可分解为零输入响应和零状态响应。
在图1-1中由RC 组成一阶RC 系统,电容两端有起始电压Vc(0-),激励源为e(t)。
图1-1 一阶RC 系统则系统的响应:1()01()(0)()tt t RCRCC c V t eV e e d RC -τ=-+ττ⎰ (1-1)Re (t)上式中第一项称之为零输入响应,与输入激励无关,零输入响应(0)tRCc e V -是以初始电压值开始,以指数规律进行衰减。
第二项与起始储能无关,只与输入激励有关,被称为零状态响应。
在不同的输入信号下,电路会表征出不同的响应。
系统的零输入响应与零状态响应电路原理图如图1-2所示。
实验中为了便于示波器观察,用周期方波作为激励信号,并且使RC 电路的时间常数略小于方波信号的半周期时间。
电容的充、放电过程分别对应一阶RC 系统的零状态响应和零输入响应,通过加法器后得到系统的全响应。
图1-2 零输入响应与零状态响应电路原理图2. 系统的阶跃响应和冲激响应RLC 串联电路的阶跃响应与冲激响应电路原理图如图1-3所示,其响应有以下三种状态:1) 当电阻R >2) 当电阻R =3) 当电阻R <图1-3 阶跃响应与冲激响应原理图冲激信号是阶跃信号的导数,所以对线性时不变系统冲激响应也是阶跃响应的导数。
MATLAB与信号实验——连续LTI系统的时域分析连续LTI系统的时域分析是信号与系统学中的重要课题。
MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行信号与系统的分析。
下面将介绍MATLAB在连续LTI系统时域分析中的应用。
首先,我们需要了解连续LTI系统的基本概念。
一个连续域线性时不变系统(LTI系统)可以由它的冲激响应完全描述。
冲激响应是系统对单位冲激信号的响应。
在MATLAB中,可以使用impulse函数来生成单位冲激信号。
假设我们有一个连续LTI系统的冲激响应h(t),我们可以使用conv 函数来计算系统对任意输入信号x(t)的响应y(t)。
conv函数实现了卷积运算,可以将输入信号与冲激响应进行卷积运算得到输出信号。
例如,我们假设一个连续LTI系统的冲激响应为h(t) = exp(-t)u(t),其中u(t)是单位阶跃函数。
我们可以使用以下代码生成输入信号x(t)和计算输出信号y(t):```matlabt=-10:0.1:10;%时间范围x = sin(t); % 输入信号h = exp(-t).*heaviside(t); % 冲激响应y = conv(x, h, 'same'); % 计算输出信号```这段代码首先定义了时间范围t,然后定义了输入信号x(t)和冲激响应h(t)。
接下来,使用conv函数计算输入信号和冲激响应的卷积,设置参数’same’表示输出信号与输入信号长度相同。
最后,得到了输出信号y(t)。
在得到输出信号后,我们可以使用MATLAB的绘图功能来可视化结果。
例如,使用以下代码可以绘制输入信号和输出信号的图像:```matlabfigure;plot(t, x, 'b', 'LineWidth', 2); % 绘制输入信号hold on;plot(t, y, 'r', 'LineWidth', 2); % 绘制输出信号xlabel('时间');ylabel('幅度');legend('输入信号', '输出信号');```除了卷积运算外,MATLAB还提供了许多其他函数来进行连续LTI系统的时域分析。
信号与系统中的连续时间系统分析信号与系统是电子工程、自动控制等领域重要的基础学科,与我们日常生活息息相关。
在信号与系统中,连续时间系统分析是其中的重要内容之一。
本文将着重介绍连续时间系统分析的基本概念、方法和应用。
一、连续时间系统的概念连续时间系统是指信号的取样频率大于或等于连续时间信号的变化频率,信号在任意时间均有定义并连续可取值。
连续时间系统包括线性系统和非线性系统两种,其中线性系统是一类常见且具有重要意义的系统。
二、连续时间系统的表示连续时间系统可以通过微分方程或差分方程来表示,其中微分方程常用于描述线性时不变系统,而差分方程常用于描述线性时变系统。
在实际应用中,可以通过拉普拉斯变换或傅里叶变换对连续时间系统进行分析和求解。
三、连续时间系统的性质连续时间系统具有多种性质,包括线性性、时不变性、因果性、稳定性等。
其中线性性是指系统对输入信号的响应是可叠加的,时不变性是指系统的输出与输入之间的关系不随时间的推移而改变。
四、连续时间系统的频域分析连续时间系统的频域分析是通过傅里叶变换来实现的,可以将时域中的信号转换为频域中的频谱。
通过频域分析,我们可以获得系统的幅频特性和相频特性,进一步了解系统对不同频率信号的响应。
五、连续时间系统的时域分析连续时间系统的时域分析是通过微分方程或差分方程来实现的,可以确定系统的时域特性。
通过时域分析,我们可以获得系统的阶数、单位阶跃响应、单位冲激响应等关键信息。
六、连续时间系统的应用连续时间系统的分析在实际应用中具有广泛的应用价值。
例如,在通信系统中,我们需要对信号进行调制、解调、编码、解码等处理,这些过程都需要借助连续时间系统的分析方法。
此外,连续时间系统的分析也在信号处理、图像处理、音频处理等领域有着重要的应用。
结语:连续时间系统分析是信号与系统学科中的重要内容,具有广泛的理论基础和实际应用。
通过深入学习连续时间系统的概念、表示、性质、频域分析、时域分析和应用,我们可以更好地理解和掌握信号与系统的基本原理和方法,为相关领域的研究和应用提供理论指导和技术支持。
计算机与信息工程学院设计性实验报告专业:通信工程年级/班级:2011级第二学年第二学期一、实验目的1.掌握用matlab分析系统时间响应的方法2.掌握用matlab分析系统频率响应的方法3.掌握系统零、极点分布与系统稳定性关系二、实验原理1.系统函数H(s)系统函数:系统零状态响应的拉氏变换与激励的拉氏变换之比.H(s)=R(s)/E(s)在matlab中可采用多种方法描述系统,本文采用传递函数(系统函数)描述法.在matlab中, 传递函数描述法是通过传递函数分子和分母关于s降幂排列的多项式系数来表示的.例如,某系统传递函数如下则可用如下二个向量num和den来表示:num=[1,1];den=[1,1.3,0.8]2.用matlab分析系统时间响应1)脉冲响应y=impulse(num,den,T)T:为等间隔的时间向量,指明要计算响应的时间点.2)阶跃响应y=setp(num,den,T)T同上.3)对任意输入的响应y=lsim(num,den,U,T)U:任意输入信号. T同上.3.用matlab分析系统频率响应特性频响特性: 系统在正弦激励下稳态响应随信号频率变化的特性.|H(jω)|:幅频响应特性.ϕ(ω):相频响应特性(或相移特性).Matlab求系统频响特性函数freqs的调用格式:h=freqs(num,den,ω)ω:为等间隔的角频率向量,指明要计算响应的频率点.4.系统零、极点分布与系统稳定性关系系统函数H(s)集中表现了系统的性能,研究H(s)在S平面中极点分布的位置,可很方面地判断系统稳定性.1) 稳定系统: H(s)全部极点落于S左半平面(不包括虚轴),则可以满足系统是稳定的.2)不稳定系统: H(s)极点落于S右半平面,或在虚轴上具有二阶以上极点,则在足够长时间后,h(t)仍继续增长, 系统是不稳定的.3)临界稳定系统: H(s)极点落于S平面虚轴上,且只有一阶,则在足够长时间后,h(t)趋于一个非零数值或形成一个等幅振荡.系统函数H(s)的零、极点可用matlab的多项式求根函数roots()求得.极点:p=roots(den)零点:z=roots(num)根据p和z用plot()命令即可画出系统零、极点分布图,进而分析判断系统稳定性.三、实验内容设①p1=-2,p2=-30; ②p1=-2,p2=31.针对极点参数①②,画出系统零、极点分布图, 判断该系统稳定性.2.针对极点参数①②,绘出系统的脉冲响应曲线,并观察t→∞时, 脉冲响应变化趋势.3.针对极点参数①, 绘出系统的频响曲线.四、实验要求1.预习实验原理;2.对实验内容编写程序(M文件),上机运行;3.绘出实验内容的各相应曲线或图。
连续控制系统:分析连续控制系统的特点、设计和实现引言在现代工业和自动化领域,连续控制系统起着至关重要的作用。
它们能够实时监测和调整工业过程中的连续变量,以确保系统的稳定性和性能。
本文将深入探讨连续控制系统的特点、设计和实现方法。
什么是连续控制系统?连续控制系统是一种能够对连续变量进行实时监测和调整的控制系统。
所谓连续变量,指的是在一段时间内存在无限多个离散取值的变量,如温度、液位、流量等。
连续控制系统通过与传感器和执行器的互动,实现对这些变量的控制和调节。
与离散控制系统相比,连续控制系统更适用于需要实时反馈和连续调整的工业过程。
它们能够快速响应变化,并准确地控制和维持系统的运行参数。
在许多领域,如化工、电力、交通等,连续控制系统都得到广泛应用。
连续控制系统的特点连续控制系统具有以下几个特点:1. 实时性连续控制系统需要对连续变量进行实时监测和调整。
它们通过与传感器和执行器的交互,能够快速响应系统发生的变化,并及时作出调整。
在关键的工业过程中,实时性是确保系统稳定性和性能的关键因素。
2. 精确性连续控制系统需要对连续变量进行精确的控制和调节。
它们能够根据传感器提供的实时数据,准确地计算出控制信号并输出给执行器。
通过不断的反馈和调整,连续控制系统能够实现对变量的精确控制,以满足系统的需求。
3. 稳定性连续控制系统需要保持系统的稳定性。
它们能够监测和调整系统的运行参数,以确保系统处于稳定状态。
通过对系统的连续调整,连续控制系统能够防止系统出现过载、过热等问题,确保系统长时间稳定运行。
4. 可迭代性连续控制系统是一个不断迭代优化的过程。
它们通过不断地监测和调整系统的运行参数,寻找最优的控制方案。
连续控制系统能够根据不同的工况和要求,适时地调整控制策略,以达到最佳的控制效果。
连续控制系统的设计连续控制系统的设计需要考虑以下几个方面:1. 信号采集与处理连续控制系统需要采集和处理传感器提供的实时数据。
为了提高信号的准确性和可靠性,需要采用高质量的传感器,并进行合适的滤波和处理。
∞连续系统零极点分析理论基础根据系统函数 H (s ) 的零极点分布来分析连续系统的稳定性是零极点分析的重要应用之一。
稳定性是系统固有的性质,与激励信号无关,由于系统函数 H (s ) 包含了系统的所有固有特性,显然它也能反映出系统是否稳定。
对任意有界信号 f (t ),若系统产生的零状态响应 y (t ) 也是有界的,则称该系统为稳定系统,否则,则称为不稳定系统。
上述稳定性的定义可以等效为下列条件:● 时域条件:连续系统稳定充要条件为⎰-∞ h (t ) dt < ∞ ,即冲激响应绝对可积;● 复频域条件:连续系统稳定的充要条件为系统函数 H (s ) 的所有极点位于S 平面的左半平面。
系统稳定的时域条件和频域条件是等价的。
因此,只要考察系统函数 H (s ) 的极点分布,就可判断系统的稳定性。
对于三阶以下的低阶系统,可以利用求根公式方便地求出极点位置,从而判断系统稳定性。
第一小题 A=[3 5 4 6];B=[1 1 2];p=roots(A);q=roots(B);p=p';q=q';x=max(abs([p q 1]));x=x+0.1;y=x;clf;hold on ;axis([-x x -y y]) ;axis('square');figure(1);plot([-x x],[0 0]) ;title("零极点分布图");plot([0 0],[-y y]) ;plot(real(p),imag(p),'x') ;plot(real(q),imag(q),'o') ;hold off ;f1=0;f2=2;k=0.01;p=p';q=q';f=f1:k:f2; %定义绘制系统频率响应曲线的频率范围w=f*(2*pi);y=1i*w;n=length(p);m=length(q);if n==0 %如果系统无极点yq=ones(m,1)*y;vq=yq-q*ones(1,length(w));bj=abs(vq);cosaij=angle(vq)./pi.*180;61;ai=1;thetai=0;elseif m==0 %如果系统无零点yp=ones(n,1)*y;vp=yp-p*ones(1,length(w));ai=abs(vp);thetai=angle(vp)./pi.*180;bj=1;cosaij=0;elseyp=ones(n,1)*y;yq=ones(m,1)*y;vp=yp-p*ones(1,length(w));vq=yq-q*ones(1,length(w));ai=abs(vp);thetai=angle(vp)./pi.*180;bj=abs(vq);cosaij=angle(vq)./pi.*180;endfigure(2);Hw=prod(bj,1)./prod(ai,1);plot(f,Hw);title('连续系统幅频响应曲线')xlabel('频率 w(单位:赫兹) ')ylabel('F(jw)')figure(3);Angw=sum(cosaij,1)-sum(thetai,1);plot(f,Angw);title('连续系统相频响应曲线')xlabel('频率 w(单位:赫兹) ')ylabel('Angle(jw)')第四小题A=[1 2 2 1];B=[1];p=roots(A);q=roots(B);p=p';q=q';x=max(abs([p q 1])); x=x+0.1;y=x;clf;hold on;axis([-x x -y y]) ; axis('square');figure(1);plot([-x x],[0 0]) ;title("零极点分布图"); plot([0 0],[-y y]) ;plot(real(p),imag(p),'x') ;plot(real(q),imag(q),'o') ;hold off;f1=0;f2=2;k=0.01;p=p';q=q';f=f1:k:f2; %定义绘制系统频率响应曲线的频率范围w=f*(2*pi);y=1i*w;n=length(p);m=length(q);if n==0 %如果系统无极点yq=ones(m,1)*y;vq=yq-q*ones(1,length(w));bj=abs(vq);cosaij=angle(vq)./pi.*180;61;ai=1;thetai=0;elseif m==0 %如果系统无零点yp=ones(n,1)*y;vp=yp-p*ones(1,length(w));ai=abs(vp);thetai=angle(vp)./pi.*180;bj=1;cosaij=0;elseyp=ones(n,1)*y;yq=ones(m,1)*y;vp=yp-p*ones(1,length(w));vq=yq-q*ones(1,length(w));ai=abs(vp);thetai=angle(vp)./pi.*180;bj=abs(vq);cosaij=angle(vq)./pi.*180;endfigure(2);Hw=prod(bj,1)./prod(ai,1);plot(f,Hw);title('连续系统幅频响应曲线')xlabel('频率 w(单位:赫兹) ') ylabel('F(jw)')figure(3);Angw=sum(cosaij,1)-sum(thetai,1); plot(f,Angw);title('连续系统相频响应曲线') xlabel('频率 w(单位:赫兹) ') ylabel('Angle(jw)')。
信号与系统实验陈述课程名称:信号与系统实验实验项目名称:连续线性时不变系统分析专业班级:姓名:学号:完成时间:年月日一、实验目的1.掌握连续LTI系统的单位冲激响应、单位阶跃响应和任意激励对应响应的求解方法。
2.掌握连续LTI系统的频域分析方法。
3.掌握连续LTI系统的复频域分析方法。
4.掌握连续LTI系统的时域、频域和复频域分析方法的相互转换。
二、实验原理1.连续LTI系统的时域分析(1)连续线性时不变系统的描述设连续线性时不变系统的激励为,响应为,则描述系统的微分方程可暗示为为了在Matlab编程中调用有关函数,我们可以用向量和来暗示该系统,即这里要注意,向量和的元素排列是按微分方程的微分阶次降幂排列,缺项要用0补齐。
(2) 单位冲激响应单位冲激响应是指连续LTI系统在单位冲激信号激励下的零状态响应,因此满足线性常系数微分方程(5.1)及零初始状态,即,依照定义,它也可暗示为对于连续LTI系统,若其输入信号为,冲激响应为,则其零状态响应为可见,能够刻画和表征系统的固有特性,与何种激励无关。
一旦知道了系统的冲激响应,就可求得系统对任何输入信号所发生的零状态响应。
Matlab提供了专门用于求连续系统冲激响应的函数impulse(),该函数还能绘制其时域波形。
(3)单位阶跃响应单位阶跃响应是指连续LTI系统在单位阶跃信号激励下的零状态响应,它可以暗示为Matlab提供了专门用于求连续系统单位阶跃响应的函数step( ),该函数还能绘制其时域波形。
(4)任意激励下的零状态响应已经知道,连续LTI系统可用常系数线性微分方程(5.1)式来描述,Matlab提供的函数lsim( )能对上述微分方程描述的连续LTI系统的响应进行仿真,该函数不但能绘制指定时间范围内的系统响应波形图,而且还能求出系统响应的数值解。
其调用格式有lsim(b,a,x,t)y=lsim(b,a,x,t) :只求出系统的零状态响应的数值解,而不绘制响应曲线需要特别强调的是,Matlab总是把由分子和分母多项式暗示任何系统都当作是因果系统。